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Abstract

Machine learning is one of the most widely used technologies in
the field of Artificial Intelligence. As machine learning applications
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become increasingly ubiquitous, concerns about data privacy and secu-
rity have also grown. The work in this paper presents a broad the-
oretical landscape concerning the evolution of machine learning and
deep learning from centralized to distributed learning, first in rela-
tion to privacy-preserving machine learning and secondly in the area of
privacy-enhancing technologies. It provides a comprehensive landscape
of the synergy between distributed machine learning and privacy-
enhancing technologies, with federated learning being one of the most
prominent architectures. Various distributed learning approaches to
privacy-aware techniques are structured in a review, followed by an
in-depth description of relevant frameworks and libraries, more par-
ticularly in the context of federated learning. The paper also high-
lights the need for data protection and privacy addressed from differ-
ent approaches, key findings in the field concerning AI applications,
and advances in the development of related tools and techniques.
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1 Introduction

The current landscape of Artificial Intelligence (AI) and its subfields Machine
Learning (ML) and Deep Learning (DL) development is shifting from a focus
on modeling to a focus on the underlying data used to train and evaluate mod-
els. The AI community is increasingly recognizing the need for responsible AI
development and deployment, especially in the recent context of the Euro-
pean Artificial Intelligence Act (AI Act) entering into force (AI-Act, 2024)
to shape Europe’s digital future. The advent of the General Data Protection
Regulation (GDPR) (GDPR, 2018) as well as the Act on the Protection of Per-
sonal Information (APPI) (APPI, 2019), the California Consumer Privacy Act
(CCPA) (CCPA, 2020) and many other worldwide regulations have brought
about two trends in data analytics:

• The rise of distributed data analytics: The increased adoption of AI,
especially ML technologies, has spurred the demand for distributed data
analytics that emerges as data sharing between organizations. This has led
to the development of novel distributed ML architectures with Federated
Learning (FL) (McMahan et al, 2017), (Soykan et al, 2022), emerging as the
most prominent approach. However, other architectures, such as Decentral-
ized Learning (DeCL) (Hegedűs et al, 2019) and Split Learning (SL) (MIT,
2023), are also gaining popularity in the field.

• The importance of Privacy-Enhancing Technologies (PETs): In response to
growing concerns about data privacy and data security, various privacy-
aware techniques are being employed to protect sensitive data. The typical
example is in addition to classic anonymization methods, Differential Pri-
vacy (DP) has experienced significant growth in recent years and is being
incorporated into numerous applications (OpenMinedDP, 2023).

These two complementary trends have become increasingly prominent in
the current AI/ML landscape and are poised to remain at the forefront of
innovation in the years to come. From automation and beyond, AI and its core
ML is already transforming business (Arrieta et al, 2020). However, there are
other potential risks associated with it when addressing areas where controls
or processes are lacking or inadequate (Clarke, 2019). Risks include not only
data disclosure, content control, bias mitigation, interpretability of decisions,
and lack of explainability, but also potential drawbacks related to inadequate
or absent robust data access protocols. It is crucial to note that traditional
assumptions about the form of the data and the origin of the source may not
hold in the era of Big Data, emphasizing the need for adaptation. In addition,
the effective implementation of responsible AI principles is vital to success-
fully navigate these challenges. Therefore, organizations that work and seek to
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obtain benefits from AI should ensure that their use of AI satisfies a number
of rules, criteria, and requirements (Rauniyar et al, 2023) to limit the poten-
tial risks mentioned above (Kairouz et al, 2021). It is appropriate to note that
advances in AI technology require significant computational power, memory,
and data storage, which still limits their accessibility and practicality. The next
important remark is that GDPR protects personal identifiable information
(PII) from European citizens also in the context of AI, data-driven, and cross-
border solutions. Similar silos occur with other types of sensitive data, such
as business or security data, which merge ML in a distributed way (Section 2)
with data privacy and security protection requirements.

The ubiquitous applications of data mining using ML algorithms also raise
concerns about whether data mining compromises privacy. The legitimate use
of private data would benefit data mining users and private data owners. It
should be noted that the field of privacy preservation techniques is a booming
sector, with numerous tools that are continually being developed and updated.
This sector is manifested through the utilization of a wide range of tech-
nologies, including software and hardware solutions. The distributed learning
principles work together with the privacy-preserving principles. However, this
combination is rapidly evolving with high research and development dynam-
ics. It comes with a number of advances, as well as obstacles and challenges
at various levels of implementation.

In this context, the motivation of our work is to provide pioneering navi-
gation for AI practitioners and data mining projects with respect to privacy
preservation. It is difficult for the general professional public to deal with or
orient themselves towards two broad complementary trends in data analyt-
ics, both from a theoretical point of view and practical approaches. It is even
difficult for them to select the right tools from the multitude of frameworks,
libraries, and approaches available from all the ML/DL user communities in
different applicable areas. Our goal is to help them overcome such difficul-
ties comfortably in understanding AI data privacy to progress faster in the
implementation of their projects or in the development of their research.

The scope of this document emphasizes the importance of creating AI
systems that are reliable and human-centered. It aims to highlight the need for
data protection and privacy, as well as the importance of auditing AI systems to
ensure that they are operating as intended. The evolution of AI is dynamic and
will continue to be shaped by the needs of society and technological advances.
The current focus on distributed ML, data privacy, as well as the responsible
AI development is a positive step towards creating AI systems that benefit all
of humanity.

The work presented in this paper makes key contributions to the landscape
of privacy-aware ML with the focus on the evolution of ML frameworks in gen-
eral and privacy-preserving FL frameworks in particular. These contributions
can be summarized as follows.

• Systematic presentation of the synergy between distributed ML and PETs
as the emerging trend. The landscape goes from centralized to distributed



Landscape of ML Evolution: Privacy-Preserving FL Frameworks 5

learning architectures through data privacy and data security to PETs
presentation, together with their practical implementation.

• Detailed and comprehensive analysis, which allows users and researchers to
have a clear reference and novel insights based on PETs towards FL frame-
works and libraries to make decisions needed to build their ML applications
with special attention to data privacy.

• In-depth review of ML landscape with a special focus on distributed learning
and data privacy, analyzing different distributed architectures in addition to
FL, such as split learning, ensemble learning among others. Moving on with
a systematic review of different PETs, from data masking, data anonymiza-
tion, through DP to Homomorphic Encryption (HE) and Trusted and Secure
Execution Environments (TEEs/SEEs).

• Practical information is concisely detailed on the use, availability, and func-
tionality of different frameworks that make up the state-of-the-art in the
research field, from the classic ML/DL frameworks to FL and PETs Python
libraries, including differential privacy and cryptography libraries.

In the context of motivation and contributions, the structure of the rest of
this work is as follows.

• Section 2 (Fig. 1) presents a concise privacy-aware ML landscape start-
ing from the centralized learning paradigms for machines (Section 2.1) to
distributed learning (Section 2.2) and FL (Section 2.2.1).

– Section 2.4 briefly presents the learning approaches with PETs such as
data masking, DP, HE, and TEEs/SEEs with various anonymized, secured
and encrypted realizations.

– Section 2.5 goes in depth with a concise overview of FL and its princi-
ples, highlighting how it addresses the challenges of training models on
distributed data without centralization.

• Section 3 is oriented to the ML frameworks and tools that compose the
current state-of-the-art (Section 3.1). Section 3.2 presents privacy-preserving
FL frameworks with supporting cryptography libraries (Section 3.3) and
differential privacy ones (Section 3.4). Technologies used in frameworks and
libraries in Section 3 are presented in Section 2 in detail.

• Section 4 concludes the landscape of privacy-aware ML, the evolution of
privacy-preserving FL frameworks with a short summary of the trend and
the future research directions.

2 Landscape of Privacy-Aware Machine
Learning

The growing digitalization is coupled with the generation of large volumes of
data in several privacy-sensitive sectors (Gadekallu et al, 2021), from indus-
trial and banking data to medical data, among others (Lakhan et al, 2024),
(Mohammed et al, 2023). Such data are often analyzed and used as input to
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AI/ML/DL models. Therefore, it is essential to focus on their security and
privacy, in addition to the inherent security of the analysis and inference tech-
niques used, in order to create trustworthy and reliable intelligent applications.
The landscape of the privacy-aware ML presented in this Section follows the
diagram in Fig. 1.

Learning from Centralized Data

Learning from Distributed Data

Federated
Learning

Split
Learning

Ensemble
Learning

Decentralized
Learning

Data Privacy Data Security
Privacy-Enhancing Technologies

Data Masking
Data Anonymization

Data Perturbation
Differential Privacy

Homomorphic Encryption
and Cryptography

Trusted and Secure
Execution Environments

Distributed Learning with Sensitive Data Protection

Fig. 1 Landscape of Privacy-Aware Machine Learning.

The evolution comes from classical ML towards distributed ML that is
accompanied by data privacy and data security concerns and requirements.
PETs appear as a response to these emerging needs, leading to distributed
learning with sensitive data protection.

2.1 Learning from Centralized Data

In data mining using ML, different learning approaches can be considered,
starting from the most classical one: learning from centralized data or cen-
tralized learning. In this case, the ML process in many areas of life follows
the CRoss Industry Standard Process for Data Mining (CRISP-DM, 1996)
(Shearer, 2000), which consists of six steps: (1) business understanding, (2)
data understanding, (3) data preparation, (4) modeling, (5) evaluation, and
(6) deployment. The whole CRISP-DM cycle is repetitive. It can be divided
into two groups: (1) the development phase is the group of the first five steps;
and (2) the deployment phase, which is critical for real production.

In 2015, the IBM Analytics Solutions Unified Method for Data Mining/Pre-
dictive Analytics (ASUM-DM) (IBM, 2015) has been considered an extended
and refined CRISP-DM. It has five phases: (1) Analyze, (2) Design, (3) Config-
ure and Build, (4) Deploy, and (5) Operate and Optimize. Similarly, in 2016,
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the Microsoft Team Data Science Process (TDSP) (Microsoft, 2016), consid-
ers only five phases that are executed iteratively: (1) Business Understanding,
(2) Data Acquisition and Understanding, (3) Modeling, (4) Deployment, and
(5) Customer Acceptance.

All of these methodologies have similar phases with minor differences in the
decomposition of particular phases. The whole ML lifecycle (Nguyen, 2022)
could be generalized and divided into several stages:

1. Analysis and requirements stage,
2. Data-oriented stage,
3. Model-oriented stage,
4. Operation stage.

In scenarios in which we want to train ML/DL models with data from
different clients or data owners, the most intuitive and widely applied approach
is the centralized one. The idea is to centralize all available data in a single
location to train the model using all the data stored. Thus, the trained model
will have better generalizability, as it has been trained with more data from
different data owners (AbdulRahman et al, 2020).

The main problem with this approach can be related to the integrity, pri-
vacy, and security of the data since they must be centralized for training
purposes, so they will leave the device or institution that manages them. How-
ever, this is not the only issue, as centralizing data can sometimes be unfeasible
from a technical or connectivity point of view or even due to legal restrictions.

In this sense, the need arises to develop a learning architecture to deal with
all these issues. On the one hand, we can solve problems related to computa-
tional issues using distributed learning. Regarding data security and privacy,
in recent years there has been a boom in privacy-preserving ML architec-
tures, which will be discussed in detail in the following, among which FL is
particularly prominent (Asad et al, 2023).

2.2 Learning from Distributed Data

The major breakthroughs in the field of AI with ML at the core are derivatives
of the collection of a large amount of data in one place. For example, Ima-
geNet (StanfordVisionLab, 2020), a dataset with 14 million annotated images,
encourages the development of state-of-the-art image classification neural net-
works. Other examples are the GPT (Brown et al, 2020) and Galactica (Taylor
et al, 2022) models. In addition, they are robust Large Language Models
(LLMs) trained on 45 TB of textual data crawled from all over the Internet.
To train this type of model, it is essential to have large volumes of data, some
of which are openly available for free use, while others may contain sensitive
information.

Meanwhile, gathering data in one place becomes a more challenging task
due to the increasing size, together with stricter privacy and security reg-
ulations. The use of distributed data maintains its demand, encouraging
the development of collaborative learning approaches from distributed data



8 Landscape of ML Evolution: Privacy-Preserving FL Frameworks

sources. Collaborative learning is a situation in which two or more parties learn
or attempt to learn together (Yang, 2023).

The idea of learning from distributed data presents two new challenges
(Verbraeken et al, 2020), (Su et al, 2022):

• the efficient parallelization of the training process across private networks;
• the creation of robust, coherent, and privacy-aware models.

In this work, the term distributed learning is used with the same meaning
as learning from distributed data. The following subsections explore differ-
ent distributed learning architectures such as Federated Learning (FL), Split
Learning (SL), Ensemble Learning (EL), Decentralized Learning (DecL) in
more detail.

2.2.1 Federated Learning

Federated Learning (FL) is a collaborative and decentralized approach to ML,
based on the idea of data decentralization. The main idea in FL in the DL con-
text (Shokri and Shmatikov, 2015) is closely related to Privacy-Preserving ML
(PPML) (Dua and Du, 2016). FL was first introduced by McMahan (McMahan
et al, 2017) and refers to a technique that allows the building of data-driven
models using distributed data without the need to store them centrally.

There are scenarios in which it is beneficial or even mandatory to isolate
different subsets of the training data from each other. The farthest extent of
this is when a model needs to be trained on datasets that each live on different
machines or clusters and may under no circumstance be co-located or even
moved (Wen et al, 2023).

SERVER

CLIENT NCLIENT 1 CLIENT 2

1

2 2
2

33

4 4
4

5

..............

3

Fig. 2 Federated Learning schema.
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The FL architecture includes different steps in which communication
between a central server and different clients is established. In this sense, this
communication should be encrypted. The steps to perform FL training can be
summarized as follows (Sáinz-Pardo Dı́az and López Garćıa, 2023b): (1) the
clients agree on the model to be trained. In some cases, this model can be pro-
vided by the server; (2) all the clients receive a copy of the model to be trained
(or the weights that define it); (3) the clients train the model locally; (4) the
clients send to the server the model (or the update regarding the initial one)
obtained after training; (5) the server aggregates all the models (or weights)
according to the aggregation strategy chosen; after that, the server sends the
updated model to all the clients, and the process is repeated from step (2)
as many rounds as established to achieve model convergence. This schema is
summarized in Fig. 2.

2.2.2 Split Learning

Another emerging decentralized learning architecture is Split Learning (SL)
(Gupta and Raskar, 2018), (Khalifa et al, 2019), which is distributed DL and
inference without sharing raw data, as proposed by MIT Media Lab (MIT,
2023). The intuitive idea of the simplest SL configuration is the following: (1)
Each client trains a neural network up to a specific layer (cut layer). (2) The
output at that layer is sent to the server (or another client, depending on the
configuration), which completes the training without seeing the raw data. This
completes a round of forward propagation. (3) Gradients are backpropagated
from the last layer to the cut layer. (4) Gradients in the cut layer are sent
back to the initial client. (5) The rest of the backpropagation is completed by
the initial client (Vepakomma et al, 2018). The schema for this architecture is
presented in Fig. 3.

In this area, the recent U-Shaped SL is an approach without label sharing
to the central server with the highest computing power. The input and output
layers are located on the client side, and the inside layers are located on the
server side. However, this comes with an increase in communication cost, as
gradients need to be transmitted over the network twice: first, the gradients of
the input layers are sent from the client to the server, and second, the gradients
of the intermediary layers are sent from the server to the output layers of the
client (Thapa et al, 2022).

Despite the numerous approaches proposed, SL is still an active research
area, and ongoing work aims to further improve the accuracy and efficiency of
SL models and explore its potential application in other domains.

2.2.3 Ensemble Learning

With the success of knowledge transfer, recent advancements in ensemble learn-
ing (EL) are dominated by the student-teacher learning paradigm. Ensemble
learning aggregates the knowledge of multiple teacher models (base estimators)
before distilling it into the student model. In the FL context, training models
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SERVER

CLIENT NCLIENT 1 CLIENT 2

4 4
4

55

2 2
2

..............

5

Cut layer

111

3

Fig. 3 Split Learning schema.

in a privacy-sensitive context could lead to the use of a Distributed Ensem-
ble Learning (DEL) (Chatterjee and Hanawal, 2022) and federated distillation
methods that exchange the output of the model rather than the model param-
eters (Gong et al, 2022). This allows for perfect separation of the training data
subsets, with the drawback that a method must be found that properly bal-
ances the output of each trained model for an unbiased result. Server-based
parameter systems can be useful in the context of privacy, as the training of a
model can be separated from the training result. FL systems can be deployed
where multiple parties jointly learn an accurate Deep Neural Network (DNN)
while keeping the data themselves local and confidential.

2.2.4 Decentralized Learning

In general, two main distributed ML approaches can be seen as responses to
the situation where collecting such data at a central location has become more
and more problematic due to novel data protection rules and the increasing
public awareness of issues related to data handling.

• The first approach is centralized FL (Section 2.2.1) including SL
(Section 2.2.2) and EL (Section 2.2.3) where the parameter server main-
tains the current model and regularly distributes it to clients who calculate
a gradient update and send it back to the server (Yuan et al, 2024). The
server then aggregates all updates and redistributes them to all clients. This
is repeated until the model converges.

• The second approach is fully decentralized without a parameter server, called
Decentralized Learning (DecL) architectures (Hegedűs et al, 2021). In the
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FL context, it is called a decentralized FL (DFL) (Beltrán et al, 2023). A
prominent architecture is Gossip Learning (GL) (Table 1).

Table 1 Decentralized Learning Architectures

Type Works Description

Gossip Learning
(GL) architecture

(Blot et al, 2016)
(Hegedűs et al,
2019) (Giaretta and
Girdzijauskas, 2019)
(Hegedűs et al, 2021)
(Su et al, 2022)

FL variation in which no central server
is required. Instead, clients directly
share their updates among them and
can choose conditionally or randomly
with whom they will communicate. In
this approach, the aggregation takes
place in a distributed manner. Note
that this approach is fully decentral-
ized.

Neighbour Learn-
ing architecture

(Hegedűs et al, 2019)
(Su et al, 2022)

The architecture is similar to the GL
one; each client only communicates
with its neighbors. Note that the FL
neighbour architectures can also be
presented (see Table 3 from (Su et al,
2022)).

All-Reduce archi-
tecture

(Patarasuk and
Yuan, 2009) (Su
et al, 2022)

This architecture simply consists of
removing the dependency on the cen-
tral server of the FL schema.

Ring-All-Reduce
architecture

(Jiang et al, 2020)
(Yu et al, 2022) (Su
et al, 2022)

Alternative to the All-Reduce archi-
tecture in order to reduce bandwidth
consumption, it consists of setting up
the clients on a ring structure.

These architectures are fully decentralized. Nodes exchange and aggregate
models directly without being dependent on a central server. Since there is
no infrastructure required and there is no single failure point, GL can have
significantly lower scalability and better robustness (Hegedűs et al, 2019), (Su
et al, 2022). Not being dependent on a central server can avoid privacy issues
that arise in cases where the server is not trusted. In this context, different
decentralized learning architectures are proposed in addition to the FL one as
an alternative to distributed ML performed on different clients, without data
communication between them.

However, the verification of learning architectures and their applicability
for life problem solving depends on the framework and tools available and their
learning and adoption step curves (more details in Section 3.2).

In this Section, a brief presentation of different distributed learning archi-
tectures is given. In the next Section 2.3, data privacy and data security are
presented as the basis to create coherent and privacy-aware ML models.
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2.3 Data Privacy and Data Security

Data became a crucial prerequisite for any advancement in numerous domains.
When processed and interpreted accurately, data provide valuable informa-
tion and insights to drive decision-making, innovation, and continuous progress
(Nguyen et al, 2024). In general, a significant portion of the data is already
publicly available from many distributed sources, allowing us to have a solid
foundation for many intelligent solutions. However, an enormous amount of
stored data is distributed and locked in company policies or under data pro-
tection and regulations. It is important to note that sensitive information is
often contained in data, and data leaks and data failure can cause enormous
problems in finance and security (Wen et al, 2023).

Sensitive data are not only personal data. Security information and business
data are also sensitive data with protection requirements very similar to those
of personal data. Privacy and security are important concerns for handling
and protecting data. The definitions of these concepts often overlap; however,
they represent two different concepts (May and Denecke, 2022).

• Privacy refers to individuals’ ability to control their personal information
and determine how it is collected, used, and shared. Privacy also incorporates
the right to keep certain information private, maintaining confidentiality
and anonymity when desired. These principles also apply in the digital
space, where control over sensitive information must be even more precise
to prevent potential disclosures of sensitive information.

• Security, on the other hand, focuses on protecting information during all
its states from unauthorized access, disruptions, uncontrolled modifications,
inspection, copying, and destruction. Security involves implementing tech-
nical, organizational, and procedural measures to safeguard data against
hacking, malware, human error, and other possible threats. Different tech-
nologies can be utilized for each security aspect. For example, access
controls and authorization mechanisms prevent unauthorized access, while
encryption protects data during storage.

During the data life cycle, data go through three stages: data at rest, data
in transit, and data in use (Faridoon and Kechadi, 2020).

• Data at rest are data that do not move actively from device to device or
network to network. Examples are data stored on a hard drive, flash drive,
or in a database. Data protection at rest aims to secure data stored on
any device or network. Data at rest are secured with common symmetric
encryption protocols, such as the Advanced Encryption Standard (AES),
which have faster encryption and decryption speeds and are suitable for
large amounts of data.

• Data in transit or data in motion are data that actively move from one
location to another, e.g., over the Internet. Data protection in transit aims
to secure these data while traveling or being transferred, e.g., from a local
storage device to a cloud storage. Data in transit are mainly secured with
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asymmetric encryption protocols, such as Rivest-Shamir-Adleman (RSA),
which are used for the implementation of Secure Sockets Layer (SSL) and
other secure protocols at the application layer.

• Data in use do not have a widely adopted and standardized security
approach (more details are given in Section 2.4.3 and Section 2.4.4). At the
same time, in the ML lifecycle, data are used for a considerable period of
time, which is enough for sophisticated adversaries to carry out different
types of attacks (Kairouz et al, 2021).

Generally, data privacy defines the appropriate handling and use of data,
while data security prevents and mitigates data risks from various threats
(Bertino, 2016). Decentralized ML techniques, such as distributed learning,
FL, SL or GL, among other architectures, aim to address siloed and unstruc-
tured data including privacy and regulation of data sharing and incentive
models for data transparent ecosystems. In Section 2.4, we will discuss different
technologies that can be used to enhance data privacy in various settings.

2.4 Privacy-Enhancing Technologies

The preservation of privacy is almost ubiquitous in various disciplines of infor-
mation technology, including, but not limited to, financial analysis (Cheng
et al, 2020), cybersecurity (Nguyen et al, 2020), and bioinformatics (Xu et al,
2021). It significantly influences cybersecurity with the recent development of
information collection and dissemination technologies. The unlimited explo-
sion of new information through the Internet and other media has inaugurated
a new era of research in which data mining algorithms should be considered
from the point of view of privacy preservation, called privacy-preserving data
mining, which is with ML at its core (Privacy-Preserving Machine Learning -
PPML). The ubiquitous applications of data mining and ML algorithms allow
malicious users to employ data mining to obtain private information, and hence
raise the following question: will data mining compromise privacy? This con-
cern can be addressed from two points of view: ethical (in compliance with
ethics and regulations in all respects) and technological (as a robust foundation
to address bias and to ensure privacy, security, fairness, accountability, trans-
parency, and explainability). The legitimate use of private data would benefit
data mining users and private owners. In this regard, it is also important to
focus on other techniques that can be applied in combination with the above
to add an additional layer of privacy in both data processing and analysis.

Privacy-Enhancing Technologies (PETs) are a wide range of technologies
(hardware or software solutions) designed to extract data value to unleash its
full commercial, scientific, and social potential, without risking the privacy and
security of this information (Heurix et al, 2015). PETs can be divided into the
main groups based on their computational functionality as follows:

• Data Masking (DM) and Anonymization: computation on the data to pre-
vent a person from being identified in the database or to avoid the extraction
of unauthorized information (Section 2.4.1);
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• Data Perturbation and Differential Privacy (DP): computation on noised
data or adding noise to the data, the queries or the learning process
(Section 2.4.2);

• Homomorphic Encryption (HE) and Cryptography: secure paradigm that
enables computation on encrypted data (Section 2.4.3);

• Trusted Execution Environments (TEEs) and Secure Execution Environ-
ments (SEEs): computation in secure environments (Section 2.4.4).

The comparison of PETs in the FL context is presented in Table 2 in
terms of functionality, strength, and potential weakness. Here is also no one-
size-fits-all solution. The complementary approach is needed to ensure the
best protection based on the individual data protection requirements of each
application or case study.

Table 2 Privacy Enhancing Technologies (PETs) functionality, strength and weakness

Functionality Strength Potential Weakness

DM Computation on
original data or
a generalization
of the database

Easy to realize
Different pseudonymiza-
tion and anonymization
methods can be applied
Anonymity level is under
control

Require direct access to
original data
Information lost

DP Computation on
noised data

Information hiding and
output data protection by
algorithms
Offers quantifiable pri-
vacy guarantee
Definitions for local and
global DP

Trade-off in data accu-
racy
Protection limited by pri-
vacy budget
Information lost

HE Computation on
encrypted data

Strong input data pro-
tection by cryptography
algorithms
Provides secure data pro-
cessing

High computational cost
for encryption and pro-
cessing
Increased memory
requirements
Limited functionality for
simple functions

TEEs
SEEs

Computation in
secure environ-
ments

Data protection in
isolated and secure envi-
ronments
Keep data and code
secure during use

Require specialized hard-
ware or support from the
e-infrastructure
Lack of standards
High cost

The comparison of PETs in the FL context is presented in Table 3 in
terms of computational complexity, communication cost, accuracy loss, and
special hardware requirements. The aim is to understand various strengths
and potential weaknesses of PETs on the basis of various characteristics of
the technological realization. PETs are rarely used in isolation. They are often
combined to create privacy-preserving solutions.
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Table 3 Comparison of Privacy Enhancing Technologies (PETs)

DM DP HE TEEs SEEs

Computational
complexity

Low Low High Low Low

Communication
cost

Low Low High Low Low

Accuracy loss Depend High Low Low Low

Information loss Depend Depend Usually no
Depend

No No

Special hardware
requirement

No No No Yes No

The following subsections will go into the details of each PET presented in
Table 2 and Table 3.

2.4.1 Data Masking and Anonymization

Data Masking, also called data transformation, considers various techniques
to replace sensitive information by adding distracting or misleading data.
Examples are anonymization techniques such as k-anonymity (Sweeney, 2002),
t-closeness (Li et al, 2006), ℓ-diversity (Machanavajjhala et al, 2007) or among
many others (Majeed and Lee, 2020) available in software packages as tools
(Sáinz-Pardo Dı́az and López Garćıa, 2022). It is appropriate to mention that
one of the most popular open source packages for data anonymization is a
Java-based desktop application called ARX (ARX, 2024). However, the Python
toolkit is narrower, currently only with some basic implementations available
on GitHub for the most commonly used functions.

The impact of the application of such techniques can be directly reflected
in the performance of ML and DL models, so it is important to strike a balance
between the level of data privacy and the amount of data to be used in inference
processes. This issue has been investigated in different works, for example, with
respect to the application of k-anonymity (Slijepčević et al, 2021), but also
with respect to other methods (Sáinz-Pardo Dı́az and López Garćıa, 2023a).

This group also contains pseudonymization tools, which replace identifier
fields that contain information specific to an individual with fictitious or arti-
ficial data using different tools, such as random numbers or hash functions.
According to GDPR (GDPR, 2018), anonymized data are not personal data.
However, several attacks can be carried out on them to extract information
(Bauer and Bindschaedler, 2020).

It is appropriate to note that the boundary between data masking tech-
niques and data perturbation, concretely differential privacy (Section 2.4.2) is
not very strict. We separate differential privacy from data masking to highlight
its population.
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2.4.2 Data Perturbation and Differential Privacy

Data perturbation is a data security technique that adds noise to data such
as records in databases, allowing the confidentiality of individual records. This
technique allows users to obtain summary key information about the data that
is not distorted and does not lead to a security breach (Lambert et al, 2023).

Differential Privacy (DP) belongs to the latest methods for preserving pri-
vacy, which utilizes data perturbation techniques. The main idea behind DP is
that the absence of a single record does not affect the overall characteristics of
the dataset. The implementation of DP was proposed in (Dwork et al, 2014)
with the additional parameter ε that defines the level of privacy. In particular,
this technique is of great interest when combined with DL modeling.

The most well-known formal definition of (ε, δ)-DP is the Cynthia Dwork’s
formula (Dwork et al, 2014) which is summarized below.

Definition 1 A randomized algorithm M with domain D is (ε, δ)-differentially pri-
vate if ∀S ⊆ Range(M) and ∀x, y ∈ D such that ∥x− y∥1 ≤ 1 (x and y are adjacent
inputs), the following equation is verified:

Pr[M(x) ∈ S] ≤ exp(ε) Pr[M(y) ∈ S] + δ, (1)

where:

M is a random algorithm (or also called the query mechanism);
S is the set of possible outcomes of M;
epsilon (ε) is the privacy budget and presents the maximum distance between
M(x) and M(y), then ε ≥ 0;
delta (δ) is the probability that information is accidentally leaked, then δ ∈ [0, 1].

If δ = 0, we say that M is ε-differentially private or, in short, (ε, 0)-DP
or ε-DP. Otherwise, we use the term (ε, δ)-differential privacy or (ε, δ)-DP.
(ε, 0)-DP controls the amount of privacy protection provided, while, (ε, δ)-DP
is adding the second layer of privacy protection that represents the maxi-
mum probability of privacy violation. The idea is that including or excluding
an individual’s data should not have a major impact on the outcome of a
query or expose specific information about that individual. (ε, δ)-DP offers a
quantitative measure of privacy guarantees, which denotes the level of privacy
protection. (ε, δ)-DP guarantees that the information disclosed about individ-
uals remains within acceptable limits by imposing specific constraints on data
release techniques, such as adding properly adjusted noise to the query results.

Different methods can be applied to achieve differential privacy, such as
the Laplace, Exponential, or Gaussian mechanisms. As an example, let us
introduce the classic Laplace mechanism for ε-DP.

Definition 2 Be f : A −→ Rk, we define the l1-sensitivity as follows:

∆1(f) := max
∥x−y∥1

f(x)− f(y)1 (2)
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Definition 3 Given any function f : A −→ Rk, we define the Laplace mechanism
(ML) for achieving ε-DP (as given in Rodŕıguez et al (2020)) as follows:

ML(x, f(·), ε) := f(x) + (Y1, . . . , Yk), (3)

where Yi, ∀i ∈ {1, . . . , k} are independent and identically distributed (i.i.d.)
variables from the distribution Laplace(0,∆1(f)/ε).

DP can be applied to a DL model during training to avoid extracting infor-
mation from the weights or parameters (Ponomareva et al, 2023). Examples are
the application of noise using a Gaussian mechanism during gradient descent
(El Ouadrhiri and Abdelhadi, 2022) (Ahmadzai and Nguyen, 2024). All noisy
model updates are then transmitted to a centralized server. These updates are
combined to produce a global model. This model is ultimately improved by
repeated iterations of local training and global aggregation while preserving
data privacy.

f(w) =
1

K

K∑
k=1

fk(wk) (4)

where:

f(w) is the objective function of FL, also known as the loss function;
K is the number of total clients in the FL system;
wk indicates the weight of the model in each client;
fk is the local objective function of the client.

The most challenging problem of the DP mechanism is that the privacy
leakage increases due to composition. Determining a tighter bound of the pri-
vacy leakage due to composition allows one to learn more features from a
data set while protecting individual sensitive information. This leads to the
definition of the Rényi divergence (Mironov et al, 2019) (El Ouadrhiri and
Abdelhadi, 2022) and guarantees the composition of many steps of a private
process.

In FL, it can significantly protect clients’ private data from being exposed
to adversaries. However, private information can still be divulged by analyzing
uploaded parameters from clients, e.g., weights trained in deep neural net-
works. Therefore, DP is used in FL to effectively prevent information leakage.
For example, if it is applied to the weights or gradients of a model prior to send-
ing it to the server in an FL scheme, an additional layer of privacy is added,
which can be key, since information from the original data can be extracted
from the parameters that define a model (Wei et al, 2020).

In addition, when there are few clients participating in the FL training,
another way to add global DP in the FL setting is to do it from the server
side when aggregating the weights or the models with the selected aggregation
strategy. Thus, if one of the clients acted as an attacker, knowing his/her model
or weights update and the aggregated ones, he/she would not be able to infer
accurate information from the remaining participants.
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DP can be divided into global differential privacy (GDP) and local dif-
ferential privacy (LDP). GDP adds noise to the output of queries over the
entire dataset, whereas LDP adds noise to each individual’s data prior to any
analysis.

It is appropriate to note that the boundary between differential privacy
and cryptographic techniques (Section 2.4.3) is also not strict. Cryptographic
algorithms are often applied to implement differential privacy.

2.4.3 Homomorphic Encryption and Cryptography

Homomorphic Encryption (HE) is a cryptography paradigm that allows com-
putation to be performed on encrypted data. HE ensures that performing an
operation on encrypted data and decrypting the result is equivalent to per-
forming analogous operations without encryption (Acar et al, 2018), (Lytvyn
and Nguyen, 2023a). HE is based on the following two theoretical principles:

• Encryption is a process of transforming the information in a way to hide the
information’s initial properties.

• Homomorphism, intuitively, is a mathematical function between two objects
with the same algebraic structure that preserves the operations on them
(structure and basic properties).

In short, HE is a form of encryption that allows computation on encoded data,
preserving the initial properties and structure. Theoretically, this technique
ensures that operating on the encrypted data and decryption the result is
equivalent to performing such operations without enciphering.

Be (A, ⋆) and (B, ⋄) two groups with ⋆ and ⋄ representing the specific
operation for each group. Note that a group (G, +) is abelian if and only if it
verifies the group axioms and ∀a, b ∈ G a+ b = b+ a.

Definition 4 Given two groups (A, ⋆) and (B, ⋄), the function ψ : A→ B is a group
homomorphism if ∀a, a′ ∈ A is verified:

ψ(a ⋆ a′) = ψ(a) ⋄ ψ(a′) (5)

In addition, in HE both groups or rings are usually used as algebraic
structure. An example is the BGV scheme that uses polynomial rings.

Definition 5 A ring is a tern (R, ⋆, ⋄) verifying:

(R, ⋆) is an abelian group.
(R, ⋄) is a commutative monoid.
The distributive property is verified as follows:

x ⋄ (y ⋆ z) = (x ⋄ y) ⋆ (x ⋄ z), ∀x, y, z ∈ R, (6)

(y ⋆ z) ⋄ x = (y ⋄ x) ⋆ (z ⋄ x), ∀x, y, z ∈ R, (7)
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Note that the Ring Learning With Errors (RLWE) (Mouchet et al, 2021)
computational problem is the key for HE schemes and approaches. We can
give a standard definition for HE according to (Yi et al, 2014) as follows:

Definition 6 Be the encryption scheme ES = (P,C,K,E,D), where P is the plain-
text, C is the ciphertext, K is the key space, E is the encryption algorithm, and D
is the decryption algorithm. Let’s denote the group P with operator ⋆ as (P, ⋆) and
the group C with operator ⋄ as (C, ⋄).

The encryption algorithm E is a mapping from P to C with a secret or public
key k ∈ K (according to the selected cryptosystem) as follows:

Ek : P → C (8)

Then, the encryption scheme ES is homomorphic if the following condition is
fulfilled:

Ek(x ⋆ y) = Ek(x) ⋄ Ek(y) ∀x, y ∈ P ; k ∈ K (9)

It is important to note that not every encryption scheme has an homo-
morphic property, and not all encryption schemes that have homomorphic
properties have a reasonable level of security. Depending on the number of
operations that can be carried out on the encrypted data, there are different
homomorphic encryption schemes, such as the following:

• Fully Homomorphic Encryption (FHE): with FHE, businesses can analyze
and process sensitive data while maintaining privacy and compliance con-
trols. With this technology, internal or external parties can perform data
analysis and processing without requiring data to be exposed (decrypted)
(Gentry, 2009), (Hergenrother and Park, 2021). Theoretically, any function
can be computed. FHE allows performing any number of operations, so it
is very expensive computationally in practice (Lytvyn and Nguyen, 2023b).

• Somewhat Homomorphic Encryption (SWHE): it is a scheme more feasible
in practice, but limits the number of operations that can be performed on
encrypted data (Mahato and Chakraborty, 2023).

• Partial Homomorphic Encryption (PHE): allows for only one type of oper-
ation to be performed (any number of times). It is a straightforward and
efficient scheme despite its limitations (Munjal and Bhatia, 2023).

In addition to HE, which is frequently mentioned in the context of FL, other
encryption techniques such as symmetric encryption, asymmetric encryption,
and hashing are used to ensure data security in their three states (Section 2.3
and Section 2.4.4). In the FL context with HE, Secure Multi-Party Compu-
tation (SMPC) is a cryptographic technique that allows two or more parties
to securely compute a function over their private data without being able to
access the data of the other parties (Zhao et al, 2019), (Lindell, 2020). In other
words, SMPC ensures that the private data of each participant remain secure
while still allowing the parties to obtain the result of the computation over all
the data without ever having to share the data themselves.
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In FL architecture, HE can be applied if the central server is not trusted, so
that the models or weights are sent in encrypted form to the server in charge
of performing the aggregation. Thus, the server would be able to aggregate the
weights without knowing the individual updates of each client.

• One problem that arises in this regard is the handling of HE public and
private keys, which cannot be the same for all parties. In order to solve this
problem, different multi-key HE (MKHE) scheme are proposed, in which all
the n keys that are used to encrypt the model or the weight updates in each
client must be used to carry out the decryption process (López-Alt et al,
2012) (Chen et al, 2019).

• Secret Sharing (SS) offers a suitable alternative for securing the aggregation
process in FL. SS is a scheme of sharing (t, n), where the secret is divided
into n shares, such that any (t − 1) does not reveal information about s,
while any t shares allow a complete reconstruction of secret s (Evans et al,
2018). Multiple protocols based on SS have been proposed in the context
of FL, such as SecAgg (Bonawitz et al, 2017) and SecAgg+ (Bell et al,
2020), FastSecAgg (Kadhe et al, 2020) and LightSecAgg (So et al, 2022),
representing the most recent advances in secure aggregation via SS.

The inclusion of different PETs, such as HE, MKHE, SMPC or SS in a FL
setting where sensitive data from different clients or data owners are handled,
can be key to prevent a malicious party (clients or server) from extracting
knowledge from the trained models.

2.4.4 Trusted and Secure Execution Environments

In addition to data masking, differential privacy, and cryptographic techniques,
trusted execution environments (TEEs) also belong to PETs. TEEs are secure
isolated environments designed to provide a high level of protection for sen-
sitive communication and the storage of confidential data (Chen et al, 2020).
The key characteristics of trusted environments are:

• Trusted means that the environment is robust against known malicious soft-
ware, tampering or unauthorized access, and the output of the computation
is genuine;

• Execution considers the elimination of limitation of software that could be
executed in the TEE;

• Environment represents the separation of TEE from the existing system
and making it available through the strictly defined set of Application
Programming Interface (API).

In the context of ML and FL, models are often deployed in the cloud and are
accessible to users to make predictions through pre-defined interfaces. To make
a prediction, the user must send their data to the cloud to receive the inference
results (Lakhan et al, 2021). Consequently, user data could be compromised,
leading to the exposure of private data. In general, TEE can be used in the
ML inference phase in the cloud. However, the current widely used ML and
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DL models could be computationally intensive for the regular environment.
The computational load for the same operation in TEEs is significantly larger
than in an untrusted environment with increasing execution time and latency.
Thus, to take advantage of the benefits of TEE while keeping the computation
load at an acceptable level, the ML/FL process must be optimized for TEEs.
An example of such optimization in a given context represents split learning
(Section 2.2.2).

The work (Narra et al, 2019) proposed the inference framework for the DL
model, where the DL model is divided into two parts, one is executed in the
TEE and the other in the regular environment. In practice, the framework
uses input obfuscation to cooperatively execute between an enclave and an
untrusted Central Processing Unit (CPU) in the early layers. This approach
optimizes the overall performance of inference while securing the computation
in TEE using secure enclaves of Intel Software Guard Extensions (SGX) (Intel,
2023), which is a set of special instruction codes and APIs to improve security
built into Intel chips. Another example is the SCONE platform (Scontain,
2023) to build and run secure applications with the help of Intel SGX.

TEE can be divided into hardware and software environments. Secure
Execution Environment (SEE) is a related concept to TEE, which mainly high-
lights security measures to safeguard the execution environment, such as access
control, encryption, isolation, and integrity checks (Mo et al, 2021). Although
there may be some differences, it should be noted that the terms SEE and TEE
are often used interchangeably and that their precise definitions may be influ-
enced by specific context and industry practice. Finally, both terms refer to
protected and isolated environments with the goal of ensuring secure execution
and security of software with an emphasis on security and trustworthiness.

In this context, Confidential Computing (CC) (Sardar and Fetzer, 2023)
is built on the basis of hardware-assisted TEE and focuses on protecting data
during processing. CC also provides remote attestation that enables users to
verify the integrity and confidentiality of code and data in the execution envi-
ronment. SEE in CC is often implemented as virtual machines that reduce
the surface of attacks, simplify implementation, and allow users to execute
native codes in CC without modification. The confidential container (Yang
et al, 2021) is defined by the Cloud Native Computing Foundation (CNCF)
as an open source project aiming to standardize confidential computing at the
container level and simplify its consumption in Kubernetes.

2.5 Distributed Learning with Sensitive Data Protection

FL democratizes data-driven insights by training ML models on distributed
data without sharing sensitive data across devices or servers. As ML applica-
tions become increasingly ubiquitous, concerns about data privacy and security
have also grown. PPML safeguards data confidentiality in compliance with
data protection regulations. The aim is to develop models that can operate
on encrypted or anonymized data, preventing unauthorized access to sensi-
tive information. By combining decentralized data access for ML training and



22 Landscape of ML Evolution: Privacy-Preserving FL Frameworks

PETs, PPML enables organizations to build, deploy, and manage ML models
reliably and securely (Mothukuri et al, 2021).

Table 4 Examples of real-world case studies with applied Federated Learning

Work Description FL Framework

(Aditya et al, 2018) Digital forensics investiga-
tion

TensorFlow Privacy

(Täık and Cherkaoui,
2020)

Electrical load forecasting TensorFlow Federated

(Hong et al, 2020) Privacy-preserving ML on
genomic data

TensorFlow Encrypted

(Firouzi et al, 2021) Software-defined networking
and edge computing

TensorFlow Federated

(Budrionis et al, 2021) Predicting in-hospital mor-
tality

OpenMined PySyft

(Novikova et al, 2022) Intrusion detection in the
critical infrastructures

FATE

(Shi et al, 2022) Tumor segmentation chal-
lenge

FEDML
NVIDIA Flare

(Chowdhury et al, 2023) Covid-19 detection using
chest X-ray images

Flower

(Lazzarini et al, 2023) IoT intrusion detection Flower

(Urmonov et al, 2024) Object detection for intelli-
gent vehicles

OpenMined PySyft

(Dasari and Kaluri,
2024)

Privacy preserving in finan-
cial sectors

Flower

The most prominent distributed learning architecture is FL (Section 2.2.1),
which addresses critical issues such as:

• Data privacy, for example, medical records that cannot leave hospitals
(Chaddad et al, 2023), (Lakhan et al, 2023);

• Data security, for example, monitoring data that cannot leave the site
(Al Ogaili et al, 2023);

• Data privacy and security, for example, bank data cannot leave bank
institutes (Alazab et al, 2021);

• Data access rights for heterogeneous distributed data (Ali and Mohammed,
2024).

The list of FL application case studies is getting longer (Li et al, 2020a) (Li
et al, 2021) with more and more use cases than in Table 4. The more complex
comparative overview of methods and applications with proposed frameworks
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and tools can be found in (Silva et al, 2023) and (Riedel et al, 2024), which
provides context and demonstrates the progress made.

FL stands out for its ability to train powerful ML models while protecting
sensitive data. This ability of FL is achieved through the combination of dis-
tributed learning with PETS through proper frameworks and tools (Truong
et al, 2021) as follows.

• Data minimization including purpose minimization and storage minimiza-
tion: FL avoids transferring raw data itself. Model training is performed
on distributed clients (or devices), where only processed updates or model
parameters are shared with a central server. This significantly reduces the
risk of exposing sensitive information compared to traditional centralized
data storage and learning.

• Differential privacy (DP) adds noise during the training process or even to
the model updates or parameters before sharing them. This adds another
layer of privacy protection. DP guarantees that the model does not leak
information about a specific individual, even if an attacker compromises the
updates or parameters.

• Secure computation: sensitive data often need additional protection even
as processed updates or parameters. FL can integrate cryptographic tech-
niques (such as HE, SMPC or SS) to perform calculations on encrypted data
without decrypting them. This ensures privacy even from the central server.

• Trusted and secure environments including TEE/SEE are crucial for FL on
distributed data at all stages: data at rest, data in transit and data in use.

As mentioned in the Introduction, AI and its core ML are already chang-
ing the way business is done. However, there are also other potential risks
associated with these technologies when addressing areas where controls or
processes are lacking or inadequate, such as data disclosure, content control,
bias mitigation, interpretability of decisions, and lack of explainability. The
main objective of PPML is to harness the power of ML while protecting the
privacy of the data used to train and deploy these models. It aims to achieve
a balance between the acquisition of valuable data insights and ensuring that
data owners retain control over their right to privacy (Kaissis et al, 2020).

The privacy protection aspect in PPML can be achieved through:

• Prevent identification: PPML techniques aim to prevent anyone, including
those involved in training or using the model, from identifying individuals in
the data used. This can be achieved through methods such as anonymization
and differential privacy.

• Limit data exposure: PPML minimizes the amount of sensitive data that
is exposed during model training and deployment. This can involve using
only the necessary data features for FL (where models are trained on local
devices) and the use of HE that allows computations on encrypted data.

• Control over data privacy and security: PPML techniques can enable indi-
viduals to decide what data are used, for what purpose, and for how long in
a proper setting.
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The concept of decentralized data access for ML can be seen through two
main approaches to ensure data privacy and security:

• FL involves a network of devices or servers holding their own private data
while training a global model iteratively (more details in Section 2.2.1,
Fig. 2). From the data structure point of view and based on (Yang et al,
2019), the FL architecture can be divided into horizontal FL (HFL), vertical
FL (VFL) and transfer federated learning (TFL).

• FL with cryptography techniques such as HE involves more parties with
their own private datasets to train a model collaboratively without reveal-
ing their individual data to each other. HE ensures that the data remain
encrypted throughout the process (Section 2.4.3). The model is trained on
the combined encrypted data.

From a data security point of view, in HFL, only the server can compromise
the privacy of data participants. HFL combines data from entities, institutions,
or data owners with the same features but different samples. An example of
HLF is the collaboration of two medical institutions. Since their data are very
similar, the feature space could be the same (Nasr et al, 2019). VFL assumes
semi-honest behavior of the participants; that is, adversaries can only learn
from corrupted parties, but not the data from other parties. VFL combines
data from entities with the same sample IDs but distinct features. An example
of a VFL is two organizations located in one area, such as a bank and an e-
commerce company (Luo et al, 2021), which can have data associated with the
same individuals, but with different features and records. TFL comes into a
place in situations where the two above-mentioned scenarios are not suitable.
TFL involves the use of a previously trained model on a similar task to improve
the performance of a new model on a new task, such as fine-tuning. TFL can
be applied for both VFL and HFL (Ahmadzai and Nguyen, 2023).

The ML effectiveness aspect in PPML is achieved through:

• Maintain model accuracy: PETs should not significantly compromise the
accuracy or performance of ML models. Reaching a balance between privacy
and accuracy is a key challenge in PPML research.

• Enable diverse data sources: PPML should allow the use of data from multi-
ple sources while protecting data privacy. This is crucial for building robust
and generalizable models.

• Scalability and practicality: PPML techniques should be scalable to handle
large datasets and be practically implementable in real-world applications.

In general, PPML seeks to build trust in ML by demonstrating that valu-
able insights can be extracted from data while respecting individual privacy.
This is becoming increasingly important as data privacy protection regula-
tions, such as GDPR and CCPA become more stringent, and individuals
become more aware of their privacy rights. The principles discussed above
work together to create a PPML approach. It is important to note that FL
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is promising, fast evolving and has high research and development dynam-
ics. This provides a number of advances, as well as obstacles and challenges
at various levels of implementation (Section 3.2). Recent notable trends in
FL research and implementation include advancements in secure aggregation
techniques to enhance the efficiency of model updates and exploration of FL
applications across diverse industry domains.

2.6 Landscape Summary

The evolution of privacy-aware ML involves complicated tasks, such as manag-
ing the increasing size of collected data, along with strict privacy and security
regulations. The use of distributed data maintains its demand, encourag-
ing the development of federated learning approaches from distributed data
sources with modern frameworks and tools (Section 3.2) accompanied by dis-
tributed data protection and secure computation requirements in the global
regularization context.

From a practical point of view, data masking and data perturbation provide
an upper layer for large-scale data mining with privacy preservation. Here is
the need to balance data utility against privacy. The more data you perturb
to protect privacy, for example, using various differential privacy frameworks
and tools (Section 2.4.2), the less accurate your ML algorithm might be. Then,
it is crucial to find a point where the data is still useful for analysis without
compromising individual privacy.

There are also approaches to hardening data that focus primarily on
controlling and limiting data access or acquiring trusted entities to execute
computations. Both approaches do not face the problem directly and have their
disadvantages, such as who verifies the trusted entity and social engineering
to overcome access control.

With the growing importance of digitization in almost all areas of life, it is
no wonder that companies around the world are investing in it at a dizzying
pace. ML is witnessing significant adoption rates in the day-to-day operations
of organizations with ML adoption. This is in part due to the best ML frame-
works that have been developed so far (Hari, 2023). In Section 3, we present
continuous details since (Nguyen et al, 2019), on the recent evolution of the
ML/DL frameworks towards privacy-preserving FL ones in light of technologies
presented in Section 2.

3 Evolution of Machine Learning Frameworks

This section analyzes the evolution of the different Python frameworks to
move from centralized ML/DL to PPML with a special focus on FL. It also
briefly updates the state-of-the-art of ML and DL frameworks with respect to
our previous work carried out in (Nguyen et al, 2019), before moving on to
privacy-aware FL frameworks and supporting tools.
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3.1 Machine Learning Frameworks and Tools

In the following, the most popular and most used frameworks and tools for
centralized ML and DL are presented, with the dominance of TensorFlow (in
general) and PyTorch (in research) (Table 5 and Fig. 4).

Table 5 Frameworks and tools for centralized ML and DL. GitHub star as of August 14,
2024.

ML/DL Framework GitHub Stars ML DL Licence and Notes

TensorFlow 185.0K ✓ ✓ Apache 2.0

PyTorch 81.3K ✓ ✓ a specific open-source license
for each module.

Keras 61.4K ✓ Apache 2.0

Scikit-Learn 59.2K ✓ BSD 3-clause

Colossal-AI 38.5K ✓ Apache 2.0, parallelism
wrapper for Big DL models

rapid growing one

JAX 29.5K ✓ ✓ Apache 2.0,
numerical computation

for ML research

XGBoost 26.0K ✓ Apache 2.0
ensemble learning

fast.ai 26.0K ✓ Apache 2.0
wrapper for PyTorch

PaddlePaddle/Paddle 22.0K ✓ Apache 2.0

deeplearning4j 13.6K ✓ Apache 2.0
DL for JVM

H2O.ai/H2O-3 6.8K ✓ ✓ Apache 2.0

MindSpore 4.2K ✓ Apache 2.0
new and growing one

• TensorFlow (Tensorflow, 2023a) is an end-to-end open-source platform for
ML and DNN. It has a comprehensive and flexible ecosystem of tools,
libraries, and community resources that allows building and deploying
ML-powered applications. It was originally developed by researchers and
engineers working on the Google Brain team to conduct ML/DNN research.
Today, TensorFlow is the most widely used DL framework, which allows the
creation of optimized static graphs with eager execution to achieve more
dynamic behavior.
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• PyTorch (PyTorch, 2023) follows the motto: Tensors and Dynamic neu-
ral networks in Python with strong GPU acceleration with its most notable
adoption of a Dynamic Computational Graph (DCG). The growing popu-
larity of PyTorch (specially in research) can be clearly seen in Fig. 5, which
presents the trend of the different frameworks used in the research imple-
mentations listed on the portal Papers with Code (PapersWithCode, 2023),
focusing on TensorFlow and PyTorch.

• Keras (Chollet, 2023) follows the motto: Deep Learning for humans. Keras
follows best practices for reducing cognitive load: it offers consistent and
simple APIs; provides clear and actionable error messages. Keras also has
extensive documentation and developer guides. It declares as an exascale
ML. Currently built on top of TensorFlow 2, Keras is an industry-strength
framework that can scale to large clusters of GPUs or an entire TPU pod.
Recently, Keras 3 (Keras3, 2023) is a complete rewrite of Keras that enables
the run of Keras workflows on top of JAX, TensorFlow, or PyTorch and that
unlocks brand new large-scale model training and deployment capabilities.

• Scikit-Learn (Cournapeau, 2023) is an open-source, simple, and efficient
tool for predictive data analysis. It is reusable in various contexts. Built on
NumPy, SciPy, and Matplotlib for ML. The project was started in 2007 and
since then many volunteers have contributed. It is currently maintained by
a team of volunteers.

• Colossal-AI (Li et al, 2023) provides a tool for writing distributed Big DL
models in a unified way. Its motto is:Making large AI models cheaper, faster,
and more accessible. This framework provides the users with a collection
of parallel components aiming to provide tools for training distributed DL
models. The framework has rapidly grown the number of GitHub stars in
the recent year 2023, which was the year of LLMs.

• JAX (GoogleJAX, 2023) is Autograd (HIPS-Autograd, 2023) (main-
tained, no longer actively developed) and XLA (Accelerated Linear Alge-
bra) (TensorFlow-XLA, 2024) in combination for high-performance numer-
ical computing, including large-scale ML research. Despite its increasing
popularity, JAX has declined as a research project, still not an official Google
product. With its updated version of Autograd, JAX can automatically dif-
ferentiate native Python and NumPy functions and supports reverse mode
differentiation (backpropagation) as well as forward mode differentiation.
These two kinds of differentiation can be composed arbitrarily in any order.

• XGBoost (XGBoost, 2023) is an optimized distributed gradient boosting
library designed to be highly efficient, flexible, and portable. It implements
ML algorithms under the Gradient Boosting framework. XGBoost provides
parallel tree boosting (also known as GBDT, GBM) that solves many data
science problems in a fast and accurate way. The same code runs on major
distributed environments (Kubernetes, Hadoop, SGE, MPI, Dask) and can
solve problems beyond billions of examples. XGBoost has been developed
and used by a group of active community members.
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Fig. 4 Machine learning and deep learning frameworks and libraries (2024).

• PaddlePaddle (PaddlePaddle, 2023) is an open source Python library (since
2016) that allows DL. It is the first independent DL research and develop-
ment platform from China. It includes more than 200 pre-trained models,
which can help to accelerate development in industrial applications. As in
other ML/DL frameworks, it uses tensors to represent data and can be used
in distributed learning tasks.

• Deeplearning4J (DL4J) (DL4J, 2023) belongs to the Eclipse ecosystem,
which is a set of projects designed to support all the needs of a Java Virtual
Machine (JVM) based DL application. This means starting with the raw
data, loading and preprocessing it, and building and tuning a wide variety
of simple and complex DL networks. Because Deeplearning4J runs on the
JVM, it can be used within a wide variety of JVM based languages other
than Java, such as Scala, Kotlin, Clojure, etc. The DL4J motto is: Suite of
tools for deploying and training DL models using the JVM.

• H2O (H2O, 2023) is a memory platform for distributed scalable ML. It
uses familiar interfaces like Python, R, Scala, Java, JSON and the Flow
notebook/web interface, and works seamlessly with big data technologies
like Hadoop and Spark. H2O provides implementations of many popular
ML algorithms, including ensemble learning (XGBoost, Random Forests), as
well as DNN algorithms. H2O also provides a fully automatic ML algorithm
(H2O AutoML), i.e. unified interfaces to a variety of ML algorithms in H2O.

Fig. 4 presents a core connectivity of the most notable ML/DL frameworks
and tools (Table 5) with respect to their hardware and/or system architecture
requirements. The lines and their corresponding colors present the support
connection from the lower layer to the upper ones.

The landscape of large-scale ML/DL frameworks and tools is dynamic and
complex. In addition to the software products mentioned above, many other
ML/DL frameworks and tools are listed, for example, fast.ai (fast.ai, 2023),
which makes DL easier to use or MindSpore (MindSpore, 2023), which is a
new open-source DL training / inference framework with growing popularity.
MindSpore can be used for mobile, edge and cloud scenarios.

On the other hand, we also mention popular DL frameworks such as
CNTK (CNTK, 2023), which is no longer developed; Caffe2 (Caffe2, 2023),
which was developed by Facebook and now is in the archive; Chainer (Chainer,
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2023), which is in the maintenance phase with limited development; or
MXNet (MXNet, 2023a), which has retired recently at the end of 2023
(MXNet, 2023b). MXNet was a flexible and efficient library for DL.

In short summary, the number of ML/DL frameworks and tools is high
and is in a dynamic evolving state with the dominance of production grade
TensorFlow with Keras built on top of it and PyTorch continues its growing
trend as a popular research framework (see Figure 5).
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Fig. 5 Research paper implementation grouped by framework (focusing on Tensorflow and
PyTorch). Extracted from Papers with code (PapersWithCode, 2023)

In the following sections, we expand the list of ML/DL frameworks from
the traditional centralized ones to those supporting distributed and FL, high-
lighting the main libraries involved. All of these frameworks are privacy-aware
and privacy-preserving ML. However, their privacy implementations are on
various realization levels, such as planned, partial, or full. Several of them
provide more assurance and protection, like secured/encrypted mechanisms
or peer-to-peer networking among data owners and data scientists. The land-
scape is highly dynamic, with development changing, new or planned feature
integration, product merging, and so on.

3.2 Privacy-Aware Federated Learning Frameworks

The field of tools and frameworks to implement and deploy privacy-aware
machine learning architectures in a distributed and collaborative way is exten-
sive, as summarized in Fig 6, Table 6 and Table 7. The recent focus on privacy
preservation in the ML and DL contexts makes this field in continuous evolu-
tion. In this section, we present different state-of-the-art frameworks related to
Python implementations of PPML techniques. These open-source frameworks
enable FL to train models collaboratively in a distributed way without shar-
ing raw data. However, they differ in their focus and insight implementation,
as will be exposed in the following.
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Fig. 6 Summary of the landscape of Privacy-Aware Federated Learning frameworks.

3.2.1 TensorFlow Community Frameworks and Tools

As already presented, TensorFlow (Tensorflow, 2023b) is an open-source end-
to-end platform for ML and DL. Today, TensorFlow is one of the most used
DL frameworks, together with PyTorch. In this section, we present differ-
ent TensorFlow frameworks and tools related to privacy, security, and FL
implementation (Section 2.2.1).

TensorFlow Federated

or TF Federated or TFF (TF-Federated, 2023) is a framework for implement-
ing FL using the client-server architecture. It is an open-source framework
for ML and other computations on decentralized data. TF Federated enables
developers to simulate the FL algorithms included in their model and data,
as well as to experiment with novel algorithms. The building blocks provided
by TF Federated can also be used to implement non-learning computations,
such as aggregated analytics over decentralized data. TF Federated provides
the Federated Core language for federated computation, as well as a set of
higher-level Federated Learning API as follows.

– Federated Core API is a set of low-level interfaces for expressing feder-
ated algorithms by combining TensorFlow with distributed communication
operator within strongly typed functional programming environments.

– Federated Learning API, which is a set of high-level interfaces to apply the
included FL and evaluation implementations to existing TensorFlow models.

Insights:

– TF Federated claims to be architecture-agnostic, which means that it has
the ability to compile all code into an abstract representation, and as a
result, it can be deployed in a diverse environment.

– TF Federated includes numerous user tutorials to better understand the
architecture and applicability to support the easy moving from centralized
to distributed learning.
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– TF Federated includes tutorials on the use of DP in federated learning
schemes by changing the basic federated average algorithm (TF-Federated,
2024).

– TF Federated provides users with a collection of data.
– TF Federated is deeply integrated with TensorFlow ecosystem, supports
Keras models, and provides good visualization with TensorBoard.

TensorFlow Privacy

or TF Privacy or TFP (TF-Privacy, 2023) is a Python library that allows one
to train DL models with different privacy assumptions. For this, one of the
available implementations consists, during the training of a neural network, in
using stochastic gradient descent with differential privacy (DP-SGD), which
is a modification of the standard ML stochastic gradient descent (SGD) algo-
rithm. To do so, for computing the gradient with DP, users need to include the
gradient norm bound (for clipping) and the noise scale (Abadi et al, 2016).

Insights:

– TF Privacy provide users with common TensorFlow optimizers implemented
with differential privacy

– TF Privacy include different tutorials for better understating of the library,
including the use of DP-SGD with widely known datasets.

– For certain Keras models, TF Privacy includes differentially private imple-
mentations.

TensorFlow Encrypted

or TF Encrypted or TFE (TF-Encrypted, 2023) is a framework for encrypted
ML in TensorFlow. While TensorFlow itself offers an optimized engine to exe-
cute local and distributed computations, as well as a high-level interface to
express these computations (Dahl et al, 2018), TF Encrypted provides the
features presented below.

Insights:

– TF Encrypted provides a basic multi-party computation (MPC) type and
passive security under single corruption, which relies on two cryptographic
primitives, namely additive secret sharing and a secure channel between all
participants.

– TF Encrypted allows the design and implementation of private ML within
distributed systems.

– TF Encrypted can be seen as a bridge between TensorFlow and the Microsoft
SEAL library.

In short, the TensorFlow community currently has three PPML core pillars:

• TF Federated for federated computation;
• TF Privacy for differential private learning;
• TF Encrypted for encrypted computation.
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These libraries could easily benefit from each other, for example, including
differential privacy (TF Privacy) during the training of a model in a feder-
ated architecture (TF Federated). However, they are developed separately, so
there are still no obvious integration points, as expected (TF-Federated-doc,
2024). TF Federated supports differentially private aggregation as well, using
adaptive clipping and Gaussian noise.

3.2.2 The OpenMined Syft Community and PyTorch

Syft is OpenMined’s open-source stack that provides secure and private Data
Science in Python (OpenMined, 2023b). Syft decouples private data from
model training using techniques such as FL, differential privacy, and encrypted
computation. The OpenMined Syft community of frameworks is the most pop-
ular approach compared to the previous TensorFlow community frameworks.
The Syft framework community represents a vision of an ecosystem for creating
and developing private AI-powered solutions in a distributed and decentralized
manner among data owners and data scientists (Section 2.2.4).

PySyft

PySyft (PySyft, 2023) is the flagship of the OpenMined Syft community.
PySyft augments DL frameworks for servers and IoT with privacy-preserving
capabilities. PySyft has several other co-frameworks for different platforms,
such as KotlinSyft (KotlinSyft, 2023) (Kotlin library for Android), SwiftSyft
(SwiftSyft, 2023) (Swift library for iOS) or Syft.js (Syft.js, 2023) for web and
Node, built in Javascript.

Insights:

– PySyft decouples private data from model training, using FL, differential
privacy, and encrypted computation (SMPC and HE) within DL frameworks
like PyTorch and TensorFlow (soon).

– PySyft is oriented to be a remote data science platform beyond FL. It uses
differential privacy and SMPC for strong privacy guarantees.

– PySyft allows one to perform DL models in a secure and private way,
including FL workflows. It can be integrated with DP methods (Ziller et al,
2021).

PySyft has two primary purposes in performing two types of computation:

– Dynamic computation: directly computing data that cannot be seen;
– Static computation: create static graphs of computation which can be
deployed on different machines.

Overall, PySyft is a central part of the Syft ecosystem, which allows one to
compute information remotely on machines that you do not have full control
over. Syft ecosystem helps to keep the data in original ownership while allowing
them to be used privately for computations.
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SyMPC

SyMPC (SyMPC, 2023) is a library that extends PySyft with SMPC support.
Insights:

– SyMPC allows computing over encrypted data and to train and evaluate
neural networks.

– SyMPC supports different protocols: ABY3, Falcon, FSS and SPDZ.
– SyMPC provides support for Conv2d and linear layers by means of the
protocols Falcon and SPDZ for neural networks.

These advantages of SyMPC make it the fastest way to establish ML exper-
iments based on the SMPC approach. However, SyMPC is still a prototype
and is not supposed to be used in production environments.

PyDP

PyDP (PyDP, 2023) is an OpenMined wrapper for the Google Differential
Privacy project.

Insights:

– PyDP includes several differential privacy algorithms, such as BoundedSum,
BoundedMean, Max, Count Above, Percentile, Min, and Median for com-
puting the most common statistics with privacy guarantees by using Laplace
noise.

– PyDP includes a curated list of tutorials.

TenSeal

TenSeal (TenSEAL, 2023) is a library for homomorphic encryption opera-
tions in tensors, built on top of Microsoft SEAL (SEAL, 2023) to enhance the
community software product by cryptographic capacity. TenSeal exploits this
property of Microsoft SEAL by providing an easy-to-use Python API, while
preserving efficiency by implementing most of the operations using C++.

Insights:

– TenSeal is built on top of Microsoft SEAL for Syft community.
– TenSeal uses Brakerski-Fan-Vercauteren scheme (BFV) for encrypting and
decrypting vectors of integers and Cheon-Kim-Kim-Song (CKKS) for real
numbers.

– TenSeal is easy to use and is provided with a set of tutorials.

The features of SyMPC and PyDP are planned to progressively integrate
into the main PySyft framework.

In this area, we can also see a product such as PySyft-TensorFlow
(PySyftTF, 2023), which is a collaboration effort between the Syft commu-
nity and the TensorFlow community. The framework brings secure, private DL
to TensorFlow. However, it will soon be deprecated in favor of PySyft. This
fusion-shattering example shows the dynamical evolving state in this applied
research area.
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3.2.3 Flower: an Unified Approach to Federated Learning

Flower (Flower, 2023) is a Python library that provides a unified approach to
FL, analytics, and evaluation with its motto: An unified approach to federated
learning, analytics, and evaluation. Federate any workload, any ML framework,
and any programming language. Flower is an FL framework that offers a stable
language and ML framework-agnostic implementation of an FL system. Flower
provides an API wrapper for TensorFlow, TensorFlow Lite, PyTorch, PyTorch
Lightning, Hugging Face, MXNet, JAX, and Scikit-Learn.

Insights:

– The framework allows for the rapid transition of existing ML training
pipelines into an FL setup to evaluate their convergence properties and
training time in a federated setting.

– Flower provides support for extending FL implementations to mobile
and wireless clients, with heterogeneous compute, memory, and network
resources (Beutel et al, 2022).

– Flower federates any workload, any ML framework, and any programming
language.

Regarding the integration of PETs and additional privacy preserving mea-
sures, Flower supports differential privacy (DP) by means of the DP-FedAvg
algorithm. This makes it possible to integrate DP into the model training pro-
cesses according to the ML or DL frameworks with which Flower is compatible
(Flower, 2024).

3.2.4 Other Federated Learning Frameworks and Tools

The list of FL frameworks is long (LF-AI-Data-Landscape, 2023), reflecting the
high interest of the research community to address the concerns about security
and privacy. Many of them have promising features for federated learning in
a fast dynamic development stage. In Table 6 different state-of-the-art FL
frameworks are presented, summarized together with the license that covers
them and the number of stars they have on GitHub.

More descriptions of selected ones based on their popularity (GitHub stars),
except for TensorFlow community, Syft community, and Flower, are as follows.

FATE

FATE (Fate, 2023) (Federated AI Technology Enabler) FATE is an open-source
project initiated by Webank’s AI Department to provide a secure comput-
ing framework to support the federated AI ecosystem. WeBank is the first
privately-owned bank and the first digital-only bank in China, which joins the
Linux Foundation at the Gold level since 2019 and FATE is now an open-source
project hosted by the Linux Foundation.

Insights:

– FATE implements multiple secure computation protocols to enable big data
collaboration in compliance with data protection regulations.
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Table 6 Notable Federated Learning Frameworks. GitHub star as of August 14, 2024.

Federated Framework GitHub Stars Licence and Notes

OpenMined PySyft 9.4K Apache 2.0

FATE 5.6K Apache 2.0

Flower 4.7K Apache 2.0, framework-agnostic

FEDML 4.1K Apache 2.0

TensorFlow Federated 2.3K Apache 2.0

SMILELab-FL FedLab 712 Apache 2.0

Intel OpenFL 698 Apache 2.0

NVIDIA Flare 585 Apache 2.0

IBM Federated Learning 493 Specific open-source license

– In addition to FL architectures, FATE supports secure computation for
PPML.

FEDML

FEDML (FedML, 2023) stands for Foundational Ecosystem Design for ML. It
has the motto: The unified and scalable ML library for distributed large-scale
training, model service, and federated learning.

Insights:

– FEDML helps developers launch complex model training, deployment, and
federated learning anywhere on decentralized GPUs, multiclouds, edge
servers, and smartphones, easily, economically, and securely.

– FEDML is backed by FEDML Nexus AI (FedML-Nexus-AI, 2023), which is
an enterprise pay-as-you-go all-in-one AI platform for cloud service for LLM
and Generative AI.

FEDML itself is an open-source library, and FEDML Nexus AI provides
various advanced plans or enterprise services. The company is also actively
involved in the construction of an academic ecosystem through the sponsorship
of AI-related academic conferences.

In short, on the presented FL frameworks, the evolution has started to move
from classic and centralized ML/DL frameworks to FL ones. However, they are
currently in a highly dynamic continuous development state, i.e., fast changing
with many improvements and incompatibility issues. The list of existing FL
frameworks and tools is longer than our list presented in Section 3.2. However,
their number of GitHub stars is not very high, probably because of the novelty
and their recent appearance, but also because of the continuous development
of emerging technologies and frameworks in the field. We briefly present the
rest of the ones listed in Table 6 below.
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• OpenFL (OpenFL, 2023) is an Intel Python 3 framework for FL without
sharing sensitive information. It is designed to be a flexible, extensible and
easily learnable tool for data scientists. OpenFL is hosted by Intel, aims
to be community-driven, and welcomes contributions back to the project.
It supports aggregation algorithms such as FedAvg, FedProx, FedOpt, and
FedCurv ((Shoham et al, 2019), (Li et al, 2020b), (Reddi et al, 2021)), with
TensorFlow, PyTorch implementations, and with other DL frameworks.

• FedLab (FedLab, 2023) has motto: A flexible FL framework based on
PyTorch, which simplifies FL research. It is from the SMILELab-FL lab-
oratory, providing the necessary modules for FL simulation, including
communication, compression, model optimization, data partition, and other
functional modules avoiding traditional direct data-sharing behavior.

• NVIDIA Flare (NVFlare) is an extensible, open-source domain-independent
SDK that enables users to adapt existing ML/DL workflows to a federated
paradigm (FLARE, 2024a). It is a framework powered by NVIDIA Federated
Learning Application Runtime Environment, which allows one to perform
research concerning FL applications, but also real-world production deploy-
ments. This library implements commonly used privacy protection filters
and allows the use of differential privacy to model weights before performing
the aggregation on the server side (FLARE, 2024b).

• IBM Federated Learning (IBM-FL, 2023) provides tools for multiple remote
parties to collaboratively train a single ML model without sharing data.
Each party trains a local model with a private data set. Only the local
model is sent to the aggregator to improve the quality of the global model
that benefits all parties. IBM Federated Learning library is an open-source
Python framework for FL in an enterprise environment.

For a more complete review, we can list Sherpa.ai FL (Rodŕıguez-Barroso
et al, 2020) a framework for FL and DP includes both DNN and classical ML
approaches; Microsoft Flute (Flute, 2023), which is a PyTorch-based orches-
tration environment that enables GPU or CPU-based FL simulations with
the primary goal to enable researchers to rapidly prototype and validate their
ideas; or Google FedJAX (FedJAX, 2023), which is an open-source library
based on JAX for FL simulations that emphasizes ease-of-use in research.

3.3 Cryptographic Libraries

As presented in Section 2.4.3, cryptography is used to ensure data security and
consequently data privacy. Related to Homomorphic Encryption (HE) and in
addition to the TF Encrypted (TF-Encrypted, 2023) presented in Section 3.2.1,
there are other cryptography libraries that implement techniques for HE or
other cryptographic protocols. Other notable HE libraries in the FL context
(from Table 7) are presented as follows.

• SEAL (SEAL, 2023): Microsoft SEAL is an easy-to-use open-source (MIT
licensed) HE library developed by the Cryptography and Privacy Research
Group at Microsoft. The library is written in C++ and is easy to compile and
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run in many different environments. The TenSeal (TenSEAL, 2023) library
from OpenMined which was exposed in Section 3.2.2 is built on SEAL.

• HElib (HElib, 2023) is an open-source software library that implements
homomorphic encryption. It supports the Brakerski-Gentry Vaikuntanathan
FHE scheme (BGV) with bootstrapping and the approximate number
Cheon-Kim-Kim-Song homomorphic encryption scheme (CKKS). HElib also
includes optimizations for efficient homomorphic evaluation, focusing on
effective use of ciphertext packing techniques and on Gentry-Halevi-Smart
optimizations.

• SecretFlow (SecretFlow, 2023) is a unified framework for privacy-preserving
data intelligence and ML. To achieve this goal, it provides: (1) An abstract
device layer consisting of plain devices and secret devices which encapsulate
various cryptographic protocols; (2) A device flow layer modeling higher
algorithms such as device object flow and DAG; (3) An algorithm layer
to perform data analysis and ML with horizontal or vertical partitioned
data; (4) A workflow layer that seamlessly integrates data processing, model
training, and hyperparameter tuning.

• Paillier (Paillier, 2023) is a Python library that implements Paillier Partially
Homomorphic Encryption. The homomorphic properties of the Paillier cryp-
tosystem are: (1) Encrypted numbers can be multiplied by a non-encrypted
scalar; (2) Encrypted numbers can be added together; (3) Encrypted
numbers can be added to non-encrypted scalars.

• OpenFHE (OpenFHE, 2023) is an open-source C++ library for performing
fully homomorphic encryption. It includes efficient implementations for the
most common FHE schemes, such as the Brakerski-Gentry-Vaikuntanathan
(BGV) and Brakerski-Fan-Vercauteren scheme (BFV) for integer arithmetic
and Cheon-Kim-Kim-Song (CKKS) for real-number arithmetic, among
others.

Cryptographic libraries are essential tools for implementing secure com-
munication and data protection at various application levels. They provide
pre-built, tested, and optimized functions for performing different crypto-
graphic operations, simplifying the process for developers and ensuring the use
of robust and secure algorithms.

3.4 Differential Privacy Libraries

As presented in Section 2.4.2, Differential Privacy (DP) is used in the FL
context to effectively prevent information leakage (OpenMined, 2023a). In
addition to TF Privacy (TF-Privacy, 2023) presented in Section 3.2.1 and
PyDP (PyDP, 2023) presented in Section 3.2.2, we also highlight other notable
DP libraries (from Table 7) as follows.

• Google’s Differential Privacy library (GoogleDP, 2023) allows users to
implement algorithms with ϵ-differential privacy an (ϵ, δ)-differential pri-
vacy. Both Laplace and Gaussian mechanisms are implemented. The most
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Table 7 Homomorphic Encryption and Differential Privacy Libraries. GitHub star as of
August 14, 2024.

Framework GitHub Stars HE DP Licence and Notes

Microsoft SEAL 3.5K ✓ MIT

HElib 3.1K ✓ Apache 2.0

SecretFlow 2.3K ✓ Apache 2.0

TF Encrypted 1.2K ✓ Apache 2.0

OpenMined TenSEAL 790 ✓ Apache 2.0

Paillier 594 ✓ GPLv3

OpenFHE 684 ✓ BSD-2-Clause

Google’s Differential Privacy 3K ✓ Apache 2.0

TF Privacy 1.9K ✓ Apache 2.0

Opacus 1.7K ✓ Apache 2.0

Diffprivlib 804 ✓ MIT

OpenMined PyDP 495 ✓ Apache 2.0

OpenDP 303 ✓ MIT

common statistics are implemented by using DP, such as mean, standard
deviation, quantiles, etc.

• Opacus (MetaPlatforms, 2023) is a library that allows PyTorch models to
be trained with differential privacy. It supports training with minimal code
changes required on the client, has little impact on training performance,
and allows the client to online track the privacy budget expended at any
given moment.

• IBM Diffprivlib (IBM-Diffprivlib, 2023) is a general purpose library for
experimenting, investigating, and developing applications in differential pri-
vacy. It comprises four major components: Mechanisms (with little or no
default settings, and are intended for experts to apply their own mod-
els); Models (includes ML models with DP such as clustering, classification,
regression, dimensionality reduction and pre-processing); Tools (a number of
tools for DP data analysis); and Accountant (used to track privacy budget
and estimate the privacy loss).

• OpenDP (HarvardUniversity, 2023) library is a community effort to build
open-source software tools for sensitive private data analysis. The tool is
part of the larger OpenDP project of Harvard University that expresses
privacy-aware computations. It is implemented in Rust, with bindings for
easy use from Python and R. It is under continuous development, with work
in progress.
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DP libraries are specifically designed to help developers implement differ-
ential privacy within their applications. This is a privacy-preserving technique
that is used to share data insights while protecting the privacy of individ-
ual participants. The combination or integration of DP libraries with FL
frameworks and tools is the subject of concrete implementation at various pro-
duction levels. We can mention the popular combination of Flower, Opacus,
and PyTorch as an example.

3.5 Evolution Key Findings

The ML landscape is constantly evolving with the rapid evolution of frame-
works and tools. Privacy-aware FL frameworks and tools are driving exciting
advancements:

• FL frameworks like TensorFlow Federated, PySyft, Flower and FATE are
expanding capabilities and popularity. While TensorFlow Federated is imple-
mented to allow TensorFlow users to perform FL training, PySyft is oriented
to remote data science and PyTorch. Flower is comfortable for quick exper-
imentation and ease of use. FATE has strong security features, but less
community support compared to other open-source frameworks.

• Some FL frameworks integrate the differential privacy approach, secure
aggregation methods, and homomorphic encryption to protect sensitive data
during training.

• FL frameworks also focus on efficiency and scalability, that is, optimizing
communication overhead, managing heterogeneous devices, and enabling
efficient model aggregation for large-scale deployments.

This is a highly dynamic and evolving environment with many frame-
works and tools, indicating intensive research interests in the PPML aiming
to address siloed and unstructured data, including privacy and worldwide reg-
ulations of data sharing (such as GDPR and CCPA) and incentive models for
data-transparent ecosystems.

Theoretically, with an FL architecture we can perform all centralized
ML tasks like supervised learning, unsupervised learning, or reinforcement
learning, including neural network implementation. Practically, current imple-
mentations of FL libraries and frameworks are at various levels of quality and
realization compared to the implementation of classical ML and DL ones. We
can note that all FL frameworks and tools in the current state do not yet
implement all the features mentioned in Section 2.5.

The highly evolving state of FL frameworks and tools leads to unstable
development of intelligent software. The most common obstacle is incon-
sistency among library versions, which can break up or slow down the
development phase of artificial intelligence models. The appreciated use of the
containerization approach may help overcome this obstacle.

It is important to note that, in some cases, the PETs presented involve high
computational power requirements and high memory consumption because
of the underlying cryptographic and secure technologies. This is the case for



40 Landscape of ML Evolution: Privacy-Preserving FL Frameworks

homomorphic encryption and trusted execution environments. In the special
case of FHE the requirement on computational power and memory consump-
tion is exceptionally high, which leads to, in many cases, impossible realization
of secured distributed model training and also a lot of difficulties in inference.
The reason is the huge overhead of FHE schemes and the lack of access to such
high computational power, which enables the realization of secure AI research
within AI communities of practitioners (Section 2.4.3).

The requirements for secure assurance for sensitive data protection in dis-
tributed computing environments are for all three data states: data at rest,
data in motion, and data in use (Section 2.3). The concrete requirements are
different from application to application. Some of them require the assurance
of all states, others can require certain states based on their need.

Regarding the limitation of the work the depth of the analysis stands out,
which aims to achieve the commitment of a clear presentation of a broad
theoretical background of combined research fields, as well as a wide number of
practical implementations of frameworks and tools. Our work presents a recent
comprehensive analysis of the evolution landscape, which is rapidly evolving
and changing with the fusion-shattering characteristic.

4 Conclusion and Future Work

Recent years have been marked by technological resilience and vibrancy, where
the machine learning landscape is evolving rapidly, driven by advancements
in technology, data availability, and the growing demand for AI-powered solu-
tions. The key emerging trends that shape the future of machine learning
development and deployment are federated learning, privacy-preserving, and
machine learning lifecycle management.

This research presents a broad theoretical landscape concerning machine
learning evolution, first in relation to Privacy Preserving Machine Learning
(PPML) and secondly in the field of Privacy Enhancing Technologies (PETs).
The evolution of ML and DL applied to centralized data has been carefully
analyzed to move on to the application of these models with architectures
acting on distributed data. In this sense, different state-of-the-art approaches
have been presented, from well-known federated learning to split learning,
gossip learning, and other decentralized architectures. In relation to PETs, dif-
ferent paradigms have been extensively studied and analyzed, including data
masking, data perturbation, and differential privacy, homomorphic encryption,
secure multi-party computation, and trusted and secure execution environ-
ments. Furthermore, the work in this paper provides a comprehensive evolution
landscape of the most relevant technologies available in the field in the form of
ML frameworks and tools with clear and concise outlines given in Section 2.6
and Section 3.5. Specifically, Section 3.5 carefully analyzes a battery of openly
available frameworks and tools, first, in relation to classic ML and DL, and
then moves to privacy-aware machine learning, with a special focus on feder-
ated learning. In addition, to complete the landscape of tools that, when used
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in combination, allow building privacy-preserving machine learning applica-
tions, different cryptographic tools with emphasis on covering the HE domain,
as well as libraries for differential privacy, are described and analyzed.

This detailed and comprehensive analysis of the landscape allows users and
researchers to have a clear reference to make decisions regarding the tools and
techniques needed to build their ML/DL applications with special attention
to privacy. Specifically, practical information is concisely detailed on the use,
availability, and functionality of different frameworks that make up the state-
of-the-art in the area. However, it should be noted that the field of privacy-
preserving techniques is a booming sector, with numerous tools emerging and
continually being updated. For example, in relation to HE techniques, one of
the main disadvantages falls from the point of view of computational cost,
which makes it a field of study with a promising development horizon.

Concerning future work, we are interested in studying the implementation
of the different distributed architectures mentioned, especially gossip learning
and split learning, as open-source frameworks and tools. Although the scope of
the frameworks that implement FL is wide, this is still not the case with these
other techniques. In relation to PETs, future work should begin by delving
into the implications related to their incorporation in distributed architectures,
both from the point of view of usability, interpretability, and computational
cost. Finally, regarding HE techniques and their inclusion in distributed archi-
tectures, further research on MKHE or SS schemes should be performed. The
integration of MKHE in an FL architecture will allow the server to perform
aggregation with the encrypted models with each client using different private
keys.

The impact of new computing resources and techniques combined with
an increasing avalanche of large datasets is transforming many areas of our
lives. This dynamic evolution has many different faces, components, and con-
texts, and will continue to be shaped by the needs of society and technological
advancements as they occur. In addition, there is the importance of responsi-
bly building AI systems that are trustworthy, reliable, and human-centric with
respect to data protection and privacy, as well as the importance of auditing
AI systems to ensure that they operate as intended.
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Hegedűs I, Danner G, Jelasity M (2021) Decentralized learning works: An
empirical comparison of gossip learning and federated learning. Journal of
Parallel and Distributed Computing 148:109–124. https://doi.org/10.1016/
j.jpdc.2020.10.006

HElib (2023) Open-source software library that implements homomorphic
encryption (HE). URL https://github.com/homenc/HElib, accessed on
12.12.2023

Hergenrother L, Park S (2021) Fully Homomorphic Encryption on IBM
Cloud Hyper Protect Virtual Servers. URL https://www.proquest.com/

https://doi.org/10.1109/BigData47090.2019.9006216
https://ojs.aaai.org/index.php/AAAI/article/download/21446/21195
https://github.com/google/differential-privacy
https://github.com/google/differential-privacy
https://github.com/google/jax
https://github.com/google/jax
https://doi.org/10.1016/j.jnca.2018.05.003
https://github.com/h2oai/h2o-3
https://hackr.io/blog/machine-learning-frameworks
https://github.com/opendp/opendp
https://github.com/opendp/opendp
https://doi.org/10.1007/978-3-030-22496-7_5
https://doi.org/10.1016/j.jpdc.2020.10.006
https://doi.org/10.1016/j.jpdc.2020.10.006
https://github.com/homenc/HElib
https://www.proquest.com/docview/305003863?pq-origsite=gscholar&fromopenview=true
https://www.proquest.com/docview/305003863?pq-origsite=gscholar&fromopenview=true


48 Landscape of ML Evolution: Privacy-Preserving FL Frameworks

docview/305003863?pq-origsite=gscholar&fromopenview=true, accessed on
12.12.2023

Heurix J, Zimmermann P, Neubauer T, et al (2015) A taxonomy for privacy
enhancing technologies. Computers & Security 53:1–17. https://doi.org/10.
1016/j.cose.2015.05.002

HIPS-Autograd (2023) Autograd - Efficiently computes derivatives of numpy
code. URL https://github.com/hips/autograd, accessed on 12.01.2024

Hong C, Huang Z, Lu Wj, et al (2020) Privacy-preserving collaborative
machine learning on genomic data using tensorflow. In: Proceedings of the
ACM Turing Celebration Conference-China, pp 39–44, https://doi.org/10.
1145/3393527.3393535

IBM (2015) The IBM Analytics Solutions Unified Method for Data Min-
ing/Predictive Ana- lytics (ASUM-DM). URL ftp://ftp.software.ibm.com/
software/data/sw-library/services/ASUM.pdf,, accessed on 12.12.2023

IBM-Diffprivlib (2023) Diffprivlib is a general-purpose library for experi-
menting with, investigating and developing applications in, differential pri-
vacy. URL https://github.com/IBM/differential-privacy-library, accessed
on 12.12.2023

IBM-FL (2023) IBM Federated Learning. URL https://github.com/IBM/
federated-learning-lib, accessed on 12.12.2023

Intel (2023) Intel Software Guard Extensions (Intel SGX). URL
https://www.intel.com/content/www/us/en/architecture-and-technology/
software-guard-extensions.html, accessed on 21.12.2023

Jiang Y, Gu H, Lu Y, et al (2020) 2d-hra: Two-dimensional hierarchical ring-
based all-reduce algorithm in large-scale distributed machine learning. IEEE
Access 8:183488–183494. https://doi.org/10.1109/ACCESS.2020.3028367

Kadhe S, Rajaraman N, Koyluoglu OO, et al (2020) Fastsecagg: Scalable
secure aggregation for privacy-preserving federated learning. arXiv preprint
arXiv:200911248 https://doi.org/10.48550/arXiv.2009.11248

Kairouz P, McMahan HB, Avent B, et al (2021) Advances and open problems
in federated learning. Foundations and Trends® in Machine Learning 14(1–
2):1–210. https://doi.org/10.1561/2200000083

Kaissis GA, Makowski MR, Rückert D, et al (2020) Secure, privacy-preserving
and federated machine learning in medical imaging. Nature Machine Intel-
ligence 2(6):305–311. https://doi.org/10.1038/s42256-020-0186-1

https://www.proquest.com/docview/305003863?pq-origsite=gscholar&fromopenview=true
https://www.proquest.com/docview/305003863?pq-origsite=gscholar&fromopenview=true
https://doi.org/10.1016/j.cose.2015.05.002
https://doi.org/10.1016/j.cose.2015.05.002
https://github.com/hips/autograd
https://doi.org/10.1145/3393527.3393535
https://doi.org/10.1145/3393527.3393535
ftp://ftp.software.ibm.com/software/data/sw- library/services/ASUM.pdf,
ftp://ftp.software.ibm.com/software/data/sw- library/services/ASUM.pdf,
https://github.com/IBM/differential-privacy-library
https://github.com/IBM/federated-learning-lib
https://github.com/IBM/federated-learning-lib
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://doi.org/10.1109/ACCESS.2020.3028367
https://doi.org/10.48550/arXiv.2009.11248
https://doi.org/10.1561/2200000083
https://doi.org/10.1038/s42256-020-0186-1


Landscape of ML Evolution: Privacy-Preserving FL Frameworks 49

Keras3 (2023) Introducing Keras 3.0. URL https://keras.io/keras 3/, accessed
on 12.12.2023

Khalifa S, Martin P, Young R (2019) Label-aware distributed ensemble learn-
ing: A simplified distributed classifier training model for big data. Big Data
Research 15:1–11. https://doi.org/10.1016/j.bdr.2018.11.001

KotlinSyft (2023) OpenMined/KotlinSyft - The official Syft worker for
secure on-device machine learning. URL https://github.com/OpenMined/
KotlinSyft, accessed on 12.12.2023

Lakhan A, Mohammed MA, Kadry S, et al (2021) Federated learning enables
intelligent reflecting surface in fog-cloud enabled cellular network. PeerJ
Computer Science 7:e758. https://doi.org/10.7717/peerj-cs.758

Lakhan A, Mohammed MA, Abdulkareem KH, et al (2023) Autism spectrum
disorder detection framework for children based on federated learning inte-
grated cnn-lstm. Computers in Biology and Medicine 166:107539. https:
//doi.org/10.1016/j.compbiomed.2023.107539

Lakhan A, Hamouda H, Abdulkareem KH, et al (2024) Digital healthcare
framework for patients with disabilities based on deep federated learning
schemes. Computers in Biology and Medicine 169:107845. https://doi.org/
10.1016/j.compbiomed.2023.107845

Lambert M, Schuster T, Kessel M, et al (2023) Robustness analysis of machine
learning models using domain-specific test data perturbation. In: EPIA Con-
ference on Artificial Intelligence, Springer, pp 158–170, https://doi.org/10.
1007/978-3-031-49008-8 13

Lazzarini R, Tianfield H, Charissis V (2023) Federated learning for iot intrusion
detection. Ai 4(3):509–530. https://doi.org/10.3390/ai4030028

LF-AI-Data-Landscape (2023) LF AI & Data Foundation Interactive Land-
scape. URL https://landscape.lfai.foundation/, accessed on 12.12.2023

Li L, Fan Y, Tse M, et al (2020a) A review of applications in federated learning.
Computers & Industrial Engineering 149:106854. https://doi.org/10.1016/
j.cie.2020.106854

Li N, Li T, Venkatasubramanian S (2006) t-closeness: Privacy beyond k-
anonymity and l-diversity. In: 2007 IEEE 23rd international conference on
data engineering, IEEE, pp 106–115, https://doi.org/10.1109/ICDE.2007.
367856

Li Q, Wen Z, Wu Z, et al (2021) A survey on federated learning systems:
Vision, hype and reality for data privacy and protection. IEEE Transactions

https://keras.io/keras_3/
https://doi.org/10.1016/j.bdr.2018.11.001
https://github.com/OpenMined/KotlinSyft
https://github.com/OpenMined/KotlinSyft
https://doi.org/10.7717/peerj-cs.758
https://doi.org/10.1016/j.compbiomed.2023.107539
https://doi.org/10.1016/j.compbiomed.2023.107539
https://doi.org/10.1016/j.compbiomed.2023.107845
https://doi.org/10.1016/j.compbiomed.2023.107845
https://doi.org/10.1007/978-3-031-49008-8_13
https://doi.org/10.1007/978-3-031-49008-8_13
https://doi.org/10.3390/ai4030028
https://landscape.lfai.foundation/
https://doi.org/10.1016/j.cie.2020.106854
https://doi.org/10.1016/j.cie.2020.106854
https://doi.org/10.1109/ICDE.2007.367856
https://doi.org/10.1109/ICDE.2007.367856


50 Landscape of ML Evolution: Privacy-Preserving FL Frameworks

on Knowledge and Data Engineering 35(4):3347–3366. https://doi.org/10.
1109/TKDE.2021.3124599

Li S, Liu H, Bian Z, et al (2023) Colossal-ai: A unified deep learning system for
large-scale parallel training. In: Proceedings of the 52nd International Con-
ference on Parallel Processing. Association for Computing Machinery, New
York, NY, USA, ICPP ’23, p 766–775, https://doi.org/10.1145/3605573.
3605613

Li T, Sahu AK, Zaheer M, et al (2020b) Federated optimization in
heterogeneous networks. Proceedings of Machine learning and sys-
tems 2:429–450. URL https://proceedings.mlsys.org/paper files/paper/
2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf

Lindell Y (2020) Secure multiparty computation. Communications of the ACM
64(1):86–96. https://doi.org/10.1145/3387108
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