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Abstract

This paper proposes an automated framework for efficient application profil-

ing and training of Machine Learning (ML) performance models, composed of

two parts: OSCAR-P and aMLLibrary. OSCAR-P is an auto-profiling tool de-

signed to automatically test serverless application workflows running on multiple

hardware and node combinations in cloud and edge environments. OSCAR-P

obtains relevant profiling information on the execution time of the individual

application components. These data are later used by aMLLibrary to train ML-

based performance models. This makes it possible to predict the performance

of applications on unseen configurations. We test our framework on clusters

with different architectures (x86 and arm64) and workloads, considering multi-

component use-case applications. This extensive experimental campaign proves

the efficiency of OSCAR-P and aMLLibrary, significantly reducing the time

needed for the application profiling, data collection, and data processing. The

preliminary results obtained on the ML performance models accuracy show a

Mean Absolute Percentage Error lower than 30% in all the considered scenarios.

Keywords: edge computing, computing continuum, performance profiling,

machine learning
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1. Introduction

Cloud computing is widely adopted today and has been used for years as

the standard computing paradigm for enterprise-level distributed systems [1].

Despite its significant advantages in terms of costs and computational power

accessibility, it is associated with significant challenges since data offloading

leads to potential delays and increased expenses. Therefore, it falls short in

meeting the demands of contemporary applications, often Artificial Intelligence

(AI)-based and associated with strict or almost real-time processing constraints.

Cloud users exhibit high sensitivity to delays and fluctuations, and they benefit

from a newly-emerging paradigm called edge computing, striving to relocate

applications closer to the point of data generation [2]. This approach offers

several advantages: i) lower latency: by moving part of the computation where

the data resides, we remove the round-trip-time delays needed to access the

remote cloud data centers, resulting in faster response times and better per-

formance; ii) reduced bandwidth usage: local processing at the edge removes

the need to send vast amounts of data through the network, saving bandwidth

and avoiding bottlenecks; iii) improved privacy: data processed on edge devices

can be anonymized on the spot before communication, ensuring that potentially

sensitive information is never shared with a central server; iv) better scalability:

edge devices are usually cheap, and adding more to help with data processing is

easy to implement and economical. However, edge resources cannot be seen as

a possible replacement for cloud computing since they are usually characterized

by lower computational capacity and consequently become a bottleneck in the

computation. An integrated edge-cloud computing continuum enabling applica-

tion components with different demands to be executed on the most appropriate

resources is crucial to supporting complex application workflows effectively.

Together with the introduction of the computing continuum paradigm, an-

other significant aspect characterizing the computational landscape in recent

years is represented by the quick rise in popularity [3][4] of the Function as

a Service (FaaS) model. It breaks down complex applications in workflows

2



of small, usually short-lived components, which run on reusable services con-

sisting of stateless containers activated by suitable events (e.g., a file upload).

Using containers instead of virtual machines (VMs) reduces both the develop-

ment/deployment complexity and the resource usage. Containers can be dy-

namically created or destroyed in response to workload variations, and their

stateless nature allows them to be reused to serve another event as soon as

the previous computation completes. This increases the flexibility and makes

the FaaS model suitable for scenarios characterized by light average workload

interleaved with activity peaks. Finally, the FaaS model in public clouds is

characterized by per-millisecond costs bound to the actual resource usage [5].

Despite the benefits associated with distributed computing and FaaS mod-

els, evaluating the performance of a complex application whose components may

be allocated at different levels of the computing continuum poses significant

challenges. Automated tools are needed to support the components profiling,

measuring their execution times while exploiting variable resources and hard-

ware configurations. Furthermore, accurately predicting the performance of a

given application at a target configuration is the key to proper planning and

runtime management of the available resources. As mentioned, edge devices

with limited capacity often become the system bottleneck in case of workload

spikes, and actions need to be taken to meet the performance objectives (e.g.,

limiting application execution time with a fixed threshold).

This paper proposes an integrated framework for the profiling and perfor-

mance modeling of FaaS-based applications running in computing continua. In

our setting, the application execution is supported by OSCAR [6], a state-of-

the-art runtime environment that aims to create a highly parallel, event-driven,

pipelined serverless environment to execute general-purpose data-processing

computing applications. This includes the usage of AWS Lambda to exe-

cute event-driven Docker-based applications. On top of OSCAR, we developed

OSCAR-P (OSCAR-Profiler), a novel auto-profiling tool that can automatically

test application workflows on different hardware and node combinations, gath-

ering relevant information on the execution time of the individual components.
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Moreover, OSCAR-P leverages aMLLibrary [7], an open-source Machine Learn-

ing (ML) package we designed to automatically develop performance-predicting

models for every service/resource pair, which can be combined to forecast the

runtime of the entire workflow. Compared to tools such as Kubeflow Katib [8],

aMLLibrary does not require extensive configuration and deployment of compu-

tational resources, is more straightforward and portable, and supports utilities

specific to performance modeling such as feature augmentation and selection.

The usage of ML for performance prediction is motivated by the ever-

increasing complexity of modern software. Often, the impact of input configu-

rations and settings on software performance is not straightforward, preventing

the use of analytical, white-box methods such as Petri nets [9] and queuing

networks [10]. Even in the simplest scenarios where accurate modeling is possi-

ble, the hypothesis and assumptions underlying analytical formulations prevent

them from covering all use cases. Therefore, an approach that does not require

any knowledge of the internal details of the system, generally referred to as a

black-box technique, is often preferred. In particular, ML is the prominent cat-

egory of black-box approaches for performance analysis [11]. The models built

by aMLLibrary make it possible to predict the performance (e.g., the average

execution time) of an application on unseen configurations with high accuracy.

This allows to limit the initial application profiling campaign since some config-

urations do not need to be tested directly. In general, this prediction capability

enables efficient design-time decision making [12] and runtime resource manage-

ment [13, 14, 15], which are essential tasks for numerous cloud systems.

This paper extends our initial works in [16] and [7]. Compared to these

papers, we i) discuss our contributions with a much larger level of detail, ii)

add support for synchronous calls, partitioned applications, and AWS Lambda

functions into the framework, and iii) extend our experimental campaign with

four new applications representing different real-life use cases.

This work is organized as follows. Section 2 presents relevant literature

works. Section 3 provides a summary of the OSCAR framework and its architec-

ture. Section 4 thoroughly illustrates the OSCAR-P goals and its architecture,

4



while Section 5 illustrates the capabilities of aMLLibrary and the performance

analysis it supports. Section 6 describes the performance models used in our

experiments. Section 7 focuses on the experimental scenarios to validate our

tools. Conclusions and future works are discussed in Section 8.

2. Related work

This section overviews recent works in technological fields relevant to this

paper, namely benchmarking tools for FaaS and edge systems (Section 2.1) and

ML-based performance modeling (Section 2.2).

2.1. Benchmarking

As FaaS and edge computing rose to popularity, several cloud providers

started offering their own FaaS platforms, each with different underlying tech-

nologies. At the same time, many researchers tried to address the challenges of

benchmarking applications deployed partially on the edge and partially on the

cloud. SeBS (Serverless Benchmark Suite) [17] is a comprehensive benchmark-

ing tool that systematically supports various applications, cloud resources, and

commercial providers. EdgeBench [3] focuses instead on two providers, AWS IoT

Greengrass and Microsoft Azure IoT Edge, using different performance metrics,

and also compares the edge frameworks performance to the respective cloud-only

implementations. The framework in [18] allows the user to specify the latency

and cost requirements of application services, and it determines whether it is

better to deploy them on the cloud or the edge. It is meant for applications on

small smart edge devices, like smart cameras. DeFog [19] presents a benchmark-

ing tool that tests an application across a cloud-only, edge-only, and cloud-edge

environment by comparing performance across different deployments. The tool

collects relevant metrics to understand how the application services can be bet-

ter distributed across the computing continuum. [20] presents Ilúvatar, a low-

latency FaaS control plane. Its design principles significantly reduce overhead

compared to state-of-the-art control planes. It introduces function-size-aware

queueing policies to regulate worker load, improve latency, and balance utiliza-

tion. Finally, [21] proposes a methodology for generating synthetic traces from
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large-scale production workloads, focusing on Azure Functions across various

scales and load factors. The authors introduce In-Vitro, which uses an iterative

approach to sample functions, minimizing the Wasserstein distance between the

full trace and sampled trace distributions of essential workload characteristics.

Their experiments show that In-Vitro significantly enhances representativeness

compared to random sampling methods. Finally, [22] introduces FaaSRail, a tool

that reconciles open-source workloads with real-world FaaS traces in production

environments. FaaSRail maps real traces to benchmarking suites, downscales

invocations, emulates time variability, and replicates burstiness.

2.2. Performance models

Many researchers focus on analyzing and predicting the performance of ap-

plications running on edge systems and, recently, the majority use ML models

instead of analytical models. For instance, [23] proposes some linear regression

models to predict the execution time of Convolutional Neural Networks on edge

devices, given constraints on memory and processing load. [15] focuses predom-

inantly on mobile devices, specifically the cloud-only data-processing approach,

and compares its efficiency to a partitioned approach where the computation

is split between the cloud and mobile devices. In both [23] and [15], the ML

performance models predict the application execution time by considering the

number of floating point operations per second of the devices. Authors of [24]

employ several ML models alongside anomaly detection to properly configure a

cloud-based Internet of Things (IoT) device manager while respecting Quality

of Service (QoS) constraints. Similarly, [25] applies popular ML techniques to

a workload prediction analysis on HTTP servers, showing that these techniques

all achieve good predicting capabilities.

Performance modeling through ML is also applied to FaaS platforms. Suan-

Ming [26] is an integrated framework for learning performance degradation of

microservice-based systems running in public and private clouds, using several

ML algorithms. Authors of [27] propose the creation of a model to predict per-

formance metrics by considering the application average response time for warm
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and cold requests, the requests arrival rate, and the system expiration threshold.

In [28], the same authors propose a steady-state analytical performance model

for improving the QoS of FaaS and reducing operating costs, trading off cost

and performance by making the platform workload-aware.

Unlike previous works, OSCAR-P is focused on benchmarking the OSCAR

framework, which can be deployed on top of any commercial and on-premises

Cloud Management Platform (e.g., OpenStack) and hence has the critical bene-

fit of being cloud-provider agnostic. To the best of our knowledge, the literature

proposes no other automated framework that integrates profiling with ML per-

formance model building for the computing continuum.

3. The OSCAR Framework

OSCAR1 is an open-source framework to quickly and efficiently support

event-driven, data-processing, serverless applications packaged as Docker im-

ages along the computing continuum [29] (see Figure 1). They are executed in

elastic Kubernetes (K8s) clusters that can be dynamically provisioned across

multiple cloud back-ends thanks to the Infrastructure Manager2 (IM), an open-

source tool that automatically creates and manages virtual infrastructures. Hor-

izontal elasticity is provided by CLUES3, a management system that provisions

and terminates the worker nodes to accommodate the cluster workload. While

one could choose a different container orchestration tool like Docker Swarm4,

Kubernetes is preferred due to its greater scalability, richer ecosystem, and

more robust features for complex deployments, making it a more versatile and

powerful platform. OSCAR can also perform cloud bursting into SCAR [30],

facilitating the execution of Docker-based applications in AWS Lambda.

The framework architecture is shown in Figure 2. The following components

are deployed inside the K8s cluster to support the OSCAR platform: i) MinIO5,

1https://oscar.grycap.net
2http://www.grycap.upv.es/im
3http://github.com/grycap/clues
4https://docs.docker.com/engine/swarm/
5http://minio.io
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Figure 1: High-level architecture for event-driven container-based data-processing app.
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Figure 2: OSCAR architecture.

a high-performance multi-cloud object storage server ; ii) Knative6, an open-

source enterprise-level solution to build serverless and event-driven applications,

used to support synchronous invocations, and iii) OSCAR Manager, the main

service that manages the integration of the separate components. The supported

storage providers are: i) MinIO, deployed either internally or externally to the

cluster; ii) Amazon S3, AWS object storage service that provides scalability,

data availability, security, and performance in the public cloud; iii) Onedata, the

global data access solution for science used by the EGI Federated Cloud; and iv)

dCache, a system for storing and retrieving vast amounts of data, distributed

among a large number of server nodes. The cluster can be managed through its

REST API, either via web interface or command line.

6https://knative.dev/docs/
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Applications are created as services on the OSCAR cluster by providing: i)

a Docker image to be used, ii) the input and output buckets of each service, and

iii) a shell script to be executed inside the container. OSCAR can create services

by writing and uploading a Function Definition Language (FDL) configuration

file on the cluster. Once configured, the execution of a service is automatically

triggered by uploading a file into its input bucket. The result is delivered into

the output bucket, which may be the input of another service. If so, that service

is automatically triggered and either executed immediately (if possible) or added

to the job queue. Uploading multiple files triggers the highest possible number

of parallel invocations supported by the specific cluster; all remaining function

calls are scheduled for execution as soon as the running services are complete.

Serverless systems typically suffer from cold start (see analyses in Sections

7.3.2 and 7.6), where the first invocations incur increased latency due to the

underlying capacity allocation. This is mitigated in OSCAR in two ways: pre-

fetching the Docker images into the K8s cluster nodes to rapidly deploy the

containers and maintaining a pool of user-defined active containers so that syn-

chronous invocations via Knative can execute quickly. Synchronous calls are

made exclusively on the first component, while subsequent components are trig-

gered by the arrival of files in the corresponding input buckets.

When performing inference via a Deep Neural Network (DNN), a single

component can be replaced by two or more equivalent components running

sequentially. This is particularly relevant for AI applications since we can par-

tition DNNs to run on different resources, exploiting more efficient alternative

deployments according to the workload conditions [12, 13].

Despite our work being based on OSCAR, OSCAR-P and the prediction

techniques we propose apply to other serverless frameworks too. Indeed, the

K8s and Knative platforms leveraged by OSCAR are widely used for FaaS both

on-premises and in the cloud (see, e.g., OpenFaaS and Fission). Thus, our

approach can extend to any framework with compatible underlying technology.
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4. OSCAR-P

This section describes OSCAR-P, the OSCAR Profiler that provides, along-

side aMLLibrary, the novel contribution of this paper. OSCAR-P is built around

OSCAR and its components (like K8s and MinIO) and acts as a director, con-

figuring and coordinating the profiling activities and the data collection. The

profiler aims to simplify and automate testing specific OSCAR application work-

flows on different hardware configurations, gathering data to train ML models

through the aMLLibrary. These models perform predictions on the response

time of OSCAR/SCAR workflow components.

OSCAR-P requires the following input information: i) the description of

the physical or virtual resources to test, including access keys to AWS services

and the private keys of physical clusters; ii) the description of the application

components, e.g., their Docker images and hardware requirements; iii) the ap-

plication parameters, including the input files, the distribution of data uploads

(for asynchronous calls) and HTTP requests (for synchronous ones), and the

parallelism levels; iv) the settings for ML models training in the aMLLibrary

(see Section 5). All these inputs are encapsulated in YAML files, eliminating

the necessity for user interaction with the code. A template of the individual

configuration files is accessible on Zenodo [31].

In the following sections, we will refer to a specific cluster setting to run

the components of an application as a deployment. OSCAR-P efficiently tests

individual components after running the full workflow once, to reduce the time

needed to test all possible deployments. Each OSCAR-P sub-component man-

ages one step of the profiling activities, as illustrated in Figure 3.

4.1. Input files parser

Starting from the input files, OSCAR-P lists all the testing units, i.e., the

valid component-resource assignments within a deployment. If a component is

partitioned, all the partitions are considered part of the same testing unit.

As an example, illustrated in Figure 4, we consider an application including

a single component (C1 ) that can be deployed on a cluster of Raspberry Pi
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Figure 3: Profiling activity steps, OSCAR-P sub-components and interactions.

Figure 4: Example app. Figure 5: Testing units. Figure 6: Deployment.

(arm64 architecture) or VMs (amd64 architecture). The component can also

be partitioned in C1.1 and C1.2, each available for a single architecture (arm64

and amd64, respectively), generating the following testing units: i) C1 on the

Raspberry Pi cluster; ii) C1 on the VM cluster; iii) C1.1 on the Raspberry Pi

cluster and C1.2 on the VM cluster. In this case, OSCAR-P creates a list of

all the deployments to test, i.e., all the possible combinations of testing units

of the different components (see Figure 5). Each deployment contains a set

of configurations, i.e., the cluster settings, but with different parallelism levels

for each component (i.e., the number of parallel instances executed). Figure 6

shows an example for a specific deployment.
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4.2. Cluster configurator and description generation

Before testing a deployment, the clusters need to be set up and correctly

configured. As shown in Figure 3, OSCAR-P generates the necessary files for

IM and K8s to instantiate both physical and virtual nodes. During profiling,

the cluster configuration undergoes periodic adjustments for subsequent runs,

directly altering the number of worker nodes. When OSCAR-P completes its

runs, the cluster configurator mandates IM to destroy the virtual clusters.

Once the cluster configuration for a specific test is completed, OSCAR-P

generates a descriptive YAML file for that deployment detailing all information

needed to run the test. This file contains the list of all the service requirements

and a description of the clusters in use, and is updated with all the subsequent

deployment runs, serving as a summary of the entire testing campaign.

4.3. Run manager

At this stage, the description YAML file (mentioned in Figure 3) is parsed

to extract all the relevant information for the current run. The OSCAR cluster

is cleaned by removing all the remnants of past executions (if any) to ensure

they do not interfere with the current execution. Finally, OSCAR-P generates

an FDL file with the information needed to build the new workflow (i.e., the

required services and buckets) and applies it to the OSCAR cluster. Since

OSCAR (and FaaS in general) is event-driven, moving the required files in

the input bucket of the first service triggers its execution and starts the run.

While for asynchronous calls the file upload is managed directly by the machine

running OSCAR-P, for synchronous calls it is handled by JMeter7, an open-

source software for load testing. In particular, the JMeter client is automatically

instantiated by IM before the run starts. Given the input files and the desired

load, JMeter can upload files either at a constant rate or by sampling arrival

times from an exponential distribution. Note that in the case of asynchronous

calls, OSCAR-P input files are uploaded to a MinIO storage bucket and then

7https://jmeter.apache.org
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moved to the input bucket. This method allows to measure the processing time

of an external request independently of the network connecting the end-user to

the OSCAR cluster, something especially useful for simulating peak loads with

multiple file uploads. For the same reason, JMeter clusters are placed at the

front-end component location for synchronous calls.

When testing the full application workflow, once the execution of the first

component is triggered, the process proceeds automatically, as the output of

each component serves as the input for the following one. On the other hand,

single services are connected to temporary input/output buckets to control their

execution, as depicted in Figure 7.

Figure 7: Full workflow and single component testing.

4.4. Log retriever

Upon completion of a run, OSCAR-P collects and processes the relevant logs

from OSCAR, Kubernetes (K8s), and potentially JMeter. These logs provide

detailed information, including the scheduling time of a job (i.e., a single com-

ponent execution), the creation time of the corresponding pod (the deployable

computing unit in K8s), as well as the application’s execution start and end

times. This data is crucial for monitoring delays, wait times, and overheads.

The collected data are organized in four time intervals, as reported in Figure

8. The Network Time Protocol guarantees synchronization among the cluster

nodes. The initial wait interval starts when a file is uploaded in the input

bucket. The next interval corresponds to the pod creation by K8s. Overhead

starts when the pod is created and the underlying container is started, while
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Figure 8: Timeline of a single job.

compute begins when the container log (obtained from OSCAR) reports that

the application execution has already started. This last interval ends when the

job terminates, and the corresponding container is destroyed.

The Log2CSV-converter OSCAR-P component merges the data collected for

each tested configuration into a single CSV file, used by aMLLibrary to train a

performance model for every service/resource pair.

5. aMLLibrary

aMLLibrary [7] is the last component in the OSCAR-P pipeline and builds

the performance prediction models that are the final artifact produced by the

framework. aMLLibrary is an open-source, high-level Python package that is

based on the scikit-learn toolkit8 and allows parallel training of multiple su-

pervised ML models, supporting several pre-processing techniques, feature se-

lection, and hyperparameter tuning. It receives the profiling data collected by

OSCAR-P and builds regression models to predict the performance of both the

application individual components and the full workflow.

Overall, aMLLibrary implements an autoML solution, i.e., it trains mul-

tiple regression models and automatically selects the most accurate one. By

leveraging a highly accurate ML model, the performance of a specific applica-

tion configuration can be estimated without direct observation, consequently

reducing the size of the initial OSCAR-P profiling campaign. Furthermore, the

generalization capabilities of ML models allow to estimate the performance of

8https://scikit-learn.org
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a given application component for design-time decisions (e.g., how many nodes

to allocate to each component of the OSCAR pipeline) [12] or runtime adaptive

resource management (e.g., scaling nodes up and down according to runtime

load variations) [13]. Also, when profiling some components of an application

on a different hardware, we can can exploit the results from previous profiling

campaigns for the unchanged components to reduce the overall profiling time.

As mentioned in Section 1, general black-box approaches that do not require

any knowledge of the internal details of the system, such as ML methods, are be-

coming popular in studying software performance because of the limitations of

analytical, white-box models that often rely on unrealistic assumptions. More-

over, it would be impossible to formulate one single analytical model to cover

all possible target applications. Creating multiple individual, domain-specific

models, each requiring thorough domain expertise, extensive effort, and signifi-

cant profiling costs, is hardly affordable for large computing environments and

applications. On the other hand, simulation-based approaches are characterized

by excessive runtime evaluation costs, which makes it difficult to employ them

for effective resource management decisions.

Within the OSCAR-P pipeline, the main strengths of the library are its

ease of use, wide range of options, and robustness and efficiency of its training

operations. We discuss the first aspect in Section 5.1 and the rest in Section 5.2.

5.1. Configuration files

aMLLibrary is controlled by a simple text configuration file, given as input

to the OSCAR-P framework (see Appendix A.1 for a basic example of a config-

uration file). The file includes general settings for the campaign configuration,

such as the ML models to build and the methods for hyperparameter selection

and validation. It also lists the data pre-processing steps, if any. The user can

specify these settings at the beginning of the OSCAR-P profiling campaign in

a concise and declarative way without the need to write any Python code. An

equivalent Python script would require hundreds of lines of code to achieve the

same result (see the equivalent script to the configuration file in the Zenodo
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repository [31]). The provided default settings for hyperparameter tuning are

general enough to allow the tuning mechanism to find the appropriate parameter

values, usually without requiring modifications by the user.

5.2. Features

We show the high-level architecture of aMLLibrary in Figure 9. The library

Figure 9: aMLLibrary components.

has several useful perks for building performance models. The parallel training

of multiple models is supported: the user can specify the number of parallel

cores to use, and the library automatically distributes the training experiments

evenly among the parallel workers, even if the underlying scikit-learn models

are limited to single-thread execution. Furthermore, the library implements a

fault tolerance mechanism by saving incremental progress checkpoints.

Users have complete control over the experimental campaign thanks to the

many configuration options and flags available. The library currently supports

Decision Tree (DT), Non-Negative Least Squares (NNLS), Random Forest (RF),
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Ridge Linear Regression, Stepwise (a linear regression model which integrates

the Draper-Smith feature selection technique [32]), Support Vector Regression

(SVR), and XGBoost. Hyperparameter tuning of these models can be per-

formed either via grid search, by specifying the lists of values to be tested,

or automatically via Bayesian Optimization (BO). In the latter case, the inte-

grated HyperOpt library9 is used, and the user must provide prior probability

distributions on the hyperparameters to optimize.

aMLLibrary includes plugins for several data pre-processing techniques, such

as data normalization and one-hot encoding for discrete features, as well as other

convenient tools, such as row selection and data validity checks. It supports au-

tomatic feature engineering, e.g., computation of logarithms, inverse values, and

feature products/polynomial expansion up to a given degree. These tools can

be helpful to unearth potentially relevant information hidden in the input fea-

tures, such as quadratic dependencies and interaction terms. Feature selection

techniques are also supported, including forward Sequential Feature Selection

(SFS) [33] and XGBoost importance weight selection.

5.3. Validation methods

The user can choose among several validation methods to compute the

Mean Absolute Percentage Error (MAPE) of a model, which is defined as

MAPE(y, ŷ) = 1
N

∑N
i=1

∣∣∣yi−ŷi

yi

∣∣∣, where y and ŷ are the vectors of true and

predicted values, respectively. In the performance evaluation literature [34],

MAPEs lower than 30% for application execution times are usually considered

enough to support runtime management decisions or capacity planning.

Besides classical validation methods such as train-test splitting and Cross-

Validation (CV), aMLLibrary offers methods such as interpolation and extrap-

olation, often used in ICT settings to build custom test sets [35]. Here, inter-

polation means keeping some feature values within the feature space out of the

training set and placing them in the test set to check the ability of the model

9https://github.com/hyperopt/hyperopt
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to “fill in the blanks” of the feature space. The goal of such validation is to

verify whether it is possible to reduce the dimension of the training set, there-

fore conducting a profiling campaign with a coarser granularity (e.g., varying a

cluster size by 8 cores instead of 2 or 4 cores). Vice versa, extrapolation means

keeping an entire area of the search space out of the training set to test the

predicting capabilities of the model in an unexplored part of the feature space.

After the validation phase, aMLLibrary chooses the best model according to its

validation MAPE and saves it to a binary file so that it can be used for further

inference. Finally, the library includes a prediction module that can be used to

perform inference with an already-trained regression model.

6. Performance models

This section presents the performance models used in our experimental sce-

narios, discussed in Section 7. Our general objective is to train ML performance

models for individual OSCAR workflow services and to predict the performance

of the full workflow. Due to the substantial execution times and associated

costs, we aim to avoid testing all possible combinations of a potentially complex

application (see, e.g., “recipe-transcriber” in Section 7.5), where the number of

experiments would scale exponentially with the number of components and re-

sources to test. This prediction poses significant challenges, as the input rate of

the subsequent component depends on the output rate of the previous compo-

nent, further complicated by its configuration-specific nature. Additionally, we

aim to generate ML models for individual components to facilitate reuse in case

of setting changes, thereby avoiding the need to rerun the profiling campaign.

In tests with asynchronous calls, we seek to estimate the total processing time

for a collection of input files, considering that these files are processed all at once.

However, building a unified model encompassing all application components is

not straightforward because of the pipeline effect. This effect arises during the

execution of the full application, allowing subsequent components to start as

soon as their predecessors have been completed. The performance models for

single services do not capture this partial overlap (see Figure 10), as they assume
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that a component only starts after all instances of the previous one have finished,

resulting in an overly conservative estimate of execution time. To mitigate this

issue, we adjust the predictions for each component by subtracting the average

execution time for a single job from the previous component.

Figure 10: “Pipeline effect” illustration.

On the other hand, tests with synchronous calls aim to predict the execu-

tion time of individual inputs considering a continuous flow of requests with

arrival rate λ. The models for each component need to account for not only the

number of parallel pods, but also the arrival rate of requests from the previous

component. In principle, the arrival rate of requests should match the value set

by the user; however, this is not the case when one of the components saturates

the available resources, which leads to a reduction in throughput compared to

the initial rate. Consider for example the scenario depicted in Figure 11, where

the application includes two components. If the first component saturates, the

arrival rate of requests to the second component would be λ1 < λ. Conse-

quently, using the input arrival rate λ to predict the performance of the second

component would lead to overly conservative predictions for the full workflow.

To address this challenge, we generate models for all individual components to

estimate their average execution times (T1 and T2 in the figure) and models to

predict the throughput between one component and another (i.e., λ1).

Figure 11: Overview of a test with synchronous calls on a two-component application, where
the user-defined parameters for the specific run are (λ, n1, n2).
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Note that this work focuses on the computational aspects of the cloud-edge

continuum without addressing network communication delays. This is equiva-

lent to the assumption that the network is not a performance bottleneck. Pro-

filing and modeling its performance falls beyond the scope of our research.

7. Experimental analysis

This section overviews the experiments we perform with our framework,

with the goal of demonstrating its usefulness in the collection of training data,

post-hoc analysis of executions, and generation of highly accurate ML models.

We consider four example applications (Section 7.1), testing them across differ-

ent clusters and configurations. Section 7.2 overviews the ML techniques ex-

ploited for performance model generation and their hyperparameters. Sections

7.3 through 7.6 illustrate the profiling setup and results for the four applications.

Finally, in Section 7.7, we discuss the cost and time of profiling applications,

showing the advantages of using OSCAR-P and aMLLibrary. The source code,

input files, log data, and experimental results are available on Zenodo [31].

7.1. Target applications

The four applications presented in the following subsections represent three

examples of AI workflows characterized by a variable number of heterogeneous

components, and one simple Fibonacci application. In particular, we consider

object detection and video/audio transcription as representative AI tasks with

different demands in terms of computational power. We focus on AI applications

because of the blooming interest in this field, and especially in the deployment

of these applications at the edge. Finally, the Fibonacci application differs from

the previous cases in that the inputs are characterized by few bytes, allowing

hundreds of requests per second. Note that while we conduct numerous test

campaigns to validate our framework for the first application, we conduct fewer

experiments for the larger ones due to time and budget constraints.

7.1.1. Mask detection

The first application we consider (see Figure 12) was initially proposed in [29]

and consists of two components: 1) blurry-faces, which receives a video as input,
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extracts a frame every 5 seconds via the FFmpeg tool, and anonymizes it by

blurring the faces of any person appearing in it by performing face recognition;

2) mask-detector, which receives an image as input, detects the faces appearing

in it, and decides whether or not they are wearing a mask.

The faces detection task is performed in both components via the YOLO

(You Only Look Once) network, powered by the TensorFlow10 object detec-

tion API and trained on the WIDER FACE dataset11. This type of network

is designed to detect multiple objects while examining each image only once,

resulting in significantly faster performance while maintaining high accuracy.

By deploying the blurry-faces component on the edge, we ensure the privacy

of the people appearing in videos (because the server only sees anonymized

frames) and reduce the latency associated with data transfer to the cloud.

Figure 12: Mask detection workflow.

7.1.2. Video searcher

The second application (see Figure 13) creates the transcription of a video,

searches for one or more user-specified words in it, and returns a clip of the

original video for every match. It includes six components:

1. ffmpeg 0 saves the audio track from the input video as a WAV file;

2. Librosa (based on the homonymous Python package12) analyses the audio

track, looking for drops in the noise levels, which may indicate the end of

a sentence. Each time the noise drops under a user-defined threshold, the

component writes the corresponding timestamp in a text file;

10https://www.tensorflow.org
11http://shuoyang1213.me/WIDERFACE
12https://librosa.org
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3. ffmpeg 1 uses the timestamps produced by the previous component to cut

the video into clips containing single sentences;

4. ffmpeg 2 extracts the audio track and lowers its sample rate to 16 kHz;

5. DeepSpeech transcribes the audio track of the clip using an open-source

recurrent neural network implemented by Mozilla [36];

6. Grep searches for the specified word(s) inside the transcription and copies

the related video clip into the output bucket if it finds a match.

Figure 13: Video searcher workflow.

7.1.3. Recipe transcriber

The third application transcribes and recognizes the ingredients of a recipe,

and it consists of seven components. Components 1-5 are the same as in the

video searcher application. The last two are as follows:

6. ffmpeg 3 extracts a frame every 5 seconds from the original video;

7. object-detector identifies and localizes objects in a box.

7.1.4. Fibonacci application

The last application (as in [37]) computes the N -th Fibonacci number where

N is specified in the input file. In this case, the input file is only a few bytes,

allowing exogenous loads up to hundreds of requests per second. The application
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has a single component that performs an efficient, non-recursive computation of

the requested Fibonacci number to avoid memory overheads.

7.2. ML models and hyperparameters settings

Once the profiling process is completed, aMLLibrary uses the collected data

to build and compare the following ML models: XGBoost, Ridge Regression,

Decision Tree, and Random Forest. The hyperparameters are obtained via BO

tuning (see Section 5), fixing the maximum number of evaluated hyperparameter

sets to 10 and considering the values or prior distributions listed in Table A.4

reported in Appendix A.2.

For each experiment, we train two instances of each regression model, one

involving feature selection (see Section 5) and the other without it. Each row of

the training dataset provided by OSCAR-P represents an individual application

component execution, while columns (also referred to as “features”) identify the

corresponding configuration characteristics in terms of, e.g., parallelism level.

To cope with the execution time variability in practical settings, OSCAR-P

profiles each configuration multiple times (three in our case), resulting in as

many dataset rows with potentially different performance measurements.

As mentioned, the primary factor influencing performance prediction is the

parallelism level, which usually corresponds to the maximum number of available

cores for all services (a relevant exception to this assumption will be discussed

in Section 7.5). Since for all the applications and components we consider each

pod requires exactly one core, the parallelism level directly translates to the

maximum number of concurrently running jobs. For simplicity, we refer to this

feature as cores. Additionally, in tests with synchronous calls, the input work-

load/throughput is also a pivotal feature for accurate performance prediction.

Aside from cores, we also use 1/cores and log(cores) as features, as they are

relevant quantities to predict the performance of parallel systems [35]. Moreover,

we perform polynomial expansion of features up to the second degree. We also

test the interpolation and extrapolation capabilities of the models (see Section

5). As mentioned, the goal of interpolation tests is to understand how dense
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our profiling campaign must be to achieve good results and if we can still obtain

accurate models with smaller datasets. At the same time, extrapolation tests

aim to understand the behavior of the models on unseen, expensive-to-evaluate

configurations. This means, e.g., analyzing whether it is possible to start from

experiments run on a limited number of files and predict the performance for

larger inputs. We perform interpolation tests in all cases and extrapolation tests

when they are significant (as discussed in the following sections).

The aMLLibrary models are generated on a server with two Xeon E5-2620 v2

processors, with 6 cores each, and 32 GB RAM. More details on the composition

of training sets in different tests are shown in the respective sections, along with

the results tables. Note that, in the worst-case scenario, the library trains all

ML learning models within approximately ten minutes.

7.3. Results with the Mask detection application

This section reports the profiling setup and the results obtained for Mask

detection. We test the application both on physical nodes and cloud VMs, con-

sidering different workload injection models and evaluating the impact of neural

network partitioning on the first component. In particular, Section 7.3.1 focuses

on testing the performance of asynchronous calls, varying the components and

resources configurations, the number of input videos, and the impact of different

edge resources. Section 7.3.2 considers instead synchronous calls performed via

JMeter, which allows to evaluate the prediction accuracy of our models when

combining the impact of different resource configurations and throughputs.

7.3.1. Tests with asynchronous calls

In this first scenario, we consider asynchronous calls to the Mask detection

application, where the videos to process are uploaded to the input bucket of the

first component in batches of variable size.

Scenario 1: impact of different parallelism levels. In the first scenario, we con-

sider a single batch of ten videos of 15 minutes each. We analyze the impact of

different configurations, running each component on up to 8 VMs with 4 cores

and 8 GB of memory each, with a total of 32 cores, i.e., 32 parallel pods. A
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runtime/core plot showcasing the impact of the number of cores on performance

is reported in Figure 14. The runtime is the interval between the start of the

first job and the completion of the last one, including wait times and overhead.

We use the collected data to generate prediction models for the runtime of

the single components and of the entire application (see Figure 12). Moreover,

we investigate whether combining the predictions obtained for blurry-faces and

mask-detector (what we call the combined model) allows to predict the full

workflow runtime with a reasonable level of accuracy. We then analyze the

interpolation capabilities of our models, generating a test set with execution

times collected on 4, 12, 20, and 28 cores while using the remaining data for

training. Table 1 collects the MAPE on the test set for all trained regression

models; the best models (corresponding to values in bold) are used to generate

the predictions reported in Figure 14. The results show that our best model,

(a) Full workflow (b) blurry-faces component (c) mask-detector component

Figure 14: Scenario 1: interpolation results.

namely Ridge Regression without SFS, is able to predict the total runtime of

the full workflow with an error of 14.73%.

MAPE interpolation, Scenario 1 MAPE extrapolation, Scenario 2
Algorithm SFS Full workflow blurry-faces mask-detector Full workflow blurry-faces mask-detector

Ridge Regression
Yes 23.05 14.80 19.32 9.82 9.60 17.19
No 14.73 11.48 10.14 70.60 43.01 73.63

Decision Tree
Yes 46.78 13.03 35.1 17.94 22.01 24.73
No 30.28 9.29 38.12 23.40 27.8 34.04

XGBoost
Yes 46.99 13.12 39.48 17.23 17.6 10.09
No 46.81 12.94 39.48 17.39 21.3 24.37

Random Forest
Yes 19.78 3.34 15.75 20.36 19.12 13.24
No 28.41 16.15 27.45 89.19 60.54 32.53

Table 1: MAPE [%] on interpolation over parallelism level (Scenario 1 ) and on extrapolation
over batch size (Scenario 2 ).

Scenario 2: impact of different batch sizes. We test the application on the same

configurations considered in Scenario 1, evaluating the combined impact of var-
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ious parallelism levels and input batch sizes on the components runtime. In

particular, we consider 10-second-long videos uploaded in batches of 5, 10, 15,

and 20. We aim to generate and test performance prediction models with good

extrapolation capabilities, i.e., to check whether a model trained on data col-

lected with batches of size 5, 10, and 15 can accurately predict the components

runtime when 20 files are submitted. We report MAPEs for the trained models

in Table 1. As in the previous scenario, we combine the two best models for the

individual services to predict the whole application runtime, achieving a best

MAPE of 9.82%. Figure 15 reports the execution times for the full application

with 5, 10, and 15 files as input (Figure 15a), and the times for 20 files along

with the corresponding extrapolation predictions (Figure 15b).

(a) Runtimes with 5, 10 and 15 files (b) Extrapolation results

Figure 15: Scenario 2: extrapolation results for the full workflow runtime.

Scenario 3: evaluation on different edge resources. We conduct the third cam-

paign on a cluster of 3 Raspberry Pi devices, processing batches of ten videos

lasting 10 seconds each and exclusively testing the blurry-faces component.

Here, we aim to demonstrate the logging capability of OSCAR-P, as depicted

in Figure 8. We assess the performance of the blurry-faces component in two

different configurations: on the Raspberry Pi cluster alone, and with the addi-

tion of an Intel Movidius Neural Compute Stick 2 (NCS2)13 USB accelerator.

We conduct all tests with an 8-core configuration.

To precisely analyze how this device affects the component performance, we

measure the duration of different computation phases: i) splitting the video into

13https://intel.com/content/www/us/en/developer/tools/neural-compute-stick/overview.html
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frames; ii) overhead for loading Python modules; iii) image reading from disk;

iv) model loading, either in the device RAM or on the Intel NCS2; v) inference;

vi) image blurring; vii) copying the results onto disk. It is worth noting that

since the first task is executed on CPUs, we should not expect any impact on

its performance. On the other hand, Figure A.17a in Appendix A.3 highlights

that the model computation on the stick is over 7 times faster compared to the

CPU, while the model loading is only one second slower.

Figure A.17b reports the blurry-faces component runtime with and without

the NCS2 while varying the number of input files. The benefit of acceleration

becomes more apparent as the number of files increases since they are processed

sequentially. However, despite the significantly faster computation with the

NCS2, the overall performance gains are mitigated by the model load phase

which is slightly slower on the stick compared to the device RAM.

7.3.2. Tests with synchronous calls

In the fourth and fifth testing scenarios, we focus on synchronous calls to

OSCAR services. We inject an input workload λ via JMeter, imposing a ramp-

up of 10 seconds to avoid measuring runtimes during the warm-up period and

testing different ranges depending on the number of cores. For example, for

component configurations including 2 cores, we consider λ ∈ [0.05, 0.3] requests

per second (req/s). At 4 cores, since the system can sustain higher throughput

values before reaching the saturation level, we test λ ∈ [0.1, 0.6] req/s. Each

workload value is kept constant for 10 minutes. Note that in each setup, half

of the cores of the first component are warm to limit the impact of the cold

start. The synchronous scenarios are more critical because, as the load in-

creases, the individual configurations saturate, resulting in larger variability in

execution time. This outcome is expected as it is consistent with results using

other modeling techniques such as M/G/k queues [38]. Additionally, ML yields

more effective results than the M/G/k approach as the latter requires expen-

sive simulation time to estimate the components demand, whereas ML model

predictions can be obtained in milliseconds.
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Scenario 4: impact of the number of cores and throughput values. We deploy

theMask detection application on Amazon EC2 VMs, specifically usingm4.large

instances14. Profiling data are collected with the same number of cores (2, 4,

8, and 16) for both the blurry-faces and mask-detector components. Results

for the ML performance models trained with this data are reported in Table

2. Figure 16 shows the interpolation predictions with the best models. In this

test campaign, the test set comprises profiling data originating from specific

workloads (which are five evenly-spaced values for each number of cores).

(a) Full workflow (b) blurry-faces component (c) mask-detector component

Figure 16: Scenario 4: Training set, test set, and predictions result for interpolation with 2
cores (red), 4 cores (blue), 8 cores (green), and 16 cores (brown) on each component.

The MAPE of the best combined model is 7.01%. Recall that in this case,

we do not have to consider the pipeline effect, as synchronous calls represent a

continuous flow of jobs, allowing our models to predict the average execution

time of each individual job. For this reason, the execution time of the full

workflow is the sum of the times of the individual components.

MAPE interpolation, Scenario 4 MAPE interpolation, Scenario 5
Algorithm SFS Full workflow blur-faces mask-detector Full workflow partition 1 partition 2

Ridge Regression
Yes 11.19 16.19 15.78 8.89 14.22 8.29
No 7.01 8.57 13.05 6.67 10.43 7.80

Decision Tree
Yes 12.96 14.41 20.17 5.97 9.84 9.57
No 17.15 17.99 19.41 11.21 9.94 21.34

XGBoost
Yes 28.60 44.55 12.55 9.57 12.02 12.66
No 9.23 6.09 15.87 10.32 9.64 16.46

Random Forest
Yes 40.78 11.02 78.82 10.18 13.97 8.15
No 31.39 14.70 60.96 7.90 12.64 7.95

Table 2: MAPE [%] on interpolation in Scenario 4 and Scenario 5.

Scenario 5: impact of neural network partitioning. In the last scenario, we

demonstrate the capability of OSCAR-P to manage individual application com-

14https://aws.amazon.com/ec2/instance-types/
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ponents partitioned into multiple sub-components. Specifically, we focus on the

blurry-faces component considering two partitions. The YOLOv4 network is

partitioned at layer 266, corresponding to the layer that exports the smallest

tensor. As in the previous scenario, the components are deployed on m4.large

EC2 instances. Additionally, we explore the interpolation capability of ML

models amidst variations in the number of cores and throughput. Figure A.18

shows the collected data and the corresponding predictions with the best mod-

els. Table 2 shows the MAPEs for the interpolation tests of all models, with a

best value of 5.97%.

Note that the total execution time of the partitioned component in this

particular setup exceeds that of the entire component mainly due to the transfer

time between partitions. Despite this, DNN partitioning is still relevant in

practice to optimize resource usage, particularly on constrained devices [39].

7.4. Results with Video searcher application

The video searcher application, which includes six compute-intensive com-

ponents (see Section 7.1.2), is tested in the computing continuum. In particular,

services are deployed on both local VM clusters, Raspberry Pi devices, and EC2

instances, as shown in Table A.5 in Appendix A.4. Notably, the full workflow

is tested across a range of nodes for each component, from 1 to 8.

We perform asynchronous calls by uploading 1-minute-long videos in batches

of 5, 10, and 15. The DeepSpeech component is also tested individually to assess

whether increasing the number of cores from 1 to 4 improves its performance.

We do observe an improvement in the test results, but it is not enough to justify

running one component with 4 cores instead of 4 components with 1 core each.

One reason is that only the actual computation benefits from the increased

number of cores, while other operations, such as the container setup, do not.

As in previous scenarios, we test both the full workflow and the single services.

First, we conduct an interpolation analysis including 16 and 24 cores in the

test set. Subsequently, we use all the obtained values to generate the combined

model to predict the runtime of the full workflow. We show results for the
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best models obtained for data with 5, 10, and 15 input files in Figure A.19 in

Appendix A.4: their MAPEs are 27.63%, 18.95%, and 7.88%, respectively.

Next, we perform extrapolation on the number of input files. In this case,

the aMLLibrary training set is the collection of configurations with 5 or 10 files,

while the test set includes the 15-video batch. We also apply the pipeline effect

correction explained in Section 7.3.1. Figure A.20 in Appendix A.4 shows the

training set, the test set, and the extrapolation prediction. Even though we are

considering an application with many services distributed across three clusters

and training our models with only two different input sizes, we obtain a MAPE

of 22.33% for the full workflow. This outcome is especially remarkable given the

constraints of our testing campaign.

7.5. Results with Recipe transcriber application

The recipe transcriber application is tested using both Amazon EC2 in-

stances and AWS Lambda15, which is one of the main platforms providing

FaaS. This is the most complex scenario we consider, as the application con-

sists of seven compute-intensive components (see Section 7.1.3). In the previous

section, we analyze the first five components. Here, we focus on the final two

components, deployed on AWS Lambda, and on estimating the execution time

of the entire pipeline. We perform asynchronous calls using a batch of 100

videos, each with a duration of 10 seconds. In this scenario, we observe the

ability of our performance models to predict the average execution time of the

entire pipeline for each individual video input.

Note that for such a large batch of video inputs, it is crucial to consider that

the arrival rate of each component depends on the output rate of previous com-

ponents, which in turn hinges on exogenous load and component configurations.

Furthermore, unlike previous campaigns, we also assign different numbers

of cores to each component. Table A.6 in Appendix A.5 displays all possible

configurations of the individual components, listing the number of nodes, cores,

15https://aws.amazon.com/lambda/?nc1=h_ls
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and the level of parallelism, i.e., the number of parallel instances per component.

Note that the EC2 instances are selected to ensure that two pods are in-

stantiated on each node. Furthermore, for the ffmpeg-2 component, the number

of cores is larger than (specifically, a multiple of) the parallelism level due to

the high computational load of the component. However, the parallelism level

of Lambdas is undefined, since AWS Lambda guarantees automatic resource

scalability and therefore jobs are handled with full parallelism by the platform

with no limitations.

This variety of component configurations results in a total of 2×3×2×4×2 =

96 possible configurations for the full workflow, a number that would increase

exponentially if we tested more than two different configurations for all com-

ponents. In general, testing all possible configurations would be unfeasible in

terms of time and budget. Thus, we devise a strategy to limit the number of

profiled setups to one third of the total by only considering the profiling con-

figurations with the smallest and largest parallelism levels for each component.

Therefore, the training set for our models consists of the 25 = 32 combinations

of configurations (see Table A.6 in Appendix A.5).

Moreover, for each component after the first one, we included in the training

set only profiling data collected when considering the lowest parallelism level

on all the previous components. This process guarantees an optimal balance

between opposing scenarios: on one hand, we consider cases where we have

performance dependency in prior components, and, on the other hand, cases in

which files arrive in batches due to the large input parallelism. All the other

combinations constitute the test set.

Since all intermediate configurations are excluded from the training set, lin-

ear regression is the most suitable model for estimating runtime. As we only

use training data at the extremes of the intervals, models such as Random For-

est and Decision Tree would not be able to discriminate between values within

those intervals16. Thus, we train a Ridge Regression model for each component

16Random Forest and Decision Tree provide stepwise regression functions. Hence, interme-
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without SFS, estimate their execution times on the test set, and evaluate the

MAPE on the total time. The MAPE on the test set for the ffmpeg-3 and object

detector components are 5.01% and 2.48%, respectively, while the MAPE for

the entire workflow is 26.78%. This result is noteworthy especially given the

significant inherent variability present in the profiling data and the fact that

our models do not consider the dependency of the component execution time

on the parallelism of all preceding components.

7.6. Results with Fibonacci application

We test OSCAR-P on the Fibonacci application by relying on synchronous

calls. In this scenario, we test an application with input files of few bytes to

examine whether the trend in execution times differs from previous applications

with larger inputs. Specifically, we deploy the unique component on a physical

cluster consisting of 7 VMs, each provisioned with 4 GB of memory and 4

vCPUs. As outlined in Section 7.3.2, we test the application with varying

numbers of cores and input workloads. In the 4-core setting, we fix the input

workload at λ ∈ [0.2, 0.6] req/s, with the upper bound representing the point

at which we observe saturation. As the number of cores increases, we gradually

raise this upper bound, up to 3.5 req/s in the 28-core case. We force this

constant workload for 10 minutes via JMeter, with half of the cores being warm

at the beginning of the test.

We report the results of the interpolation tests with ML models in Table 3.

Also, Figure A.21 in Appendix A.6 displays the training and test sets along

with the prediction obtained using the best model. These results indicate that

the ML models achieve errors below 10%, showing the remarkable predicting

capabilities of OSCAR-P even in the case of small inputs and large workloads.

7.7. Discussion

Using the OSCAR-P framework for application profiling brings notable effi-

ciency in time and budget allocation for conducting performance profiling cam-

diate configurations would be approximated with the values of the minimum and maximum
core configurations.
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Algorithm SFS Full workflow

Ridge Regression
Yes 15.24
No 13.15

Decision Tree
Yes 11.45
No 11.87

XGBoost
Yes 10.98
No 10.15

Random Forest
Yes 9.64
No 9.91

Table 3: MAPE [%] on interpolation.

paigns. OSCAR-P automates and optimizes profiling, eliminating all periods of

inactivity associated with manual profiling, during which machines remain idle

and logs are downloaded manually. We provide an example of savings related to

the ML performance models interpolation capabilities by considering the most

complex application analyzed in this work, namely Recipe transcriber presented

in Section 7.1.3. In that case, the collection of profiling data for all possible

combinations of input configurations took about two weeks and had a total cost

of about 200 USD. If we only consider executions associated with configurations

in the training set of the ML models, the data collection time decreases slightly

over five days. The performance of the remaining configurations (i.e., the ones

in the test set) can be estimated with acceptable accuracy by the trained ML

models, therefore in a real use case it would not be necessary to profile them

directly, reducing the costs by about 55%. The reduction would have been

even more significant if we had considered larger levels of parallelism for each

component. Overall, we have shown that by profiling only 33% of all possible

configurations, we can obtain a model with a prediction error of less than 30%.

8. Conclusions and future work

This work introduces OSCAR-P, an auto-profiling framework, and aMLLi-

brary, an autoML solution for performance prediction. These tools automate the

testing of application workflows on various hardware configurations and generate

ML-based performance models. OSCAR-P significantly reduces setup time and

manual processing by automating the execution of profiling experiments and

data collection. Additionally, aMLLibrary enables accurate performance model

training without ML expertise. Experimental results show that our models
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achieve a MAPE smaller than 30%, which makes them useful for design-time

decisions and runtime resource management.

Future work will primarily address certain limitations of our study. First, we

plan to test a broader range of hardware specifications for the same application.

In particular, including the machine specifications (besides the number of cores)

as input features would allow us to generalize our performance models across

different setups. We aim to examine whether the performance of aMLLibrary is

affected and if it can capture common trends across different kinds of machines.

Second, in this work, we attempted to minimize the network effect to focus

on computational performance. However, real-world environments often face

network-related issues such as congestions or jitters. A potential research di-

rection would be to analyze how the network influences throughput. We expect

that the network effect mainly translates into reduced input rates for the appli-

cation components. Since our models for individual components also account

for throughput, we will evaluate if they still remain effective in such conditions.

Finally, we intend to scale our tools to an industrial level. The most compu-

tationally intensive application we evaluated in this study, Recipe Transcriber,

involved testing configurations using up to 82 total cores on AWS and Lambda

functions. Our next step is to validate our models on applications including

tens of components spanning across hundreds or thousands of nodes. We ex-

pect increased variance at this scale due to more severe resource contention and

amplification of performance noise across component dependencies.
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Appendix A. Supplemental material

In this section, we provide some additional material that includes details

about the configuration of aMLLibrary in Appendix A.1 and additional plots

and analyses from our experimental campaign in Appendix A.3 through Ap-

pendix A.6.

Appendix A.1. aMLLibrary configuration file

We report the example configuration file for aMLLibrary mentioned in Sec-

tion 5. Note that this file represents an equivalent Python script of hundreds of

lines of code (see the equivalent script to the Appendix configuration file in the

Zenodo repository [31]).

[General]

techniques = [’LRRidge’, ’XGBoost’,

’DecisionTree’]

hp_selection = KFold

validation = HoldOut

folds = 5

hold_out_ratio = 0.2

y = exec_time

hyperparameter_tuning = Hyperopt

hyperopt_max_evals = 10

[DataPreparation]

input_path = dataset.csv

normalization = True

product_max_degree = 2

inverse = [*]

[LRRidge]

alpha = [’loguniform(0.01,1)’]

[XGBoost]

min_child_weight = [1]

gamma = [’loguniform(0.1,10)’]

n_estimators = [500]

learning_rate = [’loguniform(0.01,1)’]

max_depth = [10]

alpha = [0]

lambda = [1]

[DecisionTree]

criterion = [’squared_error’]

max_depth = [3]

max_features = [’auto’]

min_samples_split = [’loguniform(0.01,1)’]

min_samples_leaf = [’loguniform(0.01,0.5)’]

Appendix A.2. aMLLibrary hyperparameters

We list the values or prior distributions of ML models trained by aMLLibrary

in our experimental campaigns in Table A.4. We recall that BO tuning samples

a maximum of 10 parameter sets for each model.

Appendix A.3. Mask detection experimental results

We depict the Figures related to the results with the Mask detection appli-

cation, presented in Section 7.3.
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Algorithm Hyperparameter Name Values
Ridge Regression alpha loguniform(0.01,1)

XGBoost

min child weight 1
gamma loguniform(0.1,10)
n estimators 1000
learning rate loguniform(0.01,1)
max depth 100

Decision Tree

criterion mse
max depth 3
max features auto
min samples split loguniform(0.01,1)
min samples leaf loguniform(0.01,0.5)

Random Forest

n estimators 5
criterion mse
max depth quniform(3,6,1)
max features auto
min samples split loguniform(0.1,1)
min samples leaf 1

Table A.4: Hyperparameters used for each ML algorithm.

Figure A.17 shows the results of executions with and without the NCS2

described in Section 7.3.1, Scenario 3. In particular, in Figure A.17a, some bars

are split in half by red horizontal lines, representing each of the two produced

frames for each input video.

(a) Runtimes of the computation phases (b) Total runtime over number of input files

Figure A.17: Scenario 3: Comparison of the operations runtime with and without accelerator.

Figure A.18 shows the profiling data, divided into training and test sets,

along with the predictions for the full workflow of the experimental campaign

on the blurry-faces component partitioned as described in Section 7.3.2, Scenario

5.

Appendix A.4. Video searcher application experimental results

We show Figures and Tables related to the results with the Video searcher

application, presented in Section 7.4.
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(a) Full workflow (b) partition 1 (c) partition 2

Figure A.18: Training set, test set, and predictions result for interpolation with 2 cores (red),
4 cores (blue), 8 cores (green) and 16 cores (brown) on each partition of the blur-faces com-
ponent.

Table A.5 reports the application settings, including the type of computa-

tional resource, the number of nodes, and the corresponding number of cores

for each component.

Service Resource #Nodes #Cores
ffmpeg-0 local VMs

1, 2, . . . , 8 4, 8, . . . , 32

librosa local VMs
ffmpeg-1 Raspberry Pi
ffmpeg-2 local VMs

DeepSpeech AWS t2.xlarge
Grep AWS t2.xlarge

Table A.5: Setting of the simulations of video searcher application.

Figures A.19 and A.20 show the results of the interpolation and extrapolation

tests on data collected with OSCAR-P.

(a) 5 files (b) 10 files (c) 15 files

Figure A.19: Interpolation tests for the “Video searcher” application using combined model.

Appendix A.5. Recipe transcriber application experimental results

Table A.6 shows the settings for the experimental results with the Recipe

transcriber application, described in Section 7.5, including the type of compu-
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(a) Full workflow (b) Test set and prediction on the com-
bined model

Figure A.20: Extrapolation tests for “video-searcher” application.

tational resource, the number of nodes, and the corresponding number of cores

for each component.

Component AWS instance Parallelism level #Cores #Nodes
ffmpeg-0 m4.large 2, 4 2, 4 1, 2
librosa m4.large 2, 4, 6 2, 4, 6 1, 2, 3
ffmpeg-1 m4.large 2, 4 2, 4 1, 2
ffmpeg-2 m4.4xlarge 2, 4, 6, 8 16, 32, 48, 64 1, 2, 3, 4

DeepSpeech m4.large 2, 4 2, 4 1, 2
ffmpeg-3 Lambda N/A N/A N/A

object detector Lambda N/A N/A N/A

Table A.6: Setting of recipe transcriber application. We highlight in bold the levels of paral-
lelism used for the combinations of configurations in the training set.

Appendix A.6. Fibonacci application experimental results

Figure A.21 shows the profiling data, divided into training and test sets,

along with the predictions for the Fibonacci application analysis, as described

in Section 7.6.
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Figure A.21: Training set, test set, and predictions result for interpolation with 4 cores (blue),
8 cores (green), 16 cores (brown), 24 cores (orange) and 28 cores (red) on Fibonacci application.
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