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Abstract This paper introduces an open-source platform to support serverless
computing for scientific data-processing workflow-based applications across the
Cloud continuum (i.e. simultaneously involving both on-premises and public Cloud
platforms to process data captured at the edge). This is achieved via dynamic re-
source provisioning for FaaS platforms compatible with scale-to-zero approaches
that minimise resource usage and cost for dynamic workloads with different elastic-
ity requirements. The platform combines the usage of dynamically deployed auto-
scaled Kubernetes clusters on on-premises Clouds and automated Cloud burst-
ing into AWS Lambda to achieve higher levels of elasticity. A use case in public
health for smart cities is used to assess the platform, in charge of detecting peo-
ple not wearing face masks from captured videos. Faces are blurred for enhanced
anonymity in the on-premises Cloud and detection via Deep Learning models is
performed in AWS Lambda for this data-driven containerised workflow. The re-
sults indicate that hybrid workflows across the Cloud continuum can efficiently
perform local data processing for enhanced regulations compliance and perform
Cloud bursting for increased levels of elasticity.
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1 Introduction

Cloud computing has become in the last decade the premier option for virtualised
computing. It has increased hardware resource utilization and provided the ability
to execute disparate computing workloads with complex requirements on shared
computing infrastructures. Initial service delivery models, such as Infrastructure
as a Service (IaaS), were exemplified by public Cloud services such as Amazon EC2
[4] and on-premises Cloud Management Platforms (CMPs) such as OpenStack [48].
These were later extended to accommodate additional models such as Platform as
a Service (PaaS) and, more recently, Functions as a Service (FaaS). FaaS aims to
rise the level of abstraction for application developers at the expense of relying on
the infrastructure provider for automated elasticity, efficient virtual infrastructure
provisioning and improved resource allocation.

Initial FaaS services, exemplified by public Cloud services such as AWS Lambda
[6] and Azure Functions [42], provide event-driven execution of functions coded in
certain supported programming languages, offering automated resource allocation
and ultra-elastic capabilities that superseded the ones found in traditional IaaS
offerings. For example, a Lambda function can support up to 3000 concurrent
executions which is two orders of magnitude beyond the default number of virtual
machines that can be deployed in a newly created AWS account, which is 20 (and
can of course be increased upon request). This could only be achieved by using
lightweight virtualization technologies, as is the case of Firecracker [1] which allows
deploying micro Virtual Machines (microVMs) in less than a second. In general,
lightweight virtualization such as Linux containers (LXC) [39], introduced in 2008,
also paved the way for this success. Indeed, the increased popularity gained by
Linux software containers fostered the emergence of Docker [27] in 2013, which
spawned an entire ecosystem of tools that boosted innovation and widespread
adoption.

Both enterprise-based workloads and scientific computing benefited from this
trend to provide encapsulated applications with all the dependencies to guaran-
tee successful execution across a myriad of computing platforms. Docker images
turned into a de facto approach for consistent multi-platform application delivery.
The advent of containers, together with the sustained development of Container
Orchestration Platforms (COPs) such as Kubernetes [15], paved the way for imple-
menting the event-driven capabilities of FaaS under open-source platforms such as
OpenFaaS [47], Knative [38] and Apache OpenWhisk [7]. These platforms mimic
the functionality of public FaaS offerings for the execution of functions coded in cer-
tain languages within the premises of an organization. This computing paradigm
for the Cloud, in which dynamic resource allocation is managed by the Cloud
infrastructure provider, was coined as serverless computing [9].

However, the benefits of serverless computing cannot be restricted to just
function-based computing, especially in the case of scientific computing [34] where
complex software dependencies [36], resource-intensive requirements [62,49] and,
sometimes, the necessity of accelerated hardware is required [26], features that
are not currently available in public Cloud serverless offerings. Currently, an AWS
Lambda function cannot run beyond 15 minutes, use more than 10240 MBytes of
RAM, use any accelerated computing device such as GPUs or use an ephemeral
storage space greater than 512 MB, thus jeopardizing the adoption of these plat-
forms by scientific computing.
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Also, new challenges arise for scientific applications to harness the computing
continuum, as indicated in the work by Beckman et al. [13], where they identify
multiple infrastructures on which computing takes place such as interconnected
sensors from IoT/Edge devices to computer clusters and Cloud infrastructures.
Workflow-like applications may benefit from the orchestration of resources along
the computing continuum. These applications may gather data at the edge, per-
form local processing to comply with privacy regulations on on-premises computing
platforms and seamlessly profit from the elasticity of public Cloud infrastructures
to reduce overall makespan.

Towards this vision, this paper introduces an architecture composed of open-
source components that supports the execution of workflow-based data-processing
applications packaged as Docker containers that can elastically provision resources
from on-premises Clouds and perform automated bursting into a public Cloud us-
ing an event-driven serverless approach. The flexibility of this architecture provides
a step forward in defining data-driven workflows that can execute along the Cloud
continuum.

After the introduction, the reminder of this paper is structured as follows.
First, section 2 introduces the related work in the area of serverless scientific
computing. Next, section 3 describes the components of the designed platform and
the Functions Definition Language created to support data-driven workflows along
the Cloud continuum. Later, section 4 describes a use case to assess the benefits
of the developed platform that integrates Deep Learning models with serverless
computing to produce cost-effective processing of videos from surveillance cameras
to detect mask usage by the population. Finally, section 5 summarizes the main
achievements of the paper and points to future work.

2 Related Work

Several research groups understood from the early beginning that serverless com-
puting could certainly benefit scientific computing. This is the case of the work by
Jonas et al. [37] who introduced the PyWren tool to perform distributed computing
using AWS Lambda, in order to support several programming models, building on
the assumption that stateless functions can be a natural fit for data processing. Our
earlier work in the area, MARLA (MapReduce on AWS Lambda)1 by Giménez-
Alventosa et al. [31] created a framework to execute Python-based MapReduce
applications on AWS Lambda, thus producing a high-performant serverless open-
source tool to execute High Throughput Computing (HTC) jobs without requiring
any pre-provisioned computing infrastructure by the user. In this work we identi-
fied the unbalanced performance properties of serverless platforms such as AWS
Lambda and produced a thorough research which identified performance variabili-
ties in both network throughput and CPU performance for different invocations of
the same Lambda function even with the same allocated resources. This sparked
the need to create appropriate serverless load balancing strategies for HTC jobs
that can minimise both execution time through proper dynamic load assignment
thus resulting in reduced cost using the fine-grained billing models, as described in
[32]. Moreover, the work by Fouladi et al. [30] also envisioned the mapping of thou-

1 MARLA - https://github.com/grycap/marla

https://github.com/grycap/marla
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sands of parallel threads to multiple invocations of a Lambda function in order to
achieve close to near-interactive completion times. They produced the gg software
tool2 which performs distributed compilation of large code bases, together with
other use cases such as video encoding, offering an API with bindings for Python
and C++.

The report by Sewak et al. [59] summarises the different applications of server-
less computing along with the advantages and disadvantages of the main FaaS
platforms in public Clouds, anticipating their growth and adoption in the near
future, as well as indicating the need for new tools to harness the capabilities of
these platforms and facilitating their adoption by developers. The applicability of
serverless architectures to serve AI models has also been investigated in numer-
ous studies. For example, the study carried out by Ishakian et al. [35] analyses
the application of AWS Lambda to serve lightweight deep learning models, as the
maximum available ephemeral storage in a function is 512 MB, concluding that
such platforms can be suitable for workloads running on warm functions. However,
their results show how cold starts can add significant overhead in latency times
when compared to conventional services deployed on virtual machines. Aditionally,
the papers conducted by Christidis et al. [23,24] propose a set of optimisations
for deploying machine learning workloads on serverless platforms. Some of these
optimisations are in fact aligned with those implemented in our work, such as
minimizing container images or loading them on the ephemeral storage of func-
tions in order to overcome the maximum size of the deployment package. These
studies further conclude that it is worth adapting such applications to serverless
platforms in view of the potential savings and robust elasticity, and point to the
growing need to support specialised AI-accelerated hardware on such platforms.

Indeed, supporting serverless computing for scientific computing requires solv-
ing specific challenges that lie ahead the development of our early prototype. To
begin with the first challenge, a problem that remains unsolved is chaining function
composition to produce serverless workflows that can fully exploit resources from
on-premises to public Clouds including computing at the edge for local data pre-
processing. The serverless trilemma by Baldini et al. [10] identified that engineering
function composition for a serverless application is possible but function compo-
sition must obey a substitution principle with respect to synchronous invocation
and invocations should not be double-billed, what poses additional constraints to
enact serverless workflows with respect to traditional workflow systems.

An early work by Malawski [40] explored the idea of serverless workflows for
processing background tasks of Web applications and how to rethink serverless
architectures for executing scientific workflows, introducing a prototype based on
Google Cloud Functions coupled with the Hyperflow workflow engine. In this line,
the work by Skluzacek et al. introduced Xtract, a service to process large collections
of scientific files to extract metadata from various file types. They used funcX [20]
to develop the prototype, a federated FaaS system to enable function execution
across heterogeneous distributed resources. These functions are snippets of Python
code and the system relies on Globus transfer to perform data staging. The authors
found that it can be difficult to modify applications for stateful execution, since
the state is not easily shared among functions. Thus, poorly designed solutions
may lead to significant communication overhead.

2 gg - https://github.com/StanfordSNR/gg

https://github.com/StanfordSNR/gg
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Despite the large number of open-source FaaS frameworks, few research has
been dedicated to serverless workflows, specially to those that are inherently data-
driven because they require processing data across multiple stages of the workflow.
For example, Faas-flow [58] provides function composition for the OpenFaaS frame-
work by creating chains of functions that can be executed both synchronously and
asynchronously with support for parallel execution with branching, even upon
certain conditions. Other workflow engines that run on top of Kubernetes may be
used to provide some support for serverless workflows. This is the case of Argo
Workflows [8], an open-source container-native workflow engine for orchestrating
parallel jobs on Kubernetes which models multi-step workflows as sequences of
tasks via DAGs (Directed Acyclic Graphs) and which provides support for event-
driven workflow automation.

In fact, serverless workflows is an active research area where several contribu-
tions are being proposed. For example, the work by Ristov et al. [57] introduces
a language to describe function choreographies to connect serverless functions.
Indeed, the Serverless Workflow Specification (SWS) [25] was recently approved
as a Cloud native Sandbox level project to define declarative workflow models
that orchestrate event-driven serverless applications. We expect that this specifi-
cation will bring benefits in the area of consistency, providing a common way of
describing serverless workflows, portability and accessibility, to provide interop-
erability among serverless workflow runtimes. However, for the time being, this
specification allows to compose a workflow from pre-existing serverless functions
and, therefore, does not involve function provisioning. Techniques such as Dynamic
parallelism supported by AWS Step Functions are beneficial for the orchestration
of microservices-based applications. Nevertheless, this technique is mainly em-
ployed for control-driven workflows, where the connections between the activities
or tasks in a workflow represent a transfer of control from the proceedings task (or
tasks) to the one (or ones) that follow [60]. However, the focus of our work is on
data-driven workflows where a task input depends on the output data generated
by the previous task.

Concerning the support to the computing continuum, several authors have
previously explored this topic. For example, the work by Balouek-Thomert et
al. [11] presents a vision to enable such a computing continuum and they set
the focus on enabling edge-to-cloud integration to support data-driven workflows.
They focus on stream-oriented workflows to filter data near the sources but they
do not use a serverless approach and no open-source implementation is provided.
The work by Baresi et al. [12] introduces the A3-E unified model for the Mobile-
Edge-Cloud continuum which exploits the FaaS model to bring computation to the
continuum. It uses Apache OpenWhisk to support the implementation together
with AWS Lambda. However, no support for workflows is introduced.

It is precisely at the verge of this state-of-the-art that lies this contribution,
producing an open-source platform that provides serverless scientific computing
along the Cloud continuum, including both on-premises and public Clouds, and
that supports data-driven workflow enactment in serverless platforms and multi-
Cloud hybrid deployments of infrastructures. To best of the author’s knowledge,
this is the first platform that supports event-driven serverless scientific computing
simultaneously harnessing resources from multiple Clouds (exemplified in our case
via OpenStack and AWS Lambda). The platform, together with the definition of
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the use case described in this paper has been released as open-source, publicly
available in GitHub, for the sake of reproducibility.

3 Components to Support Serverless Workflows along the Cloud
continuum

This section identifies the main components employed to support hybrid serverless
workflows that can span across on-premises Clouds and public Cloud platforms to
process data that may be captured at the edge. First, the SCAR3 [50] software for
serverless scientific computing in public Clouds is described. Later, the open-source
OSCAR4 [53] framework to support serverless computing for data-processing ap-
plications in on-premises Clouds is covered. Finally, this section introduces the
Functions Definition Language (FDL) created to define the functions together
with its relationship with data-driven serverless computing workflows.

The main contribution of this paper lies in the development of a new version of
the OSCAR framework to match the same computing model provided by SCAR.
This allowed the integration of both components to support the same computing
model across both on-premises and public FaaS platforms for data-processing ap-
plications. Another key contribution is the development of a novel FDL to define
data-driven serverless workflows that can execute along the Cloud continuum, in
order to support the definition of use cases that require processing at different
levels of this continuum. Notice that, by building on existing open-source software
that is being used in production we aim to foster long-term sustainability of the
developed architecture.

3.1 SCAR: Serverless Scientific Computing in Public Clouds

SCAR is an open-source framework that supports a High Throughput Computing
model [52] to create embarrassingly parallel event-driven file-processing serverless
applications on public FaaS platforms, currently supporting AWS Lambda. The
applications can be packaged as Docker images that can be optionally stored in
Docker Hub [28] (alternative means include Amazon S3). This allows to execute
complex scientific applications in AWS Lambda, thus being able to spawn up to
3000 parallel invocations (depending on the region used). There are strict com-
puting requirements per invocation in AWS Lambda, which are currently 10240
MB of RAM, 512 MB of ephemeral storage that is potentially shared across invo-
cations and 15 minutes of execution time. Therefore, this typically requires using
container minimization strategies in order to fit the Docker container within AWS
Lambda’s runtime environment, such as those available in tools like minicon [33],
which analyses an application execution to obtain a filesystem that exclusively
contains the dependencies detected.

For those applications that do not fit within AWS Lambda’s computing re-
quirements, SCAR provides a seamless integration with AWS Batch [5] an elastic-
cluster as a service offering by AWS which dynamically deploys a cluster in charge

3 SCAR - https://github.com/grycap/scar
4 OSCAR - https://github.com/grycap/oscar

https://github.com/grycap/scar
https://github.com/grycap/oscar
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of executing jobs packaged as a Docker images and which can grow and shrink
depending on the number of jobs queued up at the Local Resource Management
System (LRMS). This integration allows to delegate into AWS Batch functions
invocations that require longer execution times, larger amount of memory or even
GPU resources for accelerated execution, as described in the work by Risco et al.
[56].

However, there are applications that can benefit from the event-driven be-
haviour of serverless platforms but that require strict privacy requirements and,
therefore, cannot be run in a public Cloud provider. Also, there are organizations
that are already operating an on-premises Cloud managed by a Cloud Management
Platform such as OpenStack [48] and, therefore, do not want to spend additional
economic cost from provisioning resources from a public Cloud. The OSCAR plat-
form described in the following section was developed to support these scenarios.

3.2 OSCAR: Open-Source Serverless Computing for Data-Processing
Applications

OSCAR is an open-source platform to support the Functions as a Service com-
puting model for compute-intensive applications. OSCAR can be automatically de-
ployed on multi-Clouds in order to create highly-parallel event-driven file-processing
serverless applications that execute on customized runtime environments provided
by Docker containers than run on an elastic Kubernetes cluster that grows and
shrinks depending on the usage of resources.

The automated deployment of an OSCAR cluster on multi-Clouds is achieved
using:

– IM (Infrastructure Manager) [16], a TOSCA-compliant [46] Infrastructure as
Code (IaC) tool to deploy complex customized virtualised infrastructures on
the major on-premises and public Infrastructure as a Service providers.

– CLUES (CLUster Elasticity System) [3], an elasticity manager that allows
virtual clusters to grow and shrink in terms of the number of nodes. It has
plugins for popular systems such as Kubernetes, Apache Mesos, SLURM, etc.

– EC3 (Elastic Cloud Computing Cluster) [17], which combines the two devel-
opments above to deploy automated self-scaling clusters on multi-Clouds.

An OSCAR cluster features the integration of the following components:

– Kubernetes [15], a container orchestration platform, thus managing container-
ised applications across multiple hosts. It provides basic mechanisms for de-
ployment, maintenance, and scaling of applications.

– OpenFaaS [47], an open-source FaaS framework to execute short-lived functions
on top of a container orchestration platform.

– MinIO [43], an open-source object storage system with Amazon S3’s API com-
patibility.

– OSCAR, the component in charge of creating a function together with the
required resources to support event-driven batch-based GPU-aware executions
on top of the Kubernetes cluster for serverless scientific computing.

The creation of an OSCAR function allows users to upload files to the ob-
ject storage system which triggers the execution of the function to perform the
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data-processing, with automated elasticity if it is required, and the output data is
stored in any of the object storage systems supported. This is the case of Onedata
[29] a global data management system that provides access to distributed storage
resources for data-intensive scientific computations. This is used to support EGI
DataHub, a federated data storage layer auspiced by EGI (European Grid Infras-
tructure), the largest federated Cloud in Europe. OSCAR is compatible with the
EGI DataHub. Other object storage systems, such as Amazon S3, can be employed
to store the output data, thus allowing to trigger the AWS Lambda functions.

Elastic Kubernetes cluster

Trigger jobs
(webhook events)

Create buckets and folders
Configure event notifications

Download/upload files

OpenFaaS

Execute services
synchronously

(optional)

Kubernetes APIManage services
Register jobs
Retrieve logs

Web
interface

Deploy

Create jobs

External storage
providers

Upload
output

API

Assign to
function's

pod(s)

Infrastructure as a Service provider

Working
Node

Working
Node

IM CLUES

Frontend
Node

Scale in/out

Elasticity management

FaaS
Supervisor

Download input
Upload output

FaaS
Supervisor

Fig. 1 Architecture of the OSCAR platform and interactions among their services.

Fig. 1 describes the internal architecture of an OSCAR cluster. The bottom
part depicts a horizontally elastic Kubernetes cluster that is deployed via EC3 from
pre-defined TOSCA templates that are employed by the Infrastructure Manager
(IM) to provision and configure the front-end node of the cluster. This node is
configured with the required Kubernetes services, the CLUES elasticity manager,
and a private instance of the IM server deployed in the aforementioned front-end
node. This way, the clusters become autonomous in deciding whether to scale out
(provision additional nodes from the underlying Cloud) or to scale in, depending
on the number of pods that are pending to be executed.

The upper part of the figure shows the main components of the cluster together
with a typical workflow. For this contribution, OSCAR was completely redesigned
in order to support the computing model offered by SCAR. To this aim, OS-
CAR exposes a secure REST API that receives requests to create functions. It
is responsible for creating the corresponding input and output buckets in MinIO,
depending on the function configuration, and configure the event notifications in
order to trigger the function execution upon a file upload to the input bucket.
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OpenFaaS is employed in order to perform synchronous executions of function in-
vocations, typically short-lived, which is the most common use case of serverless
computing. However, in order to support resource-intensive event-driven scientific
computing, asynchronous executions are required. To this aim, OSCAR creates a
Kubernetes job for each asynchronous invocation that are delegated into the Ku-
bernetes workload scheduler for efficient execution. These jobs are wrapped with
the FaaS supervisor5, an Input/Output data manager especially created for multi-
cloud settings, which allows to gather data from input data storages and upload
output data into the corresponding data storages. The supported data storages
are depicted in the right part of the picture.

Security has been addressed using best practices depending on the infrastruc-
ture being employed. For example, Lambda functions use pre-defined IAM (Iden-
tity and Access Management) Roles6 that follow the Principle of Least Privilege
(PoLP) so that they can only access the resources required, such as an Amazon
S3 bucket to store the generated output data. The deployment via EC3 of the
Kubernetes cluster dynamically generates a token for the user to connect to the
OSCAR web-based user interface and tokens to access the Kubernetes dashboard
and MinIO browser, in case the user wants to directly access them. Dynamic gen-
eration of secrets prevents from reusing passwords that would cause severe security
implications such as unauthorized access breach that could be exploited for ne-
farious purposes. Moreover, the OSCAR API requires basic auth and is exposed
through a Kubernetes ingress that supports SSL. Finally, Onedata leases tokens,
which can be revoked at any time, in order to provide access to the space.

3.3 Functions Definition Language for Data-Driven Serverless Workflows

To support the deployment of data-driven workflows of serverless functions that
require complex data-processing, we opted for defining a YAML-based Functions
Definition Language (FDL) that specifies the requirements for each function and
how they are linked. Notice that, unlike the Serverless Workflow Specification
(SWS) which provides a workflow definition out of existing FaaS functions, our
language focuses on the definition of the functions to be dynamically created across
the hybrid Cloud. Therefore, our proposal could be coupled at a later stage with
the SWS language to provide a portable, interoperable description of workflows
out of the dynamically created functions from our platform.

Two top-level resources are defined in a FDL (see a sample document in Fig.
2, used to support the case study described in section 4):

– Functions, which are created in a Cloud provider and they are assigned a name,
a certain amount of computing resources together with a shell-script that will
be executed, as part of the function invocation, inside a container created out
of a specific Docker image that may available in Docker Hub. The function will
be triggered whenever a file is uploaded to a specific folder within a storage
provider and the shell-script will be in charge to perform the data processing
on the file.

5 FaaS Supervisor - https://github.com/grycap/faas-supervisor
6 IAM Roles: https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

https://github.com/grycap/faas-supervisor
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
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– Storage Providers, which become sources of events for input data processing
and store the output data results from a function invocation. By using as
output from a function the input storage provider from another function, a
precedence relationship is established among them and a data-driven link is
created.

---
functions:

aws:
- lambda:

name: scar -mask -detector
memory: 1024
init_script: mask -detector.sh
container:

image: grycap/mask -detector -yolo:mini
input:
- storage_provider: s3

path: scar -mask -detector/intermediate
output:
- storage_provider: s3

path: scar -mask -detector/result
oscar:
- my_oscar:

name: oscar -anon -and -split
memory: 2Gi
cpu: ’1.0’
image: grycap/blurry -faces
script: blurry -faces.sh
input:
- storage_provider: minio

path: oscar -anon -and -split/input
output:
- storage_provider: s3.my_s3

path: scar -mask -detector/intermediate
storage_providers:

s3:
my_s3:

access_key: xxxxxx
secret_key: xxxxxx
region: us -east -1

Fig. 2 Functions Definition Language file to deploy the workflow used in the following section.

Notice that our platform focuses on data-processing applications and, there-
fore, each function is linked to an input storage provider (so that the function
is invoked upon a file upload) and also to one or more output storage providers
(where the output file results of the processing will be stored). The choice of
Docker allows to have complex execution environments that may be required by
scientific applications, which typically rely on multiple libraries, require specific
OS distributions, etc. This way we can have a consistent execution environment
whether using a public Cloud or an on-premises one. Note that SCAR’s ability
to handle Docker images as runtime environments within both AWS Lambda and
AWS Batch also supports the decision to use Docker images in this environment.
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Upload
input

Define
workflow

Trigger

SCAR Trigger

Store output

AWS Lambda

Download
result

Store output

On-premises

Public

Federated

Create
resources

Fig. 3 Simplified diagram of a hybrid serverless workflow that involves public, on-premises
and federated cloud resources.

The choice of shell-scripts instead of providing bindings for specific program-
ming languages responds to the goal of supporting scientific applications, which
are typically legacy applications that are unfeasible to be adapted to other pro-
gramming languages other than those initially used to code them. Also, this allows
to execute any application that supports the command-line, thus broadening the
scope of applications that can be supported, instead of forcing developers to adapt
their legacy applications to a certain programming language.

The integration of SCAR and OSCAR tools, together with the adaptation of
the FaaS Supervisor, has been carried out in order to support these new FDL files.
For this purpose, as previously indicated, OSCAR has been redesigned to support
the function definition model through its REST API, along with other improve-
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ments such as a refreshed web interface and the ability to retrieve execution logs
for enhanced visibility. The SCAR tool has also been improved to allow commu-
nication with OSCAR endpoints, as well as a parser update to handle the new
functions definition files. Finally, the FaaS Supervisor required minor changes to
support the loading of storage providers’ credentials from the new files. In this way,
as shown in Fig. 3, SCAR has become a tool capable of orchestrating resources to
support file-processing serverless computing along the Cloud continuum. Hence,
SCAR manages the creation of the required resources both in AWS and in the
OSCAR cluster together with the corresponding output folders in the Onedata
space. The composition of the different steps of the workflow is achieved by using
the output bucket of one function as the input of the subsequent one. Therefore,
to start the execution of the workflow, users only have to upload a file to the input
bucket of the first function.

Note that infrastructure management is being left out from the FDL, in line
with the serverless approach of delegating in the Cloud provider for this task. In
our case, it is at deployment time of the OSCAR cluster when the user/adminis-
trator indicates the maximum number of nodes of the cluster, together with their
computing requirements. This way, the user can focus on the definition of the ap-
plication workflow and let the cluster auto-scale within the on-premises Cloud. In
the case of functions created with SCAR, the concurrency limits can be specified
by the user at creation time.

In order to demonstrate the benefits of the designed platform, the following
section introduces a use case related to public health in smart cities.

4 Use Case: Mask Wearing Detection via Anonymised Deep Learning
Video Processing

Data analysis in the context of smart cities is an active area of research and the role
of data processing (Big Data) to extract knowledge from dense networks of sensors
across a city is summarised in the review work by Nuaimi et al. [2], in the work of
Camero et al. [18] and in the work by Chen et al. [22]. As an example, the work
by Bello et al. [14] highlighted the importance of sound as a source of information
about urban life, focusing on monitoring noise pollution and audio surveillance.
Indeed, the work by Spadini et al. [61] focused on ambient sound processing across
smart cities in order to detect abnormal events such as gunshots, sirens, etc.

Using a similar approach, we focus in this study on smart camera networks [55],
which are distributed systems that perform computer vision tasks using multiple
cameras. These have implications in activities such as surveillance with cameras
that capture the natural movement of individuals and vehicles in everyday envi-
ronments, as indicated in the work by Chen et al. [21].

This use case targets an scenario of video surveillance in which it is required to
provide increased monitoring capabilities for the authorities to take better public
health decisions. With the COVID-19 global pandemic that affected the entire
world starting late 2019, many national authorities have regulated the mandatory
use of face masks in order to minimize the spread of the virus across the popula-
tion. To this aim, this use case introduces a workflow entirely based on open-source
components that allows to determine the people that are not wearing a mask out
of sampled images from video recordings that could be obtained from a network
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of cameras distributed throughout a city. This may allow public health authori-
ties to better devote resources to minimize this trend in the specific areas being
monitored.

Anon and split

Upload anonymised
images

Mask detector

Check result
images

Store
result

images

On-premises

Public

input

Upload
videos

Trigger

intermediate

result

Trigger

Fig. 4 Workflow for the defined use case involving face mask detection on anonymised images
on a hybrid Cloud.

However, according to the NIST Guide to Protecting the Confidentiality of
Personally Identifiable Information (PII) [41], a person’s face is considered a PII
because it can unequivocally identify a human being. Therefore, in order to pro-
tect the privacy of the individuals, a pre-processing stage is performed in order
to blur the faces before applying a deep learning model to perform the face mask
recognition. This is why a hybrid serverless workflow is required so that process-
ing is performed along the Cloud continuum, where data is captured at the edge
(camera devices), pre-processing is carried out in an on-premises Cloud for regu-
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latory compliance purposes and, finally, processing and storing of final results is
carried out in a public Cloud using a serverless platform for increased elasticity
and long-term persistence.

The steps of the workflow can be shown in Fig. 4. A set of cameras from a smart
camera network periodically take short videos that are automatically uploaded to
an on-premises Cloud with a MinIO installation. Each uploaded video triggers an
event that starts the “Anon and split” function within the OSCAR cluster in order
to extract a frame every 5 seconds of video and perform the initial anonymisation
phase on the extracted images to blur the faces using the BlurryFaces tool [44].
This phase takes an average of 65 seconds to chunk and anonymise 1 minute
of video at a resolution of 1920x1080. Therefore, considering the computational
requirements and the need to comply with the local regulations related to the use
of PII, this phase can be performed in the on-premises Cloud.

The resulting anonymised images are then uploaded to an Amazon S3 bucket
in order to start the inference process in the public Cloud. Each uploaded image
triggers the “Mask detector” Lambda function responsible for using the face-mask-
detector [54] Deep Learning model in order to compute the percentage of people
in the picture that are not wearing a face mask. The output images are made
available in another Amazon S3 bucket to guarantee long-term data persistence
and for the responsible stakeholder to take actions upon the results obtained. We
rely on Amazon S3 instead of EGI DataHub to store the output data for the sake
of easier reproducibility. A sample image result of the processed workflow is shown
in Fig. 5.

Fig. 5 Result image that differentiates people not wearing face masks.
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Notice that this technology can be applied by the local authorities to per-
form a quantitative and systematic evaluation of the fulfillment of the regulations
to determine if further enforcement is required. The ability to safely outsource
the embarrassingly parallel part of the workflow to a public Cloud supports the
scalability of the designed approach.

The following subsections describe the approach employed to create the work-
flow, together with optimization techniques applied for increased cost-effectiveness.

4.1 Optimal Resource Allocation for the Lambda Function

The allocation of computing resources for an AWS Lambda function is linearly
dependent on the amount of allocated RAM. Hence, increased amount of RAM
may reduce the execution time but, at the same time, increases the cost, which is
billed in milliseconds of execution time. Therefore, in order to choose the optimal
amount of memory to achieve cost-efficient executions in a timely manner, we relied
on AWS Lambda Power Tuning [19], an open-source tool to optimize Lambda
functions for cost/performance using a data-driven approach. The tool performs
the execution of the function with different memory allocations in order to compute
both the execution time and the total cost.
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Fig. 6 Time and cost analysis for the mask detector function running on AWS Lambda.

Fig. 6 shows the output results obtained by the aforementioned tool showing
average values (N = 5 repetitions) for the execution cost and the execution time
for the mask detector function running with different RAM values starting at
256 MB, the least amount of RAM required to execute the deep learning model,
until 4096 MB. Larger memory amounts have been omitted since the execution
time remained at similar values, as can be seen in the line between 2048 MB and
4096 MB, while the cost kept increasing. Note that the first invocation for each
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memory amount is performed when the container image is not available in the
AWS Lambda environment, which results in an increased execution time due to
the cold start, while in the remaining ones (i.e. when the Docker image is already
available for the function invocations) no variation is appreciated. The function
was created using SCAR in the us-east-1 region and outside of a VPC (Virtual
Private Cloud), which provides faster execution times.

The figure shows that the best cost is obtained with the least amount of mem-
ory, at the expense of achieving the worse (maximum) execution time. Notice that
the execution time reduces almost linearly when using up to 512 MB of RAM.
From this point on, increasing the RAM, which proportionally affects the CPU al-
location, provides moderate improvements in the execution time with an increased
cost, which starts to grow considerably from 1024 MB upwards. Finally, allocating
4096 MB provides a marginal improvement with respect to 2048 MB at the ex-
pense of a substantial cost increment. For this particular application, the optimal
amount of memory lies between 768 and 1024 MB of RAM, depending on the
budget restrictions of the user.

Several key results are obtained from this analysis. On the one hand, allocating
additional memory to a Lambda function tends to reduce the execution time, but
this is not always the case (compare the execution time with 2048 and 4096 MB
of RAM in the figure above). On the other hand, the execution time is billed in
milliseconds and, therefore, optimization is a mandatory strategy when creating a
Lambda function. Marginal optimizations on a Lambda function that are executed
a large amount of times end up in producing significant cost savings.

4.2 Case Study Design

Two scenarios were designed in order to prove the benefits of the designed platform.
In the first one, the whole workflow is executed on the on-premises platform. In the
second one, the proposed hybrid workflow has been used, which involves resources
both from the on-premises Cloud and the public Cloud. This allows to better assess
the benefits of adopting a hybrid approach along the Cloud continuum.

The on-premises platform employed to conduct the experiment consists of an
elastic Kubernetes cluster deployed with the EC3 tool, since the use of an Infras-
tructure as Code (IAC) [45] approach allows to guarantee deterministic provision-
ing of customized virtual infrastructures. The cluster is composed of a front-end
node and a maximum of 5 working nodes, each one with 4 vCPUs and 8 GB of
memory. The underlying infrastructure is a physical cluster supported by Open-
Stack which includes 14 Intel Skylake Gold 6130 processors, with 14 cores each,
5.25 TB of RAM and 2 x 10GbE ports and 1 Infiniband port in each node.

For the “Anon and split” function, which always runs on the OSCAR platform,
1 vCPU and 2 GB of memory were set. Note that although the working node
instances have 4 vCPU, the internal components of Kubernetes require a small
amount of resources (0.2 vCPU and 250 MB approximately), which makes the 4
entire vCPUs unavailable for processing. Therefore, the Kubernetes scheduler can
only assign for execution three function jobs simultaneously on the same working
node. Moreover, the “Mask detector” function was executed on the public or on-
premises Cloud depending on the scenario. Considering the results of the study
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carried out in the section 4.1, 1024 MB of RAM were chosen for this function in
both scenarios, setting 1 vCPU when running in the on-premises OSCAR cluster.

The SCAR client was used to perform the workflow deployment, depicted in
Fig. 4 across the hybrid infrastructure using the FDL file shown in Fig. 2. This
file shows the definition of two functions, one in AWS Lambda and one in the
OSCAR cluster, together with their computing requirements. It also indicates
the Docker image from which a container will be created to execute the script
that will process the file that triggers the execution of the function. Decoupling
the infrastructure provisioning with the workflow deployment allows to reuse the
underlying provisioned infrastructure to support multiple hybrid workflows from
different users, thus supporting a multi-tenant approach.

To perform the different tests, a sample video with a resolution of 1920x1080
pixels and a duration of 186 seconds was used. After the “Anon and split” phase
this resulted in 37 images to be processed by the “Mask detector” function. The
different experiments conducted on each scenario together with the results ob-
tained are presented below.

4.3 Results and Discussion

This section analyses the results obtained from the execution of the different sce-
narios previously defined.

4.3.1 Video Processing Analysis

In order to prove the effectiveness of hybrid serverless workflows for processing
data produced at the edge, the times obtained after 5 workflow runs to process a
single video were measured. As mentioned above, the first function is responsible
for extracting frames from the input video every 5 seconds and then applying
an anonymisation strategy based on distorting the faces. This “Anon and split”
function will always run on the on-premises platform (OSCAR), which will ideally
be deployed on private Cloud infrastructures that comply with established data
protection regulations, or even on intermediate devices located near the edge (fog
computing). Afterwards, the “Mask detector” function will be triggered by each
image resulting from the previous function, hence it will be possible to evaluate
its performance when processing several images in parallel on both scenarios.

Fig. 7 shows the times obtained for each function after processing the sample
video 5 times in the two defined scenarios. The first function required an average
time of 206.4 seconds on the first scenario and 227.4 seconds on the second one.
This increment is caused by the uploading of the images to the input bucket of
the second function, which in the first case was located in the same cluster (due
to the use of MinIO), while in the hybrid workflow is on Amazon S3, so the files
must be uploaded via the Internet.

In the second function, a significant improvement can be seen due to the mas-
sive parallelism supported by AWS Lambda, which allows all the images to be
processed in parallel. The average time obtained in the first scenario was 111.4
seconds, since the maximum level of parallelism was 3 processing jobs within a
single node. Notice that to process a single video, the CLUES elasticity man-
ager of OSCAR does not have enough time to scale out the cluster by deploying
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Fig. 7 Execution times of the workflow functions in the two defined scenarios.

additional working nodes. In AWS Lambda, however, the processing of all the im-
ages completed in an average of 19.6 seconds, which supposes an improvement of
82.4%. As you may observe, the processing time of the 27 images in AWS Lambda
is longer than that of a single image, i.e. not all are strictly performed in parallel.
This is due to the fact that the time has been measured from the moment the first
image starts to be processed until the result of the last image is saved. Delays in
uploading files to S3 from the first function directly affect the total image pro-
cessing time, which causes that not all the images are uploaded simultaneously.
Therefore, good network connectivity between the two Clouds will considerably
increase the performance of the second function.

Moreover, as observed in the figure, the first execution of each function has
longer times than the rest. This can be explained by the fact that these values
are measured when the function is triggered for the first time on the platform.
On the one hand, in the OSCAR Kubernetes cluster, the first time a function
is executed on a working node, the container image must be downloaded from
Docker Hub, which generates a delay of up to 13% in the first function and 10%
in the second one. Notice that the image used in the first function is considerably
larger (1.51 GB) than that used in the second function (219 MB), as it has been
reduced by minicon to fit on the constrained environment of AWS Lambda. On
the other hand, the “Mask detector” function in the second scenario is performed
on AWS Lambda and, as described in [51], if the function is “cold”, the time taken
to download the container image must be added to the time taken to start up the
corresponding execution environment, increasing the gap from the average value.

Also, the execution cost of the “Mask detector” function in the second scenario
has been analysed. As discussed in the section 4.1, the optimal performance point
for the function in AWS Lambda was approximately 1024 MB of RAM. The aver-
age billed time after a cold start of the function is 12908 ms, which translates into
an image processing cost of $0.00021556. On the other hand, the subsequent execu-
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tions, having the image of the container available, will be much faster, obtaining
an average billed time of just 2123 ms and a cost of $0.00003545. Summariz-
ing, the processing cost of the 37 images generated by the video can range from
$0.00131165, when the function is “warm”, to $0.00797572 in the worst case, if all
the executions were triggered exactly at the same time and none of them had the
container image in the file system.
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Fig. 8 Total execution times of the workflow in the two defined scenarios.

The total times measured when performing a complete workflow execution
are shown in Fig. 8. As mentioned above, the maximum values in each scenario,
displayed in the box chart as outliers, match the first invocations of each func-
tion when the container images are not present in the working node and, in the
case of AWS Lambda, the function is cold. Despite the fact that these situations
considerably increase the time needed to complete the workflow, they can easily
be avoided by downloading the images when each node in the cluster is started.
For AWS Lambda several techniques exist to keep the functions “warm”, such as
invoking them periodically or activating the Provisioned Concurrency feature, at
the expense of increasing the cost of the application.

In an edge computing scenario, on-premises clusters used by the sensors (the
surveillance cameras in the experiment) will be of reduced scale so they cannot
scale up to the sizes of AWS Lambda. Moreover, automatic scaling up the cluster
through CLUES would require booting up resources and for this specific case will
imply a prohibitive overhead. Although the figures of the experiment with a larger-
scale on-premise cloud would have been more competitive with respect to the AWS
Lambda, they would not be comparable in a large-scale production-level scenario.
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4.3.2 Parallel Video Processing Analysis

In order to test the scalability of the designed system, we executed the work-
flow under the two scenarios with several number of videos to be processed. The
videos were uploaded simultaneously to the input bucket thus simulating the data
capturing process from several cameras at the edge. Fig. 9 shows the results ob-
tained. Notice that the benefits of performing a hybrid approach appear since the
beginning, as identified in the previous section, but the margin of improvement
increases as the workload increases. Indeed, the impressive elasticity capabilities of
AWS Lambda, that may perform up to 3000 parallel invocations greatly surpasses
the bottlenecks that are typically found in on-premises Clouds where the parallel
execution slots are limited to those available in the provisioned infrastructure.

At a more detailed level, the workflow execution for the processing of a single
video on the first scenario has only been executed on one node. Despite the fact
that CLUES triggers the scale-out order to the 4 remaining working nodes shortly
after the creation of the 37 Kubernetes jobs for treating the images, all the jobs
ended up on the active WN before the new ones completed their start up and
configuration process. This means that resources are wasted when the load is low,
as the platform is able to scale, but not in time. Thus, after a period of idle time
the new nodes are shut down again. As can be seen, when the on-premises platform
receives more load (starting from 5 videos), the processing time is reduced in both
scenarios as a result of the availability of more resources for parallel job processing.
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Fig. 9 Measured times after processing different amounts of videos in parallel.

It is important to point out that the gap between the two lines in Fig. 9 can
be closed by increasing the number of parallel execution slots and reducing the
time until they are initially available for execution. The former is bounded by
the underlying physical hardware available, which is fixed, and the allocation of
resources to the deployed Virtual Machines, i.e., the instance types, which can
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be configured at deployment time. The latter depends on the elasticity rules em-
ployed in the cluster. In our case, the CLUES elasticity manager governing the
rules to scale out (add additional nodes) and scale in (terminate the free nodes)
was configured to only start the front-end of the cluster and a working node in
charge of performing the job executions. This is a conservative strategy that aims
to minimize energy consumption in an on-premises Cloud and only reactively pro-
vision additional resources whenever they are needed. Since CLUES rules can be
configured, the user may prefer to have a pre-provisioned fleet of VMs that are
immediately available upon moderate changes in the workload to be processed.

The use of an open-source stack that can be fully configured by the user in
order to seamlessly perform both infrastructure provision along the Cloud con-
tinuum and data-driven workflow enactment using a serverless approach is an
important step forward in widespreading the adoption of this techniques for scien-
tific computing. Traditional serverless use cases focused on unpredictable bursts of
short-lived requests, as is the case of web applications. However, we have demon-
strated that compute-intensive, workflow-based applications can also benefit from
the event-driven capabilities and automated resource management provided by
serverless computing.

5 Conclusions

This paper has introduced an open-source platform that supports the definition of
event-driven file-processing workflows that can execute across the Cloud comput-
ing continuum that features underlying elasticity in the provisioning of resources.
The ability to Cloud burst into a public Cloud using a serverless approach intro-
duces an unprecedented level of elasticity when compared to traditional approaches
based exclusively on Virtual Machines.

The seamless integration between SCAR, which supports the execution of con-
tainers within AWS Lambda to bring serverless for scientific computing, and OS-
CAR, which provides the FaaS computing model for file-processing applications on
Kubernetes clusters, has allowed to create hybrid data processing workflows across
the Cloud continuum. These workflows can orchestrate automated provisioning of
resources both in the on-premises Cloud, through elastic Kubernetes clusters and
in the public Cloud, through the use of serverless services such as AWS Lambda.

A use case based on smart camera networks with applications in smart cities
for video surveillance has been envisaged and assessed, in order to efficiently deter-
mine the usage of face masks across the population out of processed videos using
Artificial Intelligence models. The use case has been made publicly available in
GitHub7 in order to guarantee its reproducibility. The experiments show that it
is affordable and efficient to deviate a computing intensive part of the processing
to AWS Lambda, rather than processing it on limited-scale, on-premises clusters,
even if those clusters would have better network connectivity. This fact is more
evident as the scale factor increases

Future works include dynamic resource orchestration across the Cloud-to-
Things continuum, where the workflow can anticipate the expected incoming work-
load in order to further adapt the resources. This would minimize the amount of

7 Mask detector workflow - https://github.com/grycap/scar/tree/master/examples/
mask-detector-workflow

https://github.com/grycap/scar/tree/master/examples/mask-detector-workflow
https://github.com/grycap/scar/tree/master/examples/mask-detector-workflow
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time invested in provisioning additional nodes within the on-premises Cloud and
the cold-start incurred by the Lambda functions once they have scaled-to-zero.
We also plan to adapt OSCAR to minimalistic Kubernetes distribution to move
part of the event-driven functionality of OSCAR closer to the edge, by enabling
it to run on IoT devices, allowing the composition of workflows that begin the
processing on the data gathering device itself.
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