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Abstract

The increasing use of multiple Workflow Management Systems (WMS) employing
various workflow languages and shared workflow repositories enhances the open-
source bioinformatics ecosystem. Efficient resource utilization in these systems
is crucial for keeping costs low and improving processing times, especially for
large-scale bioinformatics workflows running in cloud environments. Recognizing
this, our study introduces a novel reference architecture, Cloud Monitoring Kit
(CMK), for a multi-platform monitoring system. Our solution is designed to gen-
erate uniform, aggregated metrics from containerized workflow tasks scheduled by
different WMS. Central to the proposed solution is the use of task labeling meth-
ods, which enable convenient grouping and aggregating of metrics independent
of the WMS employed. This approach builds upon existing technology, provid-
ing additional benefits of modularity and capacity to seamlessly integrate with
other data processing or collection systems. We have developed and released an
open-source implementation of our system, which we evaluated on Amazon Web
Services (AWS) using a transcriptomics data analysis workflow executed on two
scientific WMS. The findings of this study indicate that CMK provides valuable
insights into resource utilization. In doing so, it paves the way for more efficient
management of resources in containerized scientific workflows running in public



cloud environments, and it provides a foundation for optimizing task configura-
tions, reducing costs, and enhancing scheduling decisions. Overall, our solution
addresses the immediate needs of bioinformatics workflows and offers a scal-
able and adaptable framework for future advancements in cloud-based scientific
computing.

Keywords: Cloud computing, Monitoring, High-throughput computing, Workflow
Management Systems, Bioinformatics Infrastructure

1 Introduction

Generating increasingly large and complex datasets has become standard in mod-
ern biological research. Cloud computing, available from providers like Amazon Web
Services (AWS) [1], Google Cloud [2], or Microsoft Azure [3], empowers research com-
munities to self-provision customized virtual computing infrastructures. These public
Cloud providers allocate computing, storage, networking, and services to users, allow-
ing them to perform computations on a pay-as-you-go basis. The capacity, versatility,
and ability to provision on-demand computing resources make cloud computation
services appealing to researchers handling big data, such as bioinformaticians.

Complementary to cloud computing, the transition from Virtual Machines (VM)
to software containers has marked a significant shift in scientific computing. VMs are
commonly used in Cloud platforms to provide the computation substrate on which
applications are executed, together with the isolation boundary, according to a set of
predefined templates that specify the capabilities regarding numbers of virtual CPUs
and disk storage, among other criteria. However, in recent years, a lighter kind of virtu-
alization, called software containers [4], has become the de facto standard for running
scientific algorithms [5]. Benefits of running software bundled in containers include
minimal overhead [6], compared to virtual machines, and inclusion of all dependencies
necessary for running the software; these aspects streamline the execution of tools and
scripts created in different programming languages like R, Python, or Perl [7, 8].

In the context of bioinformatics, Cloud computing and container technology are
often used synergistically to improve workflows or pipelines, offering scalable resources
and reproducible environments for the efficient handling of complex sequences of data
analysis tasks. Reproducibility, an aspect of research that becomes increasingly diffi-
cult with more complex data analysis tasks, is essential for validating scientific findings
and ensuring the integrity of the study. Bioinformaticians, in particular, often face
challenges associated with sharing fully reproducible analysis pipelines [9]. Established
best practices for ensuring data reproducibility include the use of standardized work-
flow languages, such as the Common Workflow Language (CWL) [10], or the Workflow
Description Language (WDL) [11], all of which provide the ability to define complex
computational tasks in a structured, interoperable format and share workflows across
different computing environments without the need to alter the underlying code. More-
over, adherence to the FAIR Data Principles and FAIR Computational Workflows [12]
allows researchers to identify processing-specific requirements. An additional measure



to help ensure data reproducibility, provenance tracking [13], captures the entire life
cycle of the data in a workflow [14, 15]; however, it has yet to be adopted broadly.
Finally, most of the software tools used in science are available in software containers
that bundle dependencies and can be executed with simple commands or combined in
workflows with other tools. These scientific workflows are often shared with the scien-
tific community through workflow repositories such as Dockstore [16] or WorkflowHub
[17].

It is within this context that Workflow Management Systems (WMS) like Toil
[18], Cromwell [11], miniwdl [19], or Nextflow [20], become integral. Such WMS offer
a way to accurately automate and orchestrate the execution of complex workflows
and process large amounts of data. Furthermore, they are compatible with standard
systems of clusters and cloud computing services and can therefore be leveraged in
analyses of large datasets. The most commonly adopted cloud services for WMS task
computation are batch systems like AWS Batch [21], Azure Batch [22], and Google
Batch [23], which dynamically allocate resources to meet the requirements of the
analysis tasks. WMS acts as an easily accessible entry point for the user and hides
the complexity of the analysis on the back-end. A WMS can run as a server (e.g.,
Cromwell and Galaxy) [24], where one instance of the WMS controls the execution of
many workflows, or as a head task (e.g., Nextflow and miniwdl), where many WMS
instances run in parallel with each controlling the execution of a single workflow.

To enhance the functionality and interoperability of WMS like those previously
described, efforts have been made to establish uniform communication protocols
within the bioinformatics computational environment (Fig. 1). The Global Alliance
for Genomics & Health (GA4GH) has played a key role in this effort through the
introduction of their Task Execution Schema (TES) [25], which specifies a commu-
nication protocol between the WMS and the computation environment. While direct
implementation of TES by Cloud services is still pending, open-source TES server
implementations, like Funnel [26], offer a bridge, facilitating compatibility among
different WMS.

Complementing the TES, GA4GH also developed the Workflow Execution Ser-
vice Schema (WES) [27], which defines an API to provide a consistent framework for
developers to build compatible workflow execution systems. The WES specification
includes endpoints for submitting workflows in accepted workflow languages, moni-
toring the execution progress, and retrieving the results. A WES implementation can
leverage multiple workflow runners and support various workflows. The runners can
then delegate the task execution to a common TES implementation. Many runners
already implement execution support for most commonly used processing back-ends,
like Slurm [28] clusters or Batch cloud services, to schedule tasks directly on these
systems.

Overall, WMS, when employed according to the established best practices, simplify
the process of running scientific algorithms in the cloud, providing researchers with
instant access to virtually unlimited computing infrastructure and services without
the hassle of provisioning and maintaining in-house clusters.
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Fig. 1 Example of workflow languages, workflow runners and back-end processing connected through
GA4GH WES and TES specification implementations

Despite these developments, resource allocation and monitoring in the Cloud
environments pose a significant challenge, particularly since scientific tools may irreg-
ularly /unequally use assigned resources. This happens because each analytical task
individually specifies resources needed in terms of the number of CPUs, memory,
or disk space necessary for the execution. Thus, these values should be carefully
selected to provide the task with enough resources for execution while avoiding over-
provisioning resources that will not be used. A clear illustration of the consequences
of resource mismanagement is evident in a June 2022 study conducted by Forrester
Consulting for HashiCorp [29]. The study highlighted that a substantial percentage
of cloud-related expenses incurred by companies were attributed to “idle or under-
used resources” (66%) and “overprovisioning of resources” (59%). This phenomenon,
often called “cloud waste”, underscores the financial implications of inefficient resource
utilization.

The monitoring services offered by cloud providers display the use of resources in
the cloud infrastructure at the virtual machine level or in terms of cluster reservation
percentage. However, these services do not allow for the inspection of resource use
for individual containers running alongside others in a cluster. To address this gap, a
custom system is needed to extract information about how each container’s assigned
resources are used and determine how the resources should be adjusted for the tasks.
This need also extends to creating container resource requirements profiles based on
the task parameters and data.

2 Goals

Detailed monitoring is crucial for identifying and debugging issues during the con-
tainer’s execution, such as a lack of memory, CPU, or disk space. Additionally, by
closely monitoring the resources a task uses, it is possible to adjust the resources
assigned and optimize the execution costs, which is essential in a cloud environment
where prices vary depending on the resources used. Furthermore, predictive models
can be developed to forecast the costs of an analysis based on previous executions,
enabling efficient scheduling of tasks with an awareness of the estimated duration and
size of the resources needed for the execution [30]. In addition to the requirement for
detailed monitoring of individual tasks, effective monitoring across diverse systems



and the necessity of unified metrics are equally important as researchers more fre-
quently utilize multiple WMSs to run workflows from public repositories, which are
often defined in different workflow languages.

In response to these challenges, we present a resource usage monitoring solution
tailored for scientific WMS. We propose a flexible, event-driven architecture that
works on multiple platforms and collects detailed and aggregated data across various
WMS tasks. The system uses existing monitoring components and includes task label-
ing for efficient data organization. Built with current technologies, it is modular and
integrates easily with other systems. Initially implemented on AWS, our solution is
adaptable to various cloud or in-house platforms, demonstrating its wide applicability
and scalability.

The Cloud Monitoring Kit (CMK) architecture is especially useful to researchers
with a background in cloud systems development who are looking for a solution provid-
ing transparency in the use of cloud resources by scientific analysis workflows. CMK is
designed to provide essential insights through its intuitive dashboards, which display
individual and aggregated metrics relevant to job performance. For instance, devel-
opers can leverage these tools to monitor resource consumption and tweak system
configurations during the development phase or integration of tools into the execution
environment, thereby enhancing efficiency and performance. Meanwhile, operations
staff benefit from the capabilities for continuous performance monitoring and trou-
bleshooting, which are crucial for maintaining system reliability. The system offers
scientists a robust analytical platform to scrutinize data, facilitating informed decisions
regarding system configurations. This adaptability of the CMK makes it particularly
valuable in settings where precise resource management and systematic optimization
are essential.

After the introduction, the remainder of the paper is structured as follows. First, we
conduct a survey of related scientific work and monitoring solutions currently employed
in Workflow Management Systems (WMS) operating within cloud back-ends. This
review provides an insightful overview of the existing landscape in resource manage-
ment and monitoring technologies. We then look into the core design of our proposed
monitoring system, focusing on its architecture and innovative features that distin-
guish it from existing solutions. Then, we present a detailed evaluation and analysis
of the results obtained from implementing our proposed solution. This section show-
cases the effectiveness of our system in real-world scenarios, highlighting its impact on
enhancing resource management in cloud-based bioinformatics workflows. The paper
ends with a reflection on our findings and a discussion of future research directions.
We explore how this monitoring solution can be leveraged to advance the field of bioin-
formatics, addressing current challenges and anticipating future needs in this rapidly
evolving domain.

3 Related Work

Recent studies underscore the necessity of monitoring to adaptively scale resources and
mitigate service disruptions. Integrating various tools to assess resource requirements
from historical bioinformatics analysis metrics represents a significant advancement



Table 1 Task resource usage monitoring capabilities for some of
the most commonly used WMS referenced in bioinformatics
publications, as stated in their documentation

WMS/TES Aggregated Configurable Fine-grained

Nextflow v - -
Galaxy v v Vo
cwltool v - -
Toil -

Cromwell - - -
Snakemake - - -
miniwdl - - -

Funnel (TES) - - -

in cloud resource management. Fahad et al. (2017) describe the critical importance
of monitoring tools for optimizing cloud resource deployments [31]. This work is
complemented by the work of Birje and Bulla (2020), who provide a comparative
analysis of commercial and open-source monitoring solutions [32], and Tyryshkina et
al. (2019) [30], who demonstrate the utility of regression and classification models
in estimating runtimes and memory needs. A comprehensive survey by Righi et al.
(2019) [33] on system monitoring, data prediction, and resource management details
the relationship between monitoring metrics, resource scheduling, and Al-based load
prediction algorithms and provides a cohesive view of the current landscape. In the
context of bioinformatics, CWL workflows are commonly employed to create work-
flow pipelines for analysis; the introduction of CWL-metrics by Ohta et al. (2019)
[34] offers a framework for analyzing workflow tasks resource requirements within
CWL workflows. Scientific workflows consist of thousands of highly parallelized tasks
executed in distributed environments; therefore, advanced methods for tracing and
investigating performance metrics and task behavior are required. Bader et al. (2022)
propose a monitoring framework to address this need while indicating a need for bet-
ter integration between workflow and resource managers to improve metric exchange
and scheduling decisions [35]. Together, these studies underscore the significance of
advanced monitoring systems in cloud environments. They highlight various strategies
for improving resource management, from adaptive scaling to selecting optimal cloud
service instances. However, they also highlight an unmet need for a straightforward
way to achieve efficient resource monitoring. To address this knowledge gap, the capac-
ity to monitor and comprehensively assess resource requirements was integrated in
CMK to aid in future resource allocation efficiency through detailed task metrics anal-
ysis across diverse workflow management systems in bioinformatics analysis workflow
environments. In this way, the scientific contribution of CMK lies in its provision of a
robust, flexible solution for bioinformatics researchers, enhancing both the efficiency
and cost-effectiveness of cloud-based scientific computing for bioinformatics workflow
executions.

The open-source WMS frameworks used in scientific computation can provide
information regarding resource use of tasks executed inside a workflow; however, each
has limitations regarding aggregation, configurability, and/or granularity. We sum-
marize the documented capabilities of 7 WMS and 1 TES in Table 1 and provide a



detailed example in Section 5. In the table, “Aggregated” metrics refer to summaries
of resources at a task/workflow level (e.g., maximum CPU/Memory usage or total
CPU time) and are usually available at the end of the execution. “Configurable” refers
to the option to configure which metrics should be recorded, to add more metrics
(e.g., via plugins), or to set up an external system where to store the metrics; finally,
“Fine-grained” refers to the ability to see continuous metrics in real-time throughout
the execution of each task. The metrics are useful in different scenarios, as explained
in the following sections.

The first framework analyzed, Nextflow, monitors CPU usage, memory consump-
tion, and disk usage for each process in the pipeline. It can also monitor the usage
of cluster-specific resources, such as the number of nodes and CPU cores allocated to
the pipeline. The Nextflow monitoring data can be shown in a final execution report,
but it does not allow the metrics to be exported to other systems (e.g., into a shared
metrics database) besides the report file, or extending the monitoring functionality,
nor does it include fine-grained metrics.

The second framework analyzed, Galaxy [24] uses plugins to collect and display
metrics for task executions. Galaxy can be configured with the Telegraf [36] monitoring
agent to read fine-grained metrics, being the most configurable in terms of monitoring
from the reviewed frameworks.

The third framework, cwltool, is the reference implementation of the CWL stan-
dard. Although cwltool does not include task metrics out of the box, the project
cwl-metrics [34] implements a system to capture aggregated task execution metrics
following task conclusion and store them in Elasticsearch [37], a search engine over
massive datasets, for later inspection. It does not include fine-grained metrics.

The reference GA4GH TES implementation, called Funnel, can run tasks on dif-
ferent back-ends and could be used by multiple WMS to delegate task execution;
however, it does not yet consider task resource usage monitoring. A monitoring sys-
tem applied to the TES service could be an excellent way to unify the monitoring of
tasks arriving from different WMS frameworks into one TES implementation.

To our knowledge, task resource usage metrics are not reported from the Cromwell,
Toil, Snakemake, or miniwdl frameworks. To summarize the findings of our assessment
of the state of the art, most WMS frameworks do not provide task resource usage
metrics, and most of those that do are not detailed enough and/or do not support
customization.

There are several Cloud-specific commercial solutions available for monitoring of
resource usage, including Dynatrace [38], Datadog [39], and InfluxData [40]. While
these support tracing of requests across different distributed cloud systems and address
the needs of specific application services, like databases or webservers, they do not com-
prehensively collect and associate metrics tailored for analyzing the use of resources
during scientific workflow execution out of the box. General-purpose monitoring stacks
are designed to monitor various metrics and platforms and are often used by tools,
like cwl-metrics or the Galaxy WMS, to build the specific monitoring solution. Some
well-known monitoring stacks are the ELK Stack (Elasticsearch, Logstash, Kibana)
or the Prometheus/Grafana stack, which can be changed into a Telegraf/Time Series



Database/Grafana stack. Grafana [41] is an open-source analytics and interactive visu-
alization web application. Telegraf, an open-source agent for data collection, is also
part of the InfluxData stack and can be used in almost any environment where there
is a need to collect and send metrics to a central location. As our goal was to pro-
vide a solution for monitoring of resource usage of workflow tasks, we investigated
the resource utilization of workflow tasks being executed within software containers,
which provided insights into how specific tasks use their assigned resources.

To address the apparent lack of resource monitoring and management capabilities
of open-source WMS frameworks, our aim was to develop a task resource usage moni-
toring solution that can be used with diverse bioinformatics WMS. Designed to be an
event-driven reference architecture for a multi-platform monitoring system, our pro-
posed framework addresses the constraints of existing cloud monitoring systems while
enabling the collection of detailed and aggregated data across different WMS tasks.
The latter is achieved via task labeling, facilitating convenient grouping and metrics
aggregation. Examples of labels include user 1D, workflow ID, tool name, etc. Our
comprehensive approach builds upon existing technology to provide new, previously
unavailable benefits in terms of modularity and capacity to be integrated with other
data processing or collection systems. We implemented our framework as a server-
less platform on AWS; however, the same functional components can be adapted to
other cloud providers or in-house platforms, highlighting the broad applicability and
scalability of the system.

Scientific data analysis, particularly in bioinformatics, with many different tools,
parameter configurations, and file sizes, requires special monitoring to optimize the use
of resources. While some WMS include basic monitoring, to the best of our knowledge,
no generic solution for monitoring scientific workflows exists. The novelty of CMK
lies in this solution being WMS-independent and using labeling for generalization and
integration with these WMS without actual changes in the code of the tools.

4 Architecture of the Monitoring System

The architecture proposed in this work comprises an advanced monitoring system, the
Cloud Monitoring Kit (CMK), to collect, store, and access metrics of bioinformatics
workflow tasks being executed in a container-based batch-processing environment.
Even though the solution is applied here to bioinformatics, the same principles can
be extended to other domains that use similar WMS. This monitoring system offers
insights into resource use at a granular level for every task executed in the system, as
well as metrics for grouped tasks based on labels that the user and administrator define
in the system. It also summarizes the use of resources based on these defined groups.
The architecture shown in Fig. 2 is defined via generic components that will be later
instantiated to a particular implementation on a public Cloud provider. Therefore, the
proposed architecture can be generalized to support multiple computing back-ends.

4.1 Proposed Architecture

A container-based batch-processing environment requires the deployment of a cluster,
a set of virtualized computing nodes on which containers are executed with the help of
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Fig. 2 Architecture of CMK defined with generic components. The gray area includes the com-
ponents commonly found in container-based batch-processing systems. The white areas on the left
include components required to gather, process, and visualize advanced task-level monitoring metrics

a Container Orchestration Platform such as Kubernetes [37], Nomad [42], or Amazon
ECS [43], in the case of AWS Batch. At the core of the monitoring system is the
monitoring agent, which runs as a service on each cluster node. The agent is responsible
for connecting to the Container Engine API at the node level and collecting metrics
regarding the use of available resources by each container running on the same node.
The agent only needs to capture the metrics visible at the container level, and there are
no requirements regarding the container image content for the monitoring to work. The
collected metrics are saved into a Time Series Database (TSD) for future exploration.
The TSD is a specialized database optimized for handling time-series data and has
built-in functions and operators that allow for efficient data exploration. Each TSD
entry contains the values of the resource use metrics, labeled with attributes such as
the task and node IDs. Task attribute labeling is useful for creating detailed queries to
the database and extracting statistics on data groups, such as task duration or resource
usage statistics, arranged by task utility or by any custom label like user, project, etc.
These aggregated metrics enable comparison of the statistical values between changes
in bioinformatics tool versions or execution environment configurations. The TSD is
available for direct querying, allowing the full range of collected metrics to be inspected
and resource usage dashboards to be created.

TSD integrations like dashboards or REST APIs can be configured to query the
database and show metrics and indicators in a management web, e.g., with a TES or
WES front-end. Additionally, every time a task is completed, the batch system notifies
a default event bus that a task-change event has occurred. A task-change rule cap-
tures these events and invokes a handler function, which queries the database to create
aggregated statistics and publish them into the Statistics Event Bus. Other compo-
nents can be integrated with this custom event bus to perform further processing or
to store the aggregated statistics long-term for later use. The advantage of integrat-
ing a system with the Statistics Event Bus over the direct connection to the TSD
is that the integration would receive the new events in real-time once the aggrega-
tion is performed. This can be used in examples like long-term storage, insertion into
other systems, or further processing and addition of other computed metrics into the
database. The Statistics Event Bus can be disabled if no other integrations are used.



Table 2 Equivalence of components between three cloud providers and open-source

options

Component AWS Azure Google Open Source

Time Series Database  Amazon Azure Time Cloud InfluxDB,
Timestream Series Insights Bigtable = Prometheus

Batch Processing AWS Azure Batch Batch Kubernetes,
Batch Nomad

Function AWS Azure Cloud Open FaaS,
Lambda Functions Functions OpenWhisk

Event Bus Amazon Azure Pub/Sub  Kafka,
EventBridge Service Bus RabbitMQ

The labeling of tasks can be done through container labels or environment vari-
ables. These key-value entries can be set either in the workflow or by configuration
when the task is submitted. These labels can be collected via the monitoring agent.
The different workflow language standards and alternative frameworks already allow
or adopt this functionality. The TES specification, for instance, includes optional tags
and environment variables that can be assigned to the submitted tasks. One impor-
tant aspect to consider for the task labeling capabilities is that the submission system
is responsible for forwarding those to the container attributes.

4.2 Implementation

A summary of the services, including three cloud providers (AWS, Azure, and Google
Cloud) and open-source platforms, through which our proposed architecture can be
implemented is shown in Table 2. For a proof-of-concept demonstration, we imple-
mented our architecture on the AWS public cloud platform, as it is an established
leader in cloud service offerings and is widely adopted in bioinformatics research. More-
over, because different scientific WMS support the AWS task scheduler (AWS Batch)
for the execution of tasks [11, 19, 20], an AWS implementation represents an ideal use
case for this monitoring system.

To align with the DevOps practice Infrastructure as Code (IaC), and to facili-
tate collaboration, version control, and deployment, the architecture was implemented
using the AWS Cloud Development Kit (CDK). The CDK framework provides a
practical solution for cloud infrastructure management, allowing the definition and
provision of AWS resources, like databases and lambda functions using familiar
programming languages. The CDK application is synthesized into an AWS CloudFor-
mation [44] template, a lower-level declarative format that can be deployed in AWS.
A diagram of the proposed architecture with AWS components is shown in Fig. 3.

In the AWS implementation, metrics are collected from tasks running in AWS
Batch, which is configured with EC2 Compute Environments. These EC2 Com-
pute Environments are a cluster of nodes that can scale automatically to match the
resources required by the tasks in the queue.

As the proposed solution is designed to be scalable and handle large-scale, dis-
tributed batch task environments, the architecture is implemented on serverless
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services—including the database, functions, and event bus—allowing the system to
scale automatically in response to increased usage. In this case, serverless services
refer to cloud computing models in which the cloud provider automatically manages
the allocation and provisioning of servers. Additionally, the agent component of the
system runs on each cluster node, so it is scalable with the number of nodes in the
clusters, ensuring that the monitoring system can adapt to changing resource usage
patterns.
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Fig. 3 Architecture diagram of the monitoring system implemented on AWS infrastructure, moni-
toring the AWS batch tasks. The gray area includes the components found in AWS Batch. The white
areas on the left include the AWS components required to gather, process, and visualize advanced
task-level monitoring metrics

For metrics collection, we used Telegraf, a production-ready, open-source, plugin-
based server agent for collecting, transforming, and reporting metrics. Telegraf is
widely used in many applications, including monitoring databases, systems, or IoT
sensors; has a minimal memory footprint on the nodes; supports the collection of met-
rics from many systems, as well as options for data output that are configurable via
plugins. Telegraf can fulfill many monitoring requirements through plugins, which can
enable the capture of node metrics (e.g., system load, CPU power, or temperatures),
which might be useful in some cases. For the AWS Cloud environment in our use case,
the container metrics are collected using the Docker Input plugin, which connects to
the internal Docker APT of the host node via the docker.socks file to read the container
statistics. The Telegraf agent is deployed as a Service on the ECS cluster correspond-
ing to the AWS Batch Compute Environment, meaning the agent runs as a container
in each node in parallel with the batch tasks.

Configured with the Telegraf agent for storage of the collected metrics is an output
plugin for Amazon Timestream, a serverless service offered by AWS that eliminates
tasks, like server provisioning and scaling, that are common in traditional relational
databases. Timestream efficiently stores and retrieves time series data by offering
unique built-in functions, such as time-based windowing and interpolation, which are
not typically available in standard SQL databases. Because Timestream’s pricing is
usage-based, with charges derived from the amount of data written, queried, and
stored, it is adaptable to fluctuating workloads. For new users seeking to test this
service, a free tier is available for one month that allows testing within reasonable

11



limits. Together, these aspects make Timestream a practical choice for managing and
analyzing time series data in the AWS implementation of our solution.

With regards to data access, there are multiple ways this can be achieved, depend-
ing on use case and integrations with other systems or components. Timestream, for
example, allows data to be queried directly on the service website or via the service
API using SQL-based queries. Alternatively, Grafana [41], an open-source monitoring
and observation platform, provides interactive visualizations and can be integrated
with Timestream, allowing the creation of dashboards that show Timestream data. In
our reference architecture, we show how the Grafana dashboard can be used for direct
visualization of resources used by a task or by a group of tasks (Fig. 7 and Fig. 8).

In addition to user metrics, the aggregated task statistics can be accessed at the
time of creation by subscribing to a custom Statistics Event Bus, where task met-
rics are aggregated and published every time a task is completed. Components that
subscribe to the Statistics Event Bus are configured internally in AWS, and the secu-
rity and access are configured via internal system policies. To route events from
various sources in our reference framework to their appropriate targets based on user-
specified rules, we employ Amazon EventBridge, a managed service that supports
event-driven architectures. Overall, this software architecture pattern enables differ-
ent system components to communicate with each other through events without being
directly connected, thus promoting decoupling and scalability. Other services like Ama-
zon SNS [45] can be used either together with Amazon EventBridge, or replacing it,
to achieve similar real-time event notification and decoupling of components, specially
when working with integrations outside of AWS.

Regarding cost, in certain use cases, our monitoring system can be used free of
charge for up to a month. While all services that comprise the monitoring system
follow the serverless principles managed by AWS, meaning that the use-based cost
structure considers the number of requests and/or the size of the data processed, some
services, like AWS Lambda and Amazon EventBridge, have a free tier, permitting
certain use cases to run on these services at no cost within specified usage boundaries.
Amazon Timestream has a one-month free tier with boundaries that limit the size
of the ingested and queried data besides the size of the stored metrics. The AWS
Batch service is free, and only the EC2 instances are charged as part of the execution
environment. Additionally, the Grafana dashboards we provide can be installed in the
Grafana Cloud service, which provides a free account with up to three users forever.
After the limitations to the free services are exceeded, the cost is proportional to the
number of tasks, the time the monitoring system is active, and the size of the metrics
processed and stored.

We show in the next section that CMK can be used as-is for different WMS with
the same compute back-end. If we were to change components of this architecture,
we would need to adjust the surrounding linked components to address the changes.
To use another container engine for example, the Telegraf agent should be configured
with another data input plugin that can read the task resources metrics. The metrics
names can be overridden to match the current ones and to be able to reuse the same
dashboards. Alternatively, the queries in the dashboards and the aggregation func-
tions must be adjusted accordingly. Changing Amazon Timestream with another Time
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Series Database, for example, would require adjusting the Telegraf configuration to
write the metrics into that database, and the queries from the Grafana dashboards and
aggregation function would need to be adjusted to translate any Timestream-specific
functions or features to their equivalents in the target database SQL syntax dialect.

To use CMK in other cloud providers or in-house clusters, the same architecture
would need to be re-implemented with the respective components. The use of CMK
in a hybrid HPC-cloud environment to unify metrics would be possible as long as
the local and cloud configurations concur in storing the same metrics. To simplify
the architecture, all Telegraf agents from cloud and HPC should send the data to the
same database. With the current implementation, adding access for the HPC to write
metrics in Amazon Timestream is possible. Besides this, the Task Change Handler
should be called from the HPC task manager to trigger the task summary metrics
creation.

5 Evaluation

5.1 Introduction

This section evaluates the monitoring system using a commonly used bioinformatics
workflow as a case study. To test the system functionality, we deployed the infrastruc-
ture in an AWS Batch compute environment, configuring two WMS (Nextflow and
miniwdl) to run an example workflow for gene expression analysis. We first observed
what metrics we could capture in addition to those reported by the cloud or the WMS.
Then, we evaluated how the labeling options could enhance the utility of these aggre-
gated metrics. In the following subsections, we describe the workflow implemented
to evaluate our monitoring system to provide an example of a real-world context to
which our system can be applied. Next, we provide details on the configuration of the
AWS compute environment used for running the tasks, the configuration of the mon-
itoring system, and the two WMSs used. Then, we explore our labeling setup for this
use case, followed by a short description of the workflow and the data used. Finally,
we observe the captured metrics, comparing them with what could be obtained from
the WMS, and the cloud in the same run.

5.2 Workflow Description

To provide a use case for the evaluation of CMK, we used a published workflow for
transcript expression quantification analysis [46]. This workflow, shown in Fig. 4, uses
RNA sequencing (RNA-seq) data and a genome reference file as inputs to create a
sequencing quality report and a transcript expression quantification table as output
using three processing tools: 1.) The FastQC tool is executed independently for each
set of paired sequencing reads to create the quality control report; 2.) the Salmon
Index algorithm creates an index of the reference genome, which is used, along with
the paired-reads dataset, in 3.) the Salmon Alignment Quantification step to create
an alignment quantification.
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We used example data from two NCBI projects to execute the selected workflow.
The first project was NCBI BioProject PRJNA419302, comprised of 12 BioSam-
ples for Monilinia laxa and one reference transcriptome assembly (TSA: Monilinia
laxa, transcriptome shotgun assembly). The second project was the NCBI BioProject
PRJNA325641 comprised of 12 BioSamples for Neisseria gonorrhoeae and a reference
transcriptome (Neisseria gonorrhoeae FA 1090 [GCA 000006845]).

input transcriptome paired reads
- = — — —qref— — — = — —|— — =
Y reads_ch
SALMON_INDEX
tools iindex v
SALMON_ALIGN_QUANT FASTQC
quant qc
- — - = — —} —————— V— — —
output quantification results quality results

Fig. 4 A diagram of the evaluation workflow containing input and output files in white and the
tools in gray

5.3 AWS Compute Environment

After implementing the workflow definition in the Nextflow and WDL languages and
adding labels for grouping and aggregating metrics, the workflow tasks were exe-
cuted on AWS Batch. We used the AWS Core Environment template, available in
the Genomics Workflows on the AWS website [47], which configures AWS Batch
as a base computing environment to use with WMS. The VM hardware setup in
the template contains a range of CPU performance, balanced general-purpose, and
memory-optimized hardware to cover different possible task requirements. This is a
multi-node configuration where the environments automatically grow by adding new
VMs as needed. Following AWS Batch setup, we configured the Nextflow v23.04.1 and
miniwdl v1.11.0 workflow managers to send the tasks to the AWS Batch service. The
full compute environment configuration is available in the project GitHub repository!,
and the schematic is shown in Fig. 5.

5.4 Monitoring Configuration

The monitoring system CDK cloud application was deployed in the same region and
account as the AWS Compute Environment used for computation.

A configuration file specifies a list of parameters that set up the monitoring on the
Computation Core Environment set up with the AWS template, e.g., the clusters and

1OMK - https://github.com/biobam/cmk
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Fig. 5 Schema of the configuration for this evaluation. The two WMS running on a local computer
were configured to communicate with AWS Batch to schedule tasks in a queue. The tasks execution
running in the ECS cluster associated with this Batch Compute Environment is monitored and can
be explored in the Grafana Dashboards

network IDs where the agent should be deployed as a service or database names and
persistence duration boundaries.

5.4.1 Data Staging and Task Execution Structure

Data staging is the process by which the data to be analyzed is made available for a
task. The data is commonly stored in an object storage service in cloud environments.
Unless the analysis can stream the data to be processed, the data is copied locally for
the duration of the execution, where the algorithm can access it directly via POSIX [48]
standards. The contrary applies to the output results that are usually moved from the
local storage to the long-term storage for persistence. Fig. 6 illustrates three patterns
for data staging and task execution seen in different WMS and TES implementations:
a) wrapper — the pre- and post-staging processes are executed inside the same container
as the algorithm; b) sidecar — a controller task handles the staging of the data and
runs the main algorithm task on the same node, providing the paths to the local data;
¢) individual tasks — different tasks perform the staging and can run on the same or
different nodes, as the data is localized into cluster-shared storage that is accessible
to all tasks. The data staging approach influences how the metrics are captured. As
we measure the resources used by the container, the metrics of the wrapper option
(a) contain the staging and task processes together as one task, while the sidecar
(b) and individual tasks (c) options clearly separate the metrics by tasks. For this
evaluation, we simplified the use case by having only one option, wrapper cases (a).
Nextflow already schedules tasks with the wrapper pattern where a script passed to
the task handles the data staging inside the same container execution. For miniwdl,
which would have an individual-tasks structure by default, we compose the pre-and-
post commands in the workflow to stage the data. This way, the metrics should display
a similar execution pattern when the same tasks run regardless of the WMS.
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Fig. 6 Schema of three approaches for task data staging seen in different TES and WMS implemen-
tations

5.5 Labels

Labels are key-value pairs attached to the metrics when captured by the CMK. The
label keys to be stored need to be listed in the configuration. The value of the labels
can either come from the task execution environment, or it can be provided through
the WMS when submitting a workflow. There is only one required label for the system
to work, one that uniquely identifies each task. The property “taskIdLabel” in the
CMK configuration specifies the key of this identifier. In our case, running on AWS
Batch, this key is “AWS_BATCH_JOB_ID”, and its value is provided by the service in
the task environment. This label is used internally to create task-aggregated metrics.
While additional labels are not mandatory, they enrich the exploration of resource
usage. The labels act as partitions and are useful in grouping tasks and visualizing
statistics of one task group that matches one or many labels. The same labels should
be used across multi-platform or multi-WMS deployments. The tool code repository
documents a list of labels that are often useful to capture in a scientific workflow
configuration environment.

For this evaluation, we enable tracking of the following labels: a) “C_-WMS” —
the name of the WMS that scheduled the task; b) “C_TOOL” - the name of the
software running in the container; and c¢) “C_DATASET” — the name representing
the input data, which in most cases is the name of the input file. Additional labels
of interest (e.g., user ID or workflow ID) can be easily added by listing them in the
CMK configuration and by adding the corresponding labels to the workflow tasks
when scheduling the workflow.

For the labeling part of the monitoring system, the WMS is required to forward
these environment variables to the Docker container running the task, a process that is
monitored by the agent that reads the labels. The original workflow has been modified
to add these three custom labels to the tasks as environment variables. Nextflow
allows the specification of ’container options’ to set the values for the labels. For fixed
parameters, like C_ZWMS, the value can be set globally in the configuration file for all
tasks; for dynamic values, like C_DATASET, they must be set to change dynamically
with each task execution, depending on the input file name. The standard WDL, on the
other hand, is currently adding language support for assigning environment variables
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to the tasks?. For now, this support is adopted by the miniwdl WMS, which we use
in this evaluation, starting with software version 1.8.0 as an experimental feature.

5.5.1 Metrics Comparison

We provide a comparative analysis of the monitoring capabilities of our system (CMK),
alongside existing solutions like CloudWatch and Nextflow, across key dimensions in
Table 3. “Workflow Aggregated Metrics” offer a high-level view of workflow processes,
such as total CPU hours and execution time. In contrast, “Task Aggregated Met-
rics” provide granular details on individual tasks, including metrics like average and
peak CPU usage and total CPU time. Additionally, “Container-independent Ability
to Capture Metrics” refers to the system’s capacity to collect data without depend-
ing on container-specific elements, ensuring broader applicability. “Near Real-time
Host Metrics” focus on the continuous monitoring of the host environment, tracking
real-time performance and resource utilization, while “Near Real-time Task Metrics”
concentrate on the detailed observation of each task’s resource usage during execu-
tion, which is critical for identifying inefficiencies and bottlenecks. Finally “Custom
Aggregated Metrics” enhance the system’s versatility, allowing users to compile met-
rics based on specific labels for tailored analyses, such as aggregating data by user ID
or tool. This comprehensive classification underlines the CMK system’s strengths in
providing detailed, real-time, and customizable monitoring solutions compared to its
counterparts.

Table 3 Comparison of metrics that can be obtained from CMK, compared to the
AWS-provided CloudWatch metrics and the metrics provided by the WMS

Description CMK CloudWatch Nextflow
Workflow Aggregated Metrics - v
Task Aggregated Metrics v

Container-independent ability to capture metrics
Near real-time host metrics
Near real-time task metrics
Custom aggregated metrics

ENENENENENRN
1 <\ \ 1

In our case, the AWS cloud provider provides metrics on the infrastructure used,
like metrics of the hosts, overall cluster metrics, or metrics grouped internally by
the task-definition name. These metrics are useful for understanding how the overall
resources are being used, but they do not allow to determine resource use at the task
level.

At the end of workflow execution, Nextflow provides a report that contains
workflow-aggregated metrics—like the total CPU hours used to execute all the tasks
in the workflow—and displays plots of the distribution of resources, aggregated for
each process name, from an overall workflow point of view. The HTML report gener-
ated post-execution also includes totals for each task, but it does not include real-time

2The approved pull request #504 of the specification repository adds support for environment variables
(https://github.com/openwdl/wdl/pull/504)
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task metrics or details of the use of resources during the execution. Moreover, the met-
rics are collected in the background of each tasks’ execution, and are dependent on
the availability of additional tools (awk, date, grep, ps, sed, tail, tee) inside each task
container for the metrics collection to work. This means that “distroless” images that
contain only the application and its runtime dependencies (i.e., one of the container
best practices [49]), will not report metrics unless the image is wrapped in another
container layer to add these dependencies. Since the metrics in CMK are collected at
the container level with one agent running on each computation node, it has no con-
tainer environment requirements and is compatible with any image. CMK collects all
the metrics that can be viewed by workflow or in general for all tasks of some grouping.
Going beyond the capabilities of Nextflow’s grouping of a workflow view, our labeling
methodology allows for more flexible statistics grouping and filtering, like grouping
tasks by the container image, including all tasks from all workflows executed in a time
window, or grouping tasks by any other custom labels, for example, to see the total
CPU hours of one user ID. Additionally, our system is compatible with different WMS
tools, and it adds monitoring capabilities to the ones that do not yet provide them,
like miniwdl.

Two preconfigured dashboards are provided with CMK to explore the collected
metrics, one at a task level with continuous metrics, showing the use of metrics
throughout the execution time (Fig. 7), and one with aggregated metrics and charts
grouped by the available labels (Fig. 8). Any configured labels can be selected in the
aggregated dashboards to filter and group the tasks.

5.6 Evaluating CMK in an Industry Context: A Case Study

To assess the applicability of the proposed system in an industrial setting, we imple-
mented CMK for workflow management at BioBam Bioinformatics (BioBam), a
life science company that offers software solutions to accelerate genomics research.
BioBam'’s software platform, OmicsBox [50] (formerly known as Blast2GO [51]), com-
prises a suite of tools that facilitate the analysis and interpretation of biological data.
These tools are designed to make complex bioinformatics analyses accessible to a wider
range of researchers, including those without extensive computational backgrounds.
The company leverages AWS to accommodate the execution of bioinformatics algo-
rithms, thereby supporting computational resource-intensive research in genomics,
transcriptomics, and metagenomics.

Despite the many diverse bioinformatics algorithms executed by BioBam daily, the
company did not have a way to monitor workflow resource use in detail. Therefore,
it presented an optimal use case for evaluating the CMK architecture and testing
its functionality. CMK allowed BioBam to conduct advanced monitoring to identify
and mitigate the company’s potential cloud waste. Implementing CMK into BioBam’s
setup illustrates its potential to enhance resource efficiency and reduce operational
costs in cloud-based bioinformatics computing.

CMK was configured to run on the company’s AWS cloud infrastructure, which is
based on AWS Batch, to gather metrics of the tasks that arrive in the system. Informa-
tion regarding the monitoring of resource use of over 70 cloud-executed bioinformatics
algorithms at BioBam was collected over the course of approximately 6 months. The
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Fig. 7 Example detailed metrics of CPU usage, CPU time, and memory usage from the individual
task dashboard

initial benefits of using the monitoring system were evident in deploying new algo-
rithms. CMK assisted the developers in setting the container resource requirements by
simplifying the process of benchmarking tools and providing data to recognize resource
usage patterns. Another significant benefit was the help in diagnosing tasks that fail
or abnormally extend beyond their expected completion times. By providing detailed
analytics on resource usage and execution patterns, the system aided developers in
identifying inefficiencies or resource bottlenecks that may cause these issues.

A “Cloud Waste” dashboard was created in Grafana to better understand resource
usage efficiency. This dashboard aimed to measure the gap between resources allo-
cated to tasks and their actual utilization, offering a comprehensive overview of all
executed algorithms. Initially focusing on the most utilized algorithms and those con-
suming significant resources over extended periods, this analysis has led to notable
improvements.

From the algorithms that produced the most cloud waste, the top three were cd-
hit, hmmscan, and diamond. Cd-hit, used for clustering, initially had been configured
to run with 24 vCPUs, and CMK detected a waste of 95% based on CPU usage. After
seeing the average and peak CPUs, it was reconfigured to run with 8 CPUs, and the
waste was lowered to 79%. Assigning fewer resources could cause the task to run longer
but more efficiently if the tool itself cannot effectively use all the CPUs assigned.
Another example is hmmscan, which performs Pfam search to predict coding regions
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Fig. 8 Example of aggregated metrics exploring the use of resources filtering the “C_TOOL” label
for a specific value, showing a histogram of the aggregated values during a time interval

in sequences. Initially configured with 6 vCPUs and 12 GB of memory, producing a
cloud waste of 79% After seeing the patterns of CPU and memory for diamond, a tool
for sequence alignment, clustering, and classification, two different CPU/memory con-
figurations were created: one for large databases like NR (Non-Redundant Proteins),
and the other for smaller databases like Swissprot. Additionally, the memory, even
though not reserved directly, seems useful to cache the large sequence database files,
with more memory allowing for faster read access.

As seen above, CMK provides an overview of the executions in the cloud that
can focus on one tool or details of a tool, based on labels. Certain algorithms that
consistently allocated more resources than necessary were identified and adjusted to
match their needs more closely. Various configurations have been adopted for algo-
rithms with a high variability of resource requirements influenced by parameters, e.g.,
the target query database, to optimize resource use. Long-running tasks characterized
by fluctuating resource demands—periods of high or low CPU usage—were examined
to find or develop alternative computational environments that could adapt to these
changes more efficiently, potentially by migrating tasks or tailoring the environment to
the task’s current phase. These enhancements have yielded tangible benefits, directly
contributing to cost savings by optimizing cloud resource usage and indirectly by
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reducing developers’ time configuring or troubleshooting algorithms. The monitoring
and optimization of task configurations is an ongoing process in the company.

The modular structure of CMK facilitated the integration of an extension to com-
pute and capture the cost of tasks running on spot VMs. Spot VMs allow users to bet
on lower pricing for computing capacity, with the risk of resources being reclaimed by
AWS at any time. This extension uses real-time data of the spot instance price and the
proportion of resources allocated to the task, enabling more precise cost management.

Based on the initial success of the implementation of CMK at BioBam, further
developments are planned to extend the system’s capabilities, such as exploring the
use of historical data to improve predictions on resource needs for future tasks. This
approach aims to refine how resources are allocated to cloud tasks, enhancing efficiency
and reducing costs, benefiting both the company and the end users.

5.7 Discussion

We gained several insights during the implementation of CMK. Firstly, deploying the
Telegraf agent was straightforward for capturing container metrics due to its plugin-
based architecture, which allowed easy configuration and container metric collection.
Next, integrating the Time Series Database (TSD), in our case Amazon Timestream,
was effective due to Timestream’s serverless architecture and built-in functions for
handling time-series data, which made it an ideal choice for storing and querying met-
rics. Additionally, setting up Grafana to visualize these metrics was quick and highly
valuable, as the interactive dashboards facilitated easy exploration of the collected
data. Finally, implementing a labeling system for tasks also proved beneficial, enabling
flexible grouping and aggregation of metrics; this approach allowed categorization and
analysis of resource usage based on various dimensions, such as workflow, tool, and
dataset.

We also gained insights regarding potential challenges that users should be aware
of during the implementation. Initially, node removal issues arose in the ECS cluster
because the Telegraf agent ran continuously. This problem was resolved by configur-
ing the agent to start only when other tasks were on the node. Additionally, managing
the deployment through AWS CDK provided flexibility and reproducibility but added
complexity; users unfamiliar with CDK might find it challenging to maintain and
update the infrastructure. Furthermore, another drawback of the CMK is related to
the measuring time interval. The default configuration of the Telegraf agent in CMK
measures metrics every 10 seconds, which might not be suitable for all kinds of work-
flows. For instance, workflows with bursts of short tasks that only last a few seconds
will not have detailed progress metrics captured; instead, some summary metrics are
available after the tasks terminate and are captured before the container instance is
removed from the system. Lastly, defining meaningful custom aggregated metrics can
be difficult due to the diversity of options and the specificity required to successfully
align these with the research goals and operational needs.

As an easily accessible starting point, researchers and organizations can take the
CMK system and deploy it as-is on top of the AWS Batch compute environment. With
minimal configuration of labels and using the provided dashboards, users can explore
the metrics and gain insights into their resource usage. The initial setup of CMK
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provides significant value by offering detailed monitoring capabilities with minimal
effort. Using visualization tools like Grafana is crucial for exploring and understanding
the collected metrics, and setting up additional meaningful dashboards based on clear
monitoring objectives like reducing cloud waste. Monitoring should be seen as an
ongoing process, with regular reviews of collected data, configuration adjustments,
and task setting optimizations based on observed patterns. This iterative approach
will lead to continuous improvements in resource management.

6 Conclusion and Future Works

We have introduced a reference event-driven cloud-native architecture capable of
enhanced resource utilization monitoring across multiple WMS in cloud computing
environments. This architecture is designed to aggregate and analyze metrics from
containerized tasks scheduled by various workflow systems, effectively addressing the
critical need for understanding resource efficiency and cost optimization in large-scale
bioinformatics workflows. The architecture leverages task labeling methods, enabling
the grouping and aggregation of metrics in a WMS-agnostic manner. This approach
simplifies the monitoring process and enhances the system’s versatility. The system’s
modular design ensures easy integration with existing data processing and collection
systems, offering a flexible and scalable solution for diverse cloud computing back-ends.

A reference implementation of this architecture for AWS, named CMK, has been
created using the CDK framework; it has been released as open-source to support
tasks running on AWS Batch Compute Environments and to serve as a foundation
for future developments. Additionally, this approach aligns well with the principles
of TaC, promoting best practices in collaboration, version control, and deployment in
cloud environments.

The implementation of our system has been evaluated by running a common
bioinformatics workflow from two different WMS, where we were able to monitor the
resource usage of the tasks running in the workflows and to explore the resulting met-
rics in the provided Grafana dashboards. Additionally, the results of applying this
system to an industrial setting (i.e., BioBam’s computing environment) highlight the
benefits of having the transparency and additional insights that the monitoring sys-
tem provides. These insights can lead to cost reduction and optimizations in a setting
where thousands of bioinformatics jobs are scheduled daily.

First, the collected metrics can be used to optimize the use of resources in the cloud
to ensure that tasks reserve adequate resources. Secondly, tasks can be fine-tuned to
better use those resources by adjusting internal threads or flows, resulting in faster
analysis and decreased processing times. Thirdly, different profiles can be created to
assign increased or reduced processing power to a task increase or decrease paralleliza-
tion based on inputs, and reduce the time to results. Finally, the full modularity and
flexibility of the monitoring system—to add data size metrics or cloud infrastructure
cost metrics per task through task termination events and to add additional metrics
through configuring plugins with Telegraf—allows users to address their unique data
analysis needs.
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Moving forward, integrating our framework with a greater variety of WMS and
processing backends will showcase the broad application of the proposed architecture;
researchers and developers who work with diverse WMS will find this compatibil-
ity invaluable for monitoring and optimizing their workflows. We aim to simplify
the deployment process by making it available as parametrized CloudFormation tem-
plates. Each cloud provider has its own alternative to CloudFormation. OpenTofu
[52] would be an open-source alternative for IaC, compatible with multiple clouds.
The current CDK application might be harder to keep up with for users not famil-
iar with the framework. Exploration into the use of advanced predictive analytics and
machine learning using the data generated by the proposed architecture can further
aid researchers in optimizing their cloud resource usage, potentially leading to sub-
stantial cost savings and improved efficiency in handling large-scale data-processing
tasks. An application for this is estimating more precisely the real needs of tasks before
execution. Incorporating checkpoint/restore-related applications could enhance the
management of long-running tasks. This feature would be particularly advantageous
in fields with intensive computational tasks, providing means to maintain progress
and manage resources more effectively. By monitoring metrics like CPU throttling,
memory swapping, and out-of-memory/disk errors, the system could detect whether
the adjustment is too tight and can up-scale the executing node or migrate the task
to an environment with more resources.
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