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Abstract

Serverless computing was a breakthrough in Cloud computing due to its high elasticity capabilities and fine-grained pay-per-use
model offered by the main public Cloud providers. Meanwhile, open-source serverless platforms supporting the FaaS (Function
as a Service) model allow users to take advantage of many of their benefits while operating on the on-premises platforms of
organizations. This opens the possibility to deploy and exploit them on the different layers of the cloud-to-edge continuum, either
on IoT (Internet of Things) devices located at the Edge (i.e. next to data acquisition devices), in on-premises clusters closer to the
data sources (i.e. Fog computing) or directly on the Cloud.

This paper presents two strategies to mitigate the overload that disparate data ingestion rates may cause in low-powered devices
at the Edge or Fog layers. To this end, it is proposed to delegate and reschedule serverless jobs between the different layers of the
cloud-to-edge continuum using an open-source platform for event-driven file processing. To demonstrate the performance of these
strategies, a use case for fire detection is proposed that includes processing in the Fog via minified Kubernetes clusters located near
the Edge, in the private Cloud via on-premises elastic clusters and, finally, in the public Cloud by using the AWS (Amazon Web
Services) Lambda FaaS service. The results indicate that these strategies can mitigate overloads in use cases involving processing

across the cloud-to-edge continuum by coordinating several layers of computing resources.
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1. Introduction

The cloud-to-edge continuum (or computing continuum) [[1]]
encompasses a wide variety of components that may include

[S]. In this paradigm, the edge devices collect data that is lo-
cally processed at the edge of the network to the extent that it
is possible due to the computing capacity constraints of such
devices. Workload is offloaded into the Cloud when additional

low-powered devices with limited computer resources, on-premises computing power is required, thus effectively using the cloud-

servers with moderate resources, expensive high-performance
computers and public cloud platforms. This is in line with
the definition by the OpenFog Reference Architecture for Fog
Computing, stating that it is a system-level architecture that dis-
tributes computing, storage, control and networking functions
closer to the users along a continuum [2].

Indeed, the SPEC-RG reference architecture for the edge
continuum [3]] proposes an architecture for task offloading ac-
cording to five computing models: Mist computing, edge com-
puting, multi-access edge computing, fog computing and mo-
bile cloud computing. Mist computing is sometimes used inter-
changeably with fog computing, even if some authors point to
subtle differences [4]. This distributed computing paradigm ex-
tends cloud computing capacities into the edge of the network
to bring computation closer to the data source and the end de-
vices such as sensors and other IoT (Internet of Things) devices
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to-edge continuum. This approach offers several benefits:

e Reduced latency: By processing data locally, mist com-
puting reduces the time it takes to transmit data to the
cloud and receive a response. This is particularly im-
portant for real-time applications that require immediate
decision-making.

e Bandwidth optimization: Sending large volumes of data
to the cloud can strain network bandwidth. Mist comput-
ing filters and processes data locally, reducing the amount
of data that needs to be transmitted to the cloud. Only rel-
evant or summarized data is sent, optimizing bandwidth
usage.

e Enhanced privacy and security: Some applications, such
as those involving sensitive data or strict privacy require-
ments, can benefit from keeping data locally and reduc-
ing the need for data transfer over public networks. Mist
computing allows sensitive data to be processed and ana-
lyzed closer to its source, improving privacy and security.
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e Offline operation: In scenarios where intermittent con-
nectivity to the cloud is common, mist computing enables
devices to continue operating and processing data locally
even when disconnected from the cloud. This ensures un-
interrupted functionality and allows for offline data anal-
ysis if the computing capacity of the devices is not ex-
ceeded.

However, the execution along the cloud-to-edge continuum
involves several challenges that need to be addressed, as identi-
fied by the work of Mouradian et al. [6]. This work highlights
“task scheduling” and “offloading and load redistribution” as
key features for computing in scenarios related to fog comput-
ing.

In this scenario, serverless has risen in recent years as an
event-driven computing paradigm involving services where the
service provider manages the underlying computational infras-
tructure entirely. This has paved the way for the surge of open-
source serverless platforms to be deployed on on-premises re-
sources that mimic this abstraction layer for the developers.
These typically involve Container Orchestration Platforms, such
as Kubernetes, which provide seamless resource allocation. This
is the case of KNative [7], OpenFaaS [8] and, as addressed in
this paper, OSCAR [9]. These platforms provide the required
abstractions to execute functions or applications, packaged as
Docker images, with dynamic provisioning of resources.

To this aim, this work presents the following contributions:
First, a novel approach for rescheduling workloads on a server-
less platform that can run along the cloud-to-edge continuum.
This attempts to mitigate the disparate workload distribution
across the multiple layers of this continuum to profit from addi-
tional computing resources, especially when involving devices
with constrained computing resources.

Second, an implementation of the proposed approach is done
in the OSCARE] open-source serverless platform, together with
an assessment of the functionality on a realistic use case on
wildfire detection. To the best of the authors’ knowledge, this
provides the first implementation of a job rescheduling system
for serverless computing across the cloud-to-edge continuum,
provided as a ready-to-use implementation in an existing open-
source framework.

The remainder of the paper is structured as follows. First,
section [2] discusses the related works. Next, section [3] intro-
duces an architecture to support job delegation and reschedul-
ing across event-driven serverless platforms. Later, sectionf]in-
troduces a use case on serverless fire detection along the cloud-
to-edge continuum to assess the benefits of the proposed ap-
proach. Finally, section [5| summarizes the main achievements
and discusses future work.

2. Related Work

Several works in the state-of-the-art focus on the schedul-
ing of serverless workloads. For example, the work by Zhang
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et al. [10] introduces the cost of execution as a requirement
for scheduling serverless analytics tasks. They introduce a task
scheduler that minimizes execution cost while being Pareto-
optimal between cost and job completion time.

Kaffes et al. [11]] discuss the limitations of existing schedul-
ing mechanisms for serverless platforms when considering the
diverse requirements of applications in terms of burstiness, dif-
ferent execution times and statelessness. They propose a cen-
tralized and core-granular scheduler for serverless functions with
a global view of the cluster resources.

The usage of serverless computing along the cloud-to-edge
continuum has also increased recently. This way, Rausch et al.
[12] proposed a serverless platform for building and deploying
edge Al applications, thus integrating concepts from Al lifecy-
cle management into the serverless computing model. Based on
OpenWhisk composer for workflow composition, they unveiled
the lack of support for ARM-based architectures for OpenWhisk.

The cloud-to-edge continuum embraces a diverse plethora
of heterogeneous platforms and computer architectures. In this
regard, the work by Jindal et al. [13] introduces an extension
of the FaaS (Function as a Service) computing model to hetero-
geneous clusters and to support heterogeneous functions via a
network of distributed heterogeneous platforms (Function De-
livery Networks). They focus on SLO (Service Level Objec-
tive) requirements and energy efficiency, deploying functions
on Edge platforms to reduce overall energy consumption. The
authors use OpenWhisk, OpenFaaS and Google Cloud Func-
tions.

Sicari et al. [14]] build on the concept of scientific workflows
using the FaaS computational paradigm to create Serverless
workflow-based applications based on a customized Domain-
specific Language (DSL) to federate the Cloud-Fog-Edge lay-
ers to profit from each computing tier. This is exemplified in the
open-source OpenWolf platform, a serverless workflow engine
for native cloud-to-edge continuum, based on OpenFaaS, for
function execution and Redis to store the workflow manifests
and the execution information for the workflows.

Smirnov et al. [[15] introduce Apollo, an orchestration frame-
work for serverless function compositions that can run across
the cloud-to-edge continuum. The framework leverages data
locality to perform cost and performance optimization. It also
includes a decentralized orchestration approach where multiple
instances can cooperatively orchestrate the application while
balancing the workload between the spare resources.

The work by Ferry et al. [16] introduce the SERVERLEss410T
platform to perform the deployment and maintenance of appli-
cations over the cloud-to-edge continuum, but no open-source
software is provided.

Unlike previous works, our contribution provides an open-
source implementation of the methods described in the paper to
support job rescheduling and distribution among multiple ser-
vice replicas that can execute along the cloud-to-edge contin-
uum. An evaluation and assessment of the benefits of the im-
plementation is done through a use case on wildfire detection
run on disparate computing infrastructures on this continuum,
involving serverless computing at the edge, on-premises clus-
ters and public cloud infrastructures.
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Figure 1: Overall architecture of the OSCAR serverless platform

3. Proposed Architecture

The work carried out is focused on the extension of the OS-
CAR [9, [17] platform, an open—sourceﬂ framework for server-
less data processing through container-based applications. OS-
CAR is a cloud-native framework that runs on the Kubernetes [18]]
container orchestration system to define serverless services for
data processing. As shown in Figure[I] it allows the schedul-
ing of Kubernetes jobs for the asynchronous processing of files
uploaded to a predefined bucket of the MinlO [19]] storage sys-
tem. These jobs are executed as containers, created out of user-
defined Docker images, that run on an elastic Kubernetes clus-
ter that can grow and shrink in terms of the number of nodes
depending on the current workload and the limits defined at de-
ployment time, thanks to the CLUEﬂ elasticity system. Output
files are likewise uploaded to MinlO so users can easily retrieve
them or to any supported data storage systems such as Amazon
S3, Onedata or dCache.

OSCAR also supports the synchronous processing of invo-
cations performed via HTTP requests. For this purpose, the
platform is integrated with the Knative [7] Serving framework.
However, this study focuses on the asynchronous feature of
OSCAR, considering that it is more appropriate for compute-
intensive batch tasks, such as inference processes using Artifi-
cial Intelligence / Machine Learning (AI/ML) models, as is the
use case described in section @l

OSCAR allows the definition of services via a web-based
interface or through the Functions Definition Language (FDLﬂ
files using the command-line interface. An OSCAR service is
mainly characterized by:

20SCAR'’s GitHub repository: https://github.com/grycap/oscar
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e a Docker image available in a container image registry
(e.g. Docker Hub or GitHub Container Registry)

o A shell script that will be executed inside the container
created out of the Docker image to perform the data pro-
cessing on the customized execution environment pro-
vided by the Docker image.

e A set of computing requirements for vCPUs, RAM and
GPUs.

e An input storage bucket that will trigger the execution of
the OSCAR service and one or more output storage back-
ends on which the output data generated by the service
will be stored.

These services can be run on an OSCAR cluster or in AWS
Lambda via our development SCARE| [20]. AWS Lambda is
a serverless computing service provided by Amazon Web Ser-
vices (AWS) to support the Functions as a Service (FaaS) com-
puting paradigm. It allows users to run code in response to
certain events (file upload, HTTP request, etc.) without pro-
visioning or managing servers, which is the responsibility of
AWS. Its highly elastic features (up to 3000 parallel invoca-
tions) and fine-grained billing model (in 1 ms blocks) turned
AWS Lambda into a popular option for developing microservices-
based architectures. In turn, SCAR is an open-source tool that
pioneered in 2017 the deployment of container-based applica-
tions in AWS Lambda when this service still had no native con-
tainer support (introduced in late 2020). SCAR facilitates the
execution of general-purpose applications in AWS Lambda, and
it provides an automated delegation of jobs into AWS Batch,

SSCAR -http://github.com/grycap/scar
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a managed service to provide automated elastic compute clus-
ters as a service. This allows the use of AWS Lambda to ex-
ecute spiky bursts of short jobs with moderated computing re-
quirements (AWS Lambda invocations cannot run beyond 15
minutes or use more than 10 GiB of RAM) while delegating
into AWS Batch jobs that require larger memory or specialized
hardware, such as GPUs.

The advantage of using a common Functions Definition Lan-
guage is the ability to compose serverless workflows across the
different layers of the cloud-to-edge continuum. For example,
as described in our previous work by Risco et al. [21], work-
flows can be composed by services defined on OSCAR plat-
forms configured on lightweight clusters (i.e. on ARM-based
devices such as Raspberry Pi) located on the Edge or Fog, on
OSCAR clusters in on-premises clouds or Lambda functions in
the public Cloud.

The main benefit of OSCAR is the ability to provide scal-
able event-driven computations upon file uploads to an object
storage (or an HTTP-based invocation). OSCAR can run on

multiple computer architectures (amd64 and arm64) and container-

based platforms (Kubernetes, K3s). It is also, integrated with
SCAR for highly scalable cloud bursting into AWS Lambda.
Therefore, for this reasons, it can be used to support serverless
event-driven computing along the continuum and it has been
the selected platform on which to develop our contributions.
Further information about OSCAR is available in the work by
Pérez et al. [17] .

A well-known drawback of the cloud-to-edge continuum is
the limited computational capacity at the edge. Usually, the de-
vices employed have scarce computing resources, and this can
represent a bottleneck in several use cases where the input data
ingestion rate may fluctuate depending on external factors. The
main goal of this contribution is to mitigate overload problems
in these low-powered devices.

Indeed, replication and distribution are features required to
achieve high availability in a distributed system. Applying this
approach in the cloud-to-edge continuum allows the use of re-
sources from disparate computing infrastructures, coordinated
by a distributed control plane that mediates access and resource
distribution. Therefore, we introduce the ability to create repli-
cas of serverless services for this work. An OSCAR cluster has
the OSCAR Manager component (shown in Figure [I), which
provides the entry point to trigger the execution of an OSCAR
service. The cluster can be deployed on various computing in-
frastructures supported, such as Raspberry Pis, IaaS Clouds and
public Clouds. The dynamic deployment on multiple Clouds is
achieved thanks to the Infrastructure Manager (IMf] [22], an
open-sourcem Infrastructure as Code (IaC) tool to provision and
configure virtualized computing resources from multiple cloud
back-ends. The dynamic deployment support of OSCAR clus-
ters via the Infrastructure Manager allows users to self-deploy
them on their preferred Cloud, where the user-defined OSCAR
services are deployed to be triggered for scalable data-driven
processing.

SInfrastructure Manager (IM) - https://im.egi.eu
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An OSCAR service can have multiple replicas, each one
potentially running on a different cluster with a similar config-
uration (but each service replica can specify a different num-
ber of computational resources). Each file upload to MinlO, or
an asynchronous invocation to its REST API, triggers the cre-
ation of a job that is executed on the scalable Kubernetes clus-
ter, which grows and shrinks depending on the number of jobs.
In this scenario, it is important to support efficient strategies
to distribute the workload among the available OSCAR service
replicas to reduce the execution time.

To this end, two strategies are proposed to reschedule jobs
among OSCAR service replicas: Resource Manager, described
in section 3.1} and Rescheduler, described in section [3.2] Fur-
thermore, section [3.3] defines the extension of the Functions
Definition Language (FDL) used in SCAR and OSCAR to sup-
port this new functionality, as well as details the mechanism for
delegating the events that trigger the execution of the jobs.

3.1. Resource Manager

Given the capabilities for resource discovery on the nodes of
a Kubernetes cluster, a resource manager has been implemented
in OSCAR to bypass job scheduling on a cluster that does not
have available resources.

For this purpose, the Kubernetes core API is used to ob-
tain the status and resources available of all the active working
nodes. If the resources available on a working node exceed
those requested by an OSCAR service execution, the incom-
ing job can be scheduled on the node. The availability of a
working node to be scheduled is checked on a regular basis ac-
cording to the periodicity specified on the environment vari-
able RESOURCE_MANAGER_INTERVAL, configurable by
the user. As shown in Figure 2, and highlighted by a dotted box,
the lifecycle of the Resource Manager consists of periodically
checking through the K8s API the available resources of each
working node and caching them for the job handler to query.

In turn, the job handler receives an event from a file upload
on a MinlO bucket and checks the availability of resources. If
there are no available resources in any of the working nodes
of the cluster and the OSCAR service has a replica defined in
its specification, it will delegate the event to the replica. The
job handler will schedule the job in the current cluster only if
resources are available.

It is essential to mention that the Resource Manager is an
optional feature in OSCAR and will only be activated if the
RESOURCE_MANAGER_ENABLE configuration variable is
enabled and replicas are defined for the active OSCAR service.

3.2. Rescheduler

Although the Resource Manager prevents jobs from being
scheduled once a cluster is overloaded, it is possible that during
a peak of service invocations, the job scheduler allocates many
jobs in the cluster before the resources available in the cluster
are updated. These spikes can generate significant amounts of
jobs queued in the Kubernetes scheduler for further processing
as resources become available.
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Figure 2: Simplified diagram of the Resource Manager component.

To solve this situation, an additional mechanism named Re-
scheduler has been developed. The Rescheduler aims to miti-
gate cluster overloads and is in charge of checking the jobs in
“Pending” status in the Kubernetes scheduler. For this purpose,
it uses the Kubernetes core API to list the jobs scheduled in the
system. It automatically filters them by their status and by sev-
eral labels automatically defined by the OSCAR backend itself.

Each OSCAR service can have its own threshold, which de-
fines the maximum amount of time (in seconds) that a Kuber-
netes job from an invocation of an OSCAR service with replicas
can be queued before delegating it. Therefore, the scheduled
jobs are filtered by a label containing this information. Also, to
figure out to which OSCAR cluster each job needs to be del-
egated, the jobs are filtered by another label that provides the
service name.

Figure 3 shows how the Rescheduler periodically checks the
cluster’s pending jobs that exceed the defined threshold. This
interval is configurable through the RESCHEDULER_INTERVAL
environment variable. It has a default value per cluster through
the RESCHEDULER_THRESHOLD environment variable. However,
as mentioned before, and detailed in Figure 4, it can be config-
ured for each service via the rescheduler_threshold param-
eter in the FDL.

Jobs that exceed the defined threshold will be automatically
delegated to a replica by the Rescheduler and, once scheduling
is achieved on the replica, will be removed from the current
cluster queue.

Like the Resource Manager, the Rescheduler is an optional
feature for OSCAR services and can be enabled or disabled
through the RESCHEDULER_ENABLE environment variable. Fur-
thermore, if a service does not have replicas in its definition,
the OSCAR backend will not add the required labels for the
Rescheduler to filter the jobs so they can remain in the Kuber-
netes scheduler queue as long as necessary until free resources
are available.

Check pending Kubernetes API

jobs exceeding the
rescheduler threshold

Rescheduler

Ll
] Replica

&S

OSCAR

Figure 3: Simplified diagram of the Rescheduler component.

3.3. Delegation Mechanism

To support the delegation of events to external clusters or
endpoints, the Functions Definition Language (FDL) has been
extended to include the concept of replicas, as introduced ear-
lier. Multiple replicas can be defined for the same service, so if
delegation fails on one replica, there are other replicas to which
service invocation can be delegated. The definition of replicas
can be done in the FDL through the replicas parameter, a list
of OSCAR service replicas. A priority system has been im-
plemented to choose the replica to delegate in the first place.
Users can indicate each replica’s priority, with the number O as
the highest priority and larger integers having a lower priority.

As shown in Figure 4] two different types of replicas can
be specified. On the one hand, the “oscar” type of replicas are
services defined in another OSCAR cluster. This requires to



indicate the cluster identifier (cluster_id parameter) where
such service is deployed, as well as its name. The OSCAR
command-line interface (CLIJ¥| automatically embeds the ac-
cess credentials to the clusters of the replicas in the configura-
tion of the services so that users do not have to worry about
managing them. On the other hand, the “endpoint” type of
replicas support the delegation of events to HTTP endpoints,
which will be sent via POST requests. Support for these end-
points makes it possible to use any FaaS service (such as AWS
Lambda) where function invocation via REST APIs can be en-
abled. Thanks to this support, jobs can be rescheduled between
OSCAR clusters, which can run on the edge, on-premises and
public Clouds, and self-managed services in the public Cloud
such as AWS Lambda functions, which can be exposed via
HTTP APIs, using function URLs or via API Gateway, as done
with the SCAR framework.

Algorithm [T] shows the simplified pseudocode of the dele-
gation mechanism. The first step is to ensure that the list of
replicas is sorted by priority to consequently wrap the original
event that triggered the service, such as file upload to MinlO, by
adding the identifier of the source cluster. This wrapping is nec-
essary for the replica to know where the event comes from and,
in this way, to download the input file, which usually comes
from the MinlO storage provider of the source cluster. Then the
algorithm proceeds as follows: if the replica type is “oscar”, it
just checks that the cluster identifier is defined in the configu-
ration (i.e. the cluster’s credentials exist under that identifier)
and, consequently, the request is prepared with the replica con-
figuration. In the case of “endpoint” type replicas, the HTTP
headers defined by the user are added to the request. Finally,
the request is sent, and the response is checked. If the response
is valid, the algorithm finalises; if not, it continues the loop to
try to delegate to another replica in the list.

Algorithm 1 Delegation algorithm pseudocode.
Require: replicaList is sorted by priority
event «— WrapEvent(originalEvent, clusterID)
for each: replica € replicaList do
if replica.type = “oscar” then
L if not isClusterDe fined(replica) then
_ continue
req « prepareDelegationRequest(replica, event)
response < delegate(req)
if isValidResponse(response) then
_ break

Regarding security, all jobs delegated to other OSCAR clus-
ters are performed using authorisation tokens obtained from the
OSCAR configuration API via the basic auth credentials em-
bedded in the services configuration. Moreover, different au-
thorisation mechanisms can be provided thanks to the support
of user-defined custom headers in the “endpoint” replica type.
In addition, all invocations support the HTTPS protocol, so the
traffic between the client and server will be encrypted.

80SCAR CLI - https://github.com/grycap/oscar-cli

functions:
oscar:
- fog:
name: fire-detection
cpu: 1.0

memory: 1Gi
image: ghcr.io/grycap/fire-detection
script: script.sh
rescheduler_ threshold: 15
replicas:
- type: oscar
cluster_id: on-premises
service_name: fire-detection-replica
priority: 0
input:
- storage_provider: minio.default
path: fire-detect/input
output:
- storage_provider: minio.default
path: fire-detect/output
environment:
Variables:
AWS_ACCESS_KEY_ID: XXXXXX
AWS_SECRET_ACCESS_KEY: XXXXXX
TOPIC_ARN: XXXXXX
- on-premises:
name: fire-detection-replica
cpu: 1.0
memory: 1Gi
image: ghcr.io/grycap/fire-detection
script: script.sh
rescheduler_ threshold: 15
replicas:
- type: endpoint
url: https://lambda-function.example
headers:
Authorization: Bearer XXXXXX
priority: O
output:
- storage_provider: minio.edge
path: fire-detect/output
environment:
Variables:
AWS_ACCESS_KEY_ID: XXXXXX
AWS_SECRET_ACCESS_KEY: XXXXXX
TOPIC_ARN: XXXXXX

Figure 4: Support for replicas in the Functions Definition Language file.

Notice that this approach takes into account the peculiari-
ties of event-driven serverless systems regarding the job dele-
gation across replicas to avoid unnecessary data transfers and
the ability to invoke remote HTTP endpoints as the entry point
for public serverless services.

To assess the benefits of this approach for automated server-
less workload redistribution along the cloud-to-edge continuum,
we carried out the use case described in the next section.

4. Use Case: Serverless Fire Detection Across the cloud-to-
edge continuum

Increased wildfires due to rising temperatures are one of the
most alarming impacts of global warming [23]]. Detecting fires
in their early stages is essential to act quickly and minimise
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the damage caused to forests. However, it is not easy to an-
ticipate these events. While they often correlate with several
meteorological factors, external factors can also provoke them.
Surveillance data analysis is an active field of research to pre-
vent this type of situation. Advances in image processing and
artificial intelligence enable the development of models capable
of detecting fires from images taken from surveillance systems.

This section proposes a use case for processing surveillance
images across the cloud-to-edge continuum. For this purpose,
an architecture is presented in which the data capture devices
would be located at the Edge. These devices would be com-
posed of thermal sensors capable of analysing different meteo-
rological metrics such as temperature or relative humidity and
cameras capable of obtaining images periodically. The infor-
mation obtained by the thermal sensors will be used to detect
the level of fire risk at a given time, thus increasing or decreas-
ing the rate of obtaining the images to be processed. To process
the images, Minified Kubernetes clusters (using the k3s [24]]
distribution) composed of Raspberry Pis located in the Fog, i.e.
near the capture devices, will be used. Each cluster will be in
charge of processing images from several cameras. In the ex-
periment described in section a cluster in the Fog will pro-
cess images from three cameras. Moreover, the Amazon SNS
service will notify the firefighters in case of fire detection (see

Figure[5).

4.1. Case Study Design

To assess the new serverless job delegation mechanisms an
experiment based on the use case described above has been de-
signed. Although in a real scenario there would be multiple de-
vices at the Edge to capture information, i.e. cameras with ther-
mal sensors in a forest and multiple Fog clusters to process the
data, in the experiment, we simulated the ingestion of images
from only three cameras to a single Fog cluster. To highlight the
influence of the delegation mechanisms, the on-premises clus-
ter has been configured with a single working node to become
overloaded quickly. However, it is essential to mention that in a
real case, this cluster could have more nodes to process the jobs
delegated from multiple Fog clusters. Moreover, OSCAR’s de-
ployment can be configured to be elastic, i.e. the number of
working nodes can be increased or decreased depending on the
existing workload.

The specifications of both the Fog and On-premises clusters
are as follows:

e Fog cluster: composed of four Raspberry Pi 4 model
B, each with 4GB of RAM and a Broadcom BCM2711,
Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz.
The Kubernetes minified distribution k3s has been used
to deploy the components, running one node as the fron-
tend, with the remaining three Raspberry Pi set as work-
ing nodes.

e On-premises cluster: deployed on an OpenStack-based
Cloud, whose underlying infrastructure is composed of
14 Intel Skylake Gold 6130 processors, with 14 cores
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Figure 5: Use case architecture for fire detection across the cloud-to-edge con-
tinuum.

each, 5.25 TB of RAM and 2 x 10GbE ports and 1 In-
finiband port in each node. The virtualized Kubernetes-
based OSCAR cluster is configured with one frontend
node and one working node with eight vCPUs and 32
GB of RAM each, dynamically deployed and configured
using the Infrastructure Manager (IM).

The fire detection service is based on the applicatioﬂ from
the study conducted by Thompson et al. [25], in which a com-
pact convolutional neural network model for non-temporal real-
time fire detection was developed and trained. The implementa-
tion consists of a simplified ShuffieNetV2 architecture for full-
frame binary fire detection and an in-frame classification using

%https://github.com/NeelBhowmik/
efficient-compact-fire-detection-cnn
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superpixel segmentation. The application has been modified to
provide a text file with the words “FIRE” or “NOT FIRE” as
output. Meanwhile, the script employed for the service gener-
ates a compressed (zip) file with the text file and the image of
the superpixel segmentation.

Notifications, when a fire is detected, are sent via the Ama-
zon SNS service [26], whose SDK (Software Development Kit)
client has been included in the software container built for the
service. AWS credentials can be specified in the services’ defi-
nition so that notifications can be sent regardless of the cluster
in which they are deployed.

Figure [] shows the definition of the OSCAR services in
FDL. After profiling the application, the OSCAR services were
configured to 1 CPU and 1 GB of RAM for the jobs created
when the service is invoked, both in the Fog and On-premises
clusters. Therefore, the number of jobs that can be executed
concurrently will be 9 in the Fog cluster and 7 in the On-premises
cluster, since the services involved in the OSCAR control plane
also use RAM from the underlying virtual infrastructure.

Data ingestion was initially designed using Apache NiFi, a
scalable tool for directed graphs of data routing, transformation,
and system mediation logic, by creating a dataflow that controls
the data ingestion into a MinlO bucket to trigger the OSCAR
service. Since NiFi has no available processors to take pictures
from the webcam, the GetWebCamera plugin was includeﬂ
However, we found limitations in the data capture rate of this
plugin. Therefore, we decided on the use case to emulate the
data ingestion through a Python script that reproduces all the
data flow. It gets the image from the virtual web camera and
uploads it into the MinlO bucket. The ingestion rate has two
phases with a duration of 30 minutes. The first phase ingests
three images every 30 seconds. The second one has an ingestion
rate of three images every 5 seconds.

To validate the operation of the delegation mechanisms and
to benchmark the performance of the developments, the exper-
iment has been carried out in two different scenarios:

e Scenario 1: There is the Fog cluster, to which the images
that trigger the execution of the fire detection service are
uploaded, and the On-premises cluster with the service
configured as a replica. When the image ingestion rate
increases, the Fog cluster will be overloaded and jobs
will be delegated to the On-premises cluster. This sce-
nario has been designed to exemplify the use case using
on-premises resources, except the SNS service for fire
notifications, so there is no need to rely on public Cloud
serverless platforms (such as AWS Lambda).

e Scenario 2: Same as the previous scenario but with the

addition of a replica deployed as a function in AWS Lambda

created through SCAR. The function has been made ac-
cessible via HTTP requests through the API Gateway ser-
vice. Therefore, the FDL specifies an additional replica
of type “endpoint” with 1 GB of RAM. This scenario has
been developed to demonstrate how delegating jobs to

1 0https:// github.com/tspannhw/GetWebCamera

higher levels of the cloud-to-edge continuum can be ap-
propriate to profit from the scalability of managed server-
less services, especially in time-constrained use cases.

4.2. Results and Discussions

This section presents the results obtained after conducting
the previously described experiment for the two proposed sce-
narios. After running the experiment in both scenarios, the
average processing time of the fire detection jobs on the three
platforms used, i.e. Fog cluster, on-premises cluster and AWS
Lambda, has been analysed. Figure [f] shows that the Fog clus-
ter is noticeably slower than the other platforms due to the lower
computational capacity of the cluster’s lightweight devices (Rasp-
berry Pis). Meanwhile, the on-premises cluster is the one that
has offered the best performance, followed by AWS Lambda,
in which the infrastructure is abstracted from the users, so it is
not possible to know precisely the instance type used. AWS
Lambda allocates computational power (e.g. CPU) proportion-
ally to the amount of memory allocated (up to 10 GBs). For the
sake of cost-effectiveness, the memory allocated to the Lambda
function was only 1 GB, thus resulting in lower performance
when compared to the execution in the on-premises cluster.

The worst execution times for all three platforms correspond
to the first runs when the software image has not yet been down-
loaded to the cluster nodes, in the case of OSCAR, and when the
functions are not started in AWS Lambda (cold start). This cold
start can be mitigated in OSCAR by pre-caching the Docker im-
age in all the nodes of the Kubernetes cluster, a feature that can
be activated in an OSCAR service via the image_prefetch pa-
rameter.

60
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Figure 6: Average execution time of the fire detection service on the three plat-
forms employed.
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Figure 7: Number of scheduled jobs on the fog and the on-premises cluster, and the maximum number of jobs each cluster can execute simultaneously.

The first phase of image ingestion resulted in 180 jobs being
processed in the Fog cluster for both scenarios. In contrast, the
second phase generated 1005 images in the first scenario and
1028 images in the second. The script employed to simulate
the use case waits for the time indicated in the ingestion rate
between file uploads but does not take into account the time
incurred in uploading images. Therefore, if any image takes
longer to be uploaded due to latency or bandwidth this may
affect the total number of images uploaded in the experiment,
as it has been the case. However, this does not affect the overall
results of the experiment, whose main objective is to analyse
the behaviour of the two job delegation mechanisms.

Since the ingestion rate in the first phase is three images ev-
ery 30 seconds, all the jobs could be processed in the Fog cluster
without the rescheduling mechanisms having to delegate any of
them. The second phase, however, is where the behaviour of the
delegation systems could be examined due to the large number
of images to be processed:

e In the scenario 1, a total of 477 jobs have been delegated
from the Fog cluster to the on-premises cluster, 455 of
them delegated via the Resource Manager and 22 via the
Rescheduler. Figure [7] details the job scheduling of the
second image ingestion phase for the first scenario. As
can be seen, load peaks appear when the clusters become
saturated. These spikes displayed above the lines of max-
imum parallel jobs for each cluster mean that the jobs
cannot be processed and are kept in the queue until free
resources are available. The peak that occurs at approx-
imately the 1090th second in the on-premises cluster is
worth mentioning, in which the cluster is fully saturated
as many jobs are scheduled.

o In the scenario 2, 538 jobs have been delegated from the
Fog cluster to the on-premises cluster, 510 delegated by

the Resource Manager and 28 by the Rescheduler. Like-
wise, the on-premises cluster has delegated 85 jobs to
AWS Lambda, 76 by the Resource Manager and 9 by
the Rescheduler. As seen in Figure[8] thanks to the dele-
gation from the on-premises cluster to the public Cloud,
the saturation of the on-premises cluster has almost dis-
appeared. Unlike the previous scenario, most load peaks
appear only in the Fog cluster. After analysing these
results, it can be concluded that reducing the Resource
Manager update interval could have further mitigated these
workload spikes in the Fog cluster.

Furthermore, an unusual behaviour was found after the ex-
perimentation: repeated output files were obtained in the sec-
ond scenario. After analysing the results, it was discovered
that the repeated files only appeared in some jobs delegated by
the Rescheduler from the on-premises cluster to AWS Lambda.
Due to the shorter processing time in this cluster and the default
configuration of the Rescheduler, a non-negligible percentage
of the jobs delegated to Lambda were also processed in the on-
premises cluster. Remarkably, the Rescheduler has been config-
ured in both OSCAR clusters (Fog and On-premises) with the
default values, which are 15 seconds for the time interval be-
tween checking the jobs in pending state and 30 seconds for the
threshold that indicates the maximum time a job can be queued.
It is crucial to understand that these times are configurable and
should ideally be adjusted according to the job processing time
for each use case. Notice that this issue has caused an addi-
tional waste of computing resources. Still, it does not affect the
main objective, which is to perform the automated delegation
of computing when the workload exceeds a certain threshold
along the cloud-to-edge continuum.

To summarise, Figure 0] shows the average time jobs have
queued in the two scenarios. As it can be appreciated, in sce-
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Figure 8: Number of scheduled jobs on the fog, the on-premises cluster and AWS Lambda, and the maximum number of jobs each cluster can execute simultaneously.
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Figure 9: Average time that jobs have been queued for each scenario.

nario 2, this time has decreased notably. Indeed, AWS Lambda
was introduced as an additional computing layer to offload work-
load executions from the on-premises cluster seamlessly. This
significantly reduced the number of scheduled jobs in the on-
premises cluster, as shown in Figure[8] thus alleviating its work-
load.

This proves that combining serverless computing with strate-
gies to delegate jobs to replicas along the different layers of

10

the computing continuum can considerably benefit several use
cases of near real-time processing where the workload may vary
in a non-predictable way. This functionality has been imple-
mented in the open-source OSCAR framework for the sake re-
producibility and to facilitate user adoption when supporting
cloud-to-edge computing scenarios based on serverless com-
puting.

The cost of delegating the execution of the 85 jobs to AWS
Lambda was subsumed in the free tier, which includes one mil-
lion free requests per month and 400,000 GB-seconds of com-
pute time per month. Without considering the free tier, the cost
is estimated by the AWS Pricing Calculator to be 0,12 $ in the
North Virginia region.

Notice that both scenarios included a delegation approach
so that each OSCAR service could offload workload to a single
replica located in an upper layer of the cloud-to-edge contin-
uum (edge, fog and cloud). However, the implemented mecha-
nism supports a set of replicas, thus being able to exploit ad-
ditional potentially distributed resources from a layer before
offloading into another layer. This facilitates the definition of
more complex scenarios in which OSCAR service replicas can
be simultaneously employed within layers of the cloud-to-edge
continuum.

5. Conclusions and Future Work

This paper has presented different strategies for delegat-
ing jobs on the OSCAR open-source serverless data-processing
platform that runs on top of Kubernetes. To exemplify the op-
eration of the two delegation mechanisms implemented, a use
case was developed based on a pre-existing fire detection Al
model and then adapted to the OSCAR platform. The exper-
imentation carried out has allowed, in addition to testing the



operation of the rescheduler and the resource manager, the ben-
efits of delegating Serverless jobs to a different on-premises
cluster, but also to FaaS services on public cloud providers, thus
making use of the different layers of the cloud-to-edge contin-
uum. The results indicate that such approach can be beneficial
for several use cases where the workload is unpredictable, and
relying only on edge processing devices can significantly limit
the ability to handle information quickly.

Future work involves fine-tuning the implementation of the
Rescheduler component to minimize the execution of duplicate
jobs. Also, adapting the Resource Manager mechanism to sup-
port additional workload scheduling systems on top of Kuber-
netes, such as Apache Yunikorn, is currently being used to limit
the number of resources per service within an OSCAR cluster.
In addition, we want to assess the effectiveness of the proposed
strategies when including multiple replicas across the different
layers of the edge-to-cloud continuum, including latency-aware
algorithms to decide the delegated OSCAR service replica. Fi-
nally, we plan to introduce support for dynamically changing
the replicas of an OSCAR service to reflect changes in the un-
derlying infrastructure with the dynamic addition and removal
of virtualized computing resources.
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