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ABSTRACT
Serverless computing has introduced unprecedented levels of scal-
ability and parallelism for the execution of High Throughput Com-
puting tasks. This represents a challenge and an opportunity for dif-
ferent scientific workloads to be adapted to upcoming programming
models that simplify the usage of such platforms. In this paper we
introduce a serverless model for highly-parallel file-processing ap-
plications. We also describe a middleware implementation that sup-
ports the execution of customized execution environments based
on Docker images on AWS Lambda, the leading serverless com-
puting platform. Moreover, this middleware offers tools to manage
the input/output of the serverless infrastructure and the creation
of HTTP endpoints in a transparent way to the user. To test the
programming model proposed and the middleware, this paper de-
scribes two case studies. The first one analyzes medical images with
a high degree of parallelism. The second one presents an architec-
ture to analyze video keyframes. The results from both case studies
are analyzed and a cost analysis of the medical image architecture
comparing different cloud options is carried out. The results show
that the combination of a high-level programming model with the
scalable capabilities of AWS Lambda makes it easy for end users
to efficiently exploit serverless computing for the optimized and
cost-effective execution of loosely-coupled tasks.
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1 INTRODUCTION
Over the last years the offering made by large enterprises of rent-
ing computing, storage and network capacity on a pay-per-use
basis has resulted in a tremendous revolution that democratized the
access to large-scale enterprise-ready computing infrastructures
without large upfront investments. The main public Cloud com-
puting providers are Amazon Web Services [2], Microsoft Azure
[27], and Google Cloud Platform [18]. On the other hand, Cloud
Management Platforms such as OpenStack [30] and OpenNebula
[29] enable system administrators to create on-premises Cloud
infrastructures.

In parallel, the evolution of container-based technologies exem-
plified by Docker [9, 25], LXC [23] and rkt [7] introduced significant
advantages with respect to Virtual Machines. There are on-premises
Container Orchestration Platforms such as Swarm mode in Docker
Engine [10], Nomad [19] or Kubernetes [22], and managed services
provided by the leading public Cloud providers. Examples of the lat-
ter are Amazon ECS [5], Azure Container Service [26] and Google
Container Engine [16]. The main drawback with these services
is that they are typically oriented to advanced users, in order to
deal with the capacity planning required to deploy the clusters in
advance and optimize the allocation of resources to containers.

In the recent years, the term Serverless computing [6] has been
coined to embrace an event-driven Functions-as-a-Service (FaaS)
approach to computing with a fine-grained cost model. Pioneer
services in this area, such as AWS Lambda [1], allow functions
to be invoked in response to events such as uploading a file to a
bucket in Amazon S3 (Simple Storage Service) or also in response
to HTTP calls made to a predefined endpoint created with the AWS
API Gateway service.

The programming model introduced by AWS Lambda can be
effectively exploited for scientific applications and there are few
examples in the literature using it for distributed computing such
as Bulk Synchronous Processing (e.g. PyWren [21]), or fine-grained
video processing (e.g. ExCamera [11]). It is important to note that
current serverless platforms are typically focused on Functions-
as-a-Service, where applications need to be redesigned as a set
of event-triggered functions coded in a supported programming
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language. However, many applications cannot be easily redesigned
as a set of functions. Indeed, the interface between the user and
the serverless platform should not only be based on functions,
which suffer from the inherent restrictions of the programming
languages chosen. Instead, containers provide users with the ability
to run virtually any kind of application without having to introduce
changes. Supporting applications defined via container images in a
serverless platformwould allow the user to: i) easily bring their own
applications which may already be packaged as a Docker image,
ii) use applications that depend on libraries not available in the
runtime environment of the functions, and iii) use programming
languages not currently supported by the serverless provider.

To this aim, this paper introduces a High Throughput Computing
Programming Model that allows to create highly-parallel event-
driven file-processing serverless applications. The programming
model is used in combination with a middleware (i.e. SCAR [32])
to simplify and automate the application deployment process and
permit the users to execute customized runtime environments in
the serverless platforms, thus bypassing some limitations imposed
by the Cloud providers. This demonstrates how serverless comput-
ing can be effectively employed for many applications to achieve
unprecedented scalability for loosely-coupled tasks with almost no
configuration provided by the user side.

The remainder of the paper is structured as follows. First, section
2 describes the related work in the area. Next, section 3 introduces
the programming model. Then, section 4 describes the updates
done to the middleware that provides an implementation of the
programming model. Section 5 describes two case studies to assess
the usefulness of the proposed programming model and the middle-
ware. Finally, sections 6 and 7 summarize the main achievements
and point to future work, respectively.

2 RELATEDWORK
The serverless computing model aims to revolutionize the design
and development of modern scalable applications, allowing devel-
opers to run ephemeral, event-driven code without provisioning or
managing servers. This new paradigm is experimenting an industry
momentum around the cloud event abstraction [13]. In fact, over
the last three years, several event-driven services such as AWS
Lambda [1], offered by Amazon Web Services, Google Cloud Func-
tions [17], Microsoft Azure Functions [28], and the open-source
Apache OpenWhisk [12], have arisen. These services allow the
users to take advantage of the improvements offered by this new
computing model. The works presented by McGrath et al. [24] and
Gannon [14] performed a review of these services, discussing the
recent state of the art in this field.

Indeed, the serverless technology is starting to be employed in
several scenarios. For example, in Web environments reduces the
infrastructure costs more than 70% achieving a similar level of per-
formance than traditional server-based solutions [35]. There are
tools in the literature like Up [4], that facilitates the deployment of
vanilla HTTP servers on serverless platforms, and developments
like OpenLambda [20] an open-source platform for buildingweb ser-
vices applications using the serverless computing model. Another
area where serverless computing is significantly being adopted is
Big Data. Case studies of data analytics over serverless platforms,

like [15], where the authors perform data processing with Spark
over Apache OpenWhisk, are getting attention of researchers and
developers. Some examples of recent works using serverless com-
puting are open-source tools like Ooso [31], a Java library designed
to execute MapReduce tasks based on Apache Hadoop and Spark
on AWS Lambda, or enterprise solutions like Databricks Serverless
[8], a serverless computing platform for complex data science and
Apache Spark workloads. Moreover, projects like AWS Serverless
Application Model (AWS SAM) [3] attempt to provide the means
to define serverless functions for AWS Lambda.

A major requirement for writing serverless code, however, is
to express the logic as functions that are instantiated to process
a single event triggered by a service. The work by Baldini et al.
[6] regarding the open problems of serverless computing identifies
several unsolved challenges which include: i) the ability to run
legacy code on serverless platforms, and ii) the lack of patterns for
building serverless solutions.

In order to contribute to address these open issues, this paper
describes a programming model designed specifically to create
highly-parallel event-driven file-processing serverless applications
for serverless architectures. This programming model, in combi-
nation with the SCAR framework, allows the user to run generic
applications, even legacy ones, on serverless platforms.

3 PROGRAMMING MODEL
This section describes the proposed programming model used to
create highly-parallel event-driven file-processing serverless archi-
tectures in combination with generic execution environments (i.e.
containers). Containers are used to allow the users to create cus-
tomized runtime environments, thus bypassing the provider limita-
tions imposed in their execution environments. The infrastructure
used to deploy and test the programming model and framework is
the serverless computing platform AWS Lambda.

In addition, this programming model assumes that: i) the user
wants to process a set of files that could be in a storage service or in
a local machine; and ii) after the function execution, the output files
will be transferred to a storage service (outside the space allocated to
the lambda function). These assumptions are made because lambda
functions are stateless by definition so the architecture making use
of them must be designed stateless.

Figure 1 shows the proposed programming model. Notice that
it allows users to select between different paths to process their
files: 1) submit the file to process using an HTTP request through a
previously defined and linked API Gateway; 2) upload a file to an
S3 bucket that is linked with the lambda function or read the files
from a non-linked S3 bucket. Both ways end up creating one event
for each file that is going to be processed. Then, this event is sent to
AWS Lambda and used to invoke a lambda function that processes
it. All the approaches will end up storing the results in an S3 bucket,
which in turn leads to the third approach presented to process files:
3) an S3 bucket, that could be connected to AWS Lambda again, and
trigger the execution of more lambda functions automatically, thus
effectively implementing serverless workflows. In the following
subsections, the proposed approaches are described in more detail.



A Programming Model and Middleware for High Throughput Serverless Computing ApplicationsSAC ’19, April 8–12, 2019, Limassol, Cyprus

Amazon
API 
Gateway

AWS
Lambda

Amazon
S3

Route 
request Triggers 

Put/Read
files 

Get
files/logs 

Amazon
CloudWatch

Docker 
Hub 

Retrieve 
container 

image 

Invoke 

Store 
output 

Create 
logs 

1 2 

3 

Figure 1: Programming model for high throughput server-
less computing applications. This approach allows the user
to execute Docker containers as lambda functions, thus
providing not supported environments or legacy applica-
tions with high throughput capabilities. Each number cor-
responds to one of the subsections in section 3.

3.1 Process files using the API Gateway
The first approach, shown in Figure 1, allows the user to invoke a
lambda function without having to use an external storage source.
However, to be able to execute this approach the user needs to
have an API Gateway defined and linked with the function that
is going to be triggered (which can also be done automatically
with SCAR). The HTTP request sent to the endpoint is routed to
AWS Lambda and processed by the function, leaving the file ready
to be used by the container executed inside the function. When
invoking the function, the user can create a synchronous or an
asynchronous invocation. A synchronous invocation tells the API
Gateway to wait for the Lambda service response and to send back
that response to the user (being the response the output created
by the container execution). On the other hand, an asynchronous
invocation returns immediately the control to the user, but it cannot
ensure the correct invocation and execution of the function. The
asynchronous invocation method can be useful to invoke almost
simultaneously hundreds of functions, allowing the user to take

advantage of the high scalability provided by AWS Lambda, which
allows to execute up to 3000 concurrent function invocations.

3.2 File upload/read triggers Lambda Function
The second approach shown in Figure 1, uploading/reading files
from an S3 bucket allows the user three possible subpaths to launch
a lambda function by using the S3 buckets as event sources: i) the
user uploads a file to an S3 bucket, which is the event source of a
lambda function. When the upload finishes, the bucket sends and
event to AWS Lambda with information about the created file. Then,
the service invokes the lambda function in combination with the
event information; ii) the user copies a file from a second available
bucket to the bucket linked with the lambda function, this will
cause, as in the first case, the trigger of an event from S3 to Lambda
and the invocation of a lambda function. By using this path the
user takes advantage of the high transfer rates between S3 buckets
and can have all the files pre-uploaded in the AWS infrastructure,
thus avoiding the need to upload a file each time a Lambda function
needs to be invoked ; iii) the lambda function is invoked in parallel
using an S3 bucket that does not need to be the source of events. To
follow this path, the user needs to specify a bucket where the files to
be processed are stored. Then, for each file found, an event is sent to
AWS Lambda, so a lambda function is automatically invoked. This
approach allows the user to take advantage of already existing data
sets, as in the second path, and also reduces the invocation time
between lambda functions by instantiating all of them in parallel.

After the bucket sends an event to AWS Lambda with infor-
mation about the uploaded file, the Lambda service invokes the
lambda function and passes it the event information. AWS Lambda
does not copy the uploaded file into the ephemeral local storage
allocated for the lambda function, instead, it only passes the event
with the bucket and the file information (in a JSON-structured doc-
ument). The proposed programming model and implementation
automatically transfers the file to the lambda function using the
event information. Moreover the files uploaded are not only avail-
able in the ephemeral local storage but are also made available into
the container deployed inside the lambda function (i.e. accessible
through environment variables). After the file has been automati-
cally transferred to the lambda function, the script defined by the
user when the function was created is executed inside the container
specified also by the user. Once the script finishes, the container
execution is terminated. If there are files in the output folder (i.e.
available in the output path specified also in an environment vari-
able), they are automatically transferred to the folder of the bucket
specified by the user (the default value corresponds to the same
bucket that started the execution).

3.3 Output files trigger new Lambda functions
The third approach presented in Figure 1 allows the user to define
a chain of functions communicated by the events triggered by
Amazon S3. The user defines the input/output buckets and folders
for each of the lambda functions created. Therefore, the output
folder defined by one function can be the input folder of another
function. By using this approach, the user only has to define the
functions with their respective input and output folders, and invoke
the first one of the chain using one of the approaches defined
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above. The following functions are invoked by the respective events
created by Amazon S3 upon the creation of the files. This approach
paves the way to define data-oriented workflows, even supporting
recursive function invocations.

4 FRAMEWORK UPDATE AND LIMITATIONS
To demonstrate the feasibility of the programming model presented,
the SCAR middleware [32] has been updated to allow the deploy-
ment and management of the proposed architecture. In addition to
the already available functionality of deploying containers as func-
tions and create triggers between S3 buckets and Lambda functions,
the SCAR client can now create REST API endpoints. This feature
allows the user to call a lambda function without having to use the
SCAR client and opens the way to an improved connection between
microservices. Also, the S3 bucket link feature has been refined
and now the user can create specific folders inside the buckets and
reuse them among different functions.

The limitations of the programming model and the SCAR frame-
work are mainly imposed by the Cloud provider that offers the
service, in this case, AWS Lambda. The most restrictive limitations
are the storage size and the function execution time. Regarding
the storage limitations, AWS Lambda limits the disk storage of the
functions to 512 MB. SCAR needs to store the container image
and the function data in this folder, thereby imposing a serious
limitation on the size of the containers that can be deployed. How-
ever, relying on minimalistic Linux distributions has allowed us
to introduce support in SCAR for different container-based appli-
cations in different areas such as image and video processing (e.g.
ImageMagick, FFmpeg), Cloud clients (e.g. AWS CLI), deep learning
frameworks (e.g. Theano and Darknet) as well as code in virtually
any programming language (e.g. Erlang, Elixir, Ruby and R)1.

Furthermore the execution time is limited to 900 seconds or 29
seconds if you use the API Gateway with the synchronous invoca-
tion. If a function execution exceeds the time limit, AWS Lambda
kills the invocation and returns an error to the user. Although it
is expected that the thresholds of the current limitations will in-
crease over time, right now those limits impose hard requirements
to comply with and they must be taken into account when porting
an application that uses the presented architecture.

5 CASE STUDIES
In this section, a demonstration of the feasibility of the proposed
programming model is carried out. Two case studies and architec-
tures are designed: 1) an architecture to process medical images
and 2) an architecture to analyze images in video files. As stated
previously, the AWS services will be used to deploy and test the
architectures.

The common steps in both case studies involve the creation of
the Docker images and the scripts needed to parse the received files.
To create the Docker image, the user has to define a Docker f ile
that contains the application and all its dependencies. Other option
would be using an already defined Docker image that meets the
requirements of the application. After the Docker image is cre-
ated and stored in Docker Hub, the script that manages the file

1SCAR Use Cases and Examples - https://github.com/grycap/scar/tree/master/
examples

processing and the application execution needs to be created. To
create the script, the user must to take into account that: 1) Each
lambda invocation processes exactly one input file, therefore the
script needs to process only one file at a time; 2) The input file is
retrieved automatically by the SCAR supervisor and is accessible
from inside the container using the variable $SCAR_INPUT_FILE,
so the script needs to process the input available at this path; 3)
The output created by the container execution must be stored in
the $SCAR_OUTPUT_FOLDER folder so it can be automatically copied
back to the specified bucket by the SCAR supervisor.

Once the environment is defined (Docker image) and the script to
be executed is created, the application architecture can be created
using the SCAR CLI. The Dockerfiles and scripts used in both
architectures are available in the SCAR repository in GitHub 1 and
the Docker images are available in DockerCloud2.

In the following sections 5.1 and 5.2, the architectures of the
case studies are presented. Next in section 5.3 the results of both
architectures are resumed and to finish in section 5.4 is carried out
a cost analysis of the first case study.

5.1 Massive Medical Image Analysis Service
In this case study, an architecture that analyzes medical images
(i.e. Magnetic Resonance Images - MRIs) on a serverless comput-
ing platform is deployed and tested. The architecture is based on
the model proposed in section 3.2 in combination with the SCAR
framework. Figure 2 describes the complete architecture and the
data workflow during the execution of the experiment.

The core system used to analyze the images is presented in
the paper by Torro et al. [34]. The system employs the Diffusion-
Weighted Imaging method to extract meaningful information about
the microscopic motions of water in human tissues. The application
receives as input an MRI image to analyze, among other parameters.
The application uses OpenMP to perform automated parallelization
to take advantage of the number of cores available in the computing
resource.

The following trace details the steps taken to carry out the ex-
periment. This steps don’t include the image and script definition:

(1) Through the SCAR client, the user creates the lambda func-
tion, specifying the Docker image and the script to be ex-
ecuted inside the container. To be able to store the results
automatically, the user also needs to specify the S3 bucket
used as output by the lambda function.

(2) Using the SCAR client, the user invokes the lambda function
by specifying the S3 bucket and folder that is going to be
used as event source. This is the last step that requires user
intervention.

(3) The SCAR client automatically creates the required events
(one for each file in the folder specified) and performs as
many invocations of the lambda function as files are avail-
able. The invocation of the functions is done asynchronously
so the execution benefits from the inherent parallelization
capabilities of the infrastructure.

(4) The SCAR supervisor deployed inside the lambda function
retrieves the input file from the S3 bucket and stores it in

2https://cloud.docker.com/u/grycap/

https://github.com/grycap/scar/tree/master/examples
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Figure 2: Workflow of the Massive Medical Image Analy-
sis Service. The user, through the SCAR client, 1) creates
the lambda function and 2) reads the files needed to pro-
cess. Then SCAR automatically 3) sends the events to AWS
Lambda making 4) AWS Lambda to invoke the function as
many times as events received. 5) Then, the supervisor de-
ployed inside each invocation retrieves the required files
6) and executes the user script. 7) To finish, the supervisor
stores the output files generated by the lambda invocations
at the defined bucket.

a temporal folder. This folder is made available inside the
container that will host the execution of the application.

(5) Each lambda invocation, through the SCAR supervisor, exe-
cutes the container and runs the script specified by the user.
All the logs generated by the invocations are stored in the
log service (i.e. Amazon CloudWatch).

(6) The last step of the execution consists on transferring the
output files from the $SCAR_OUTPUT_FOLDER of the lambda
function to the S3 bucket. This is also done transparently to
the user by the SCAR supervisor.

After the execution finishes, using the SCAR CLI, the user can check
the log files and retrieve the generated output files stored in the S3
bucket.

5.2 Video Analysis Service
This case study presents an architecture that takes a video file as
an input and stores as a result the analysis of the keyframes of such
video using an state-of-the-art real time object detection system
[33]. The goal is to apply object recognition to certain frames of

SCAR 
client

Upload
file 

AWS 
Lambda S3 

Image
processing
functions 

SCAR
supervisor 

Video
processing

function 

S3 

Create
functions 

Trigger
function 

Store
video

images 

AWS 
Lambda 

Store
results

Trigger
function 

CloudWatch 

Store
logs

Store
logs

Read 
logs 

SCAR
supervisor 

Figure 3: Workflow of the Video Analysis Service. Two
lambda functions are used. First, a function to extract the
keyframes of the video and second, a function to analyze
such keyframes. One instance of the second type of func-
tion is launched automatically for each keyframe found in
the input video.

the video in order to reason about the content of the video. Figure
3 shows the workflow of the architecture proposed.

The ffmpeg library is used to extract the keyframes from the
input video and the darknet framework in combination with the
yolov3 library [33] is used to analyze the extracted keyframes. The
darknet application has been compiled to use CPUs (since GPUs
cannot be currently used in AWS Lambda).
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The following trace details the steps taken to carry out the ex-
periment. These steps skip the image and script definition:

(1) Through the SCAR client, the user creates the two functions
needed for the architecture. The video processing function
is linked with two different buckets as input and output.
The SCAR framework allows to link different functions to
the same bucket, but in this experiment we are using two
different ones. Indeed, in order to chain the functions and
compose the pipe-lining workflow, the input folder of the
image processing function needs to be the same as the output
folder of the video processing function.

(2) Using the SCAR client, the user uploads a video to the input
folder of the S3 bucket linked with the video processing
function. This is the last step that requires user intervention.

(3) After the video upload finishes, the S3 bucket automatically
sends a trigger to activate the video processing function. The
SCAR supervisor deployed inside the lambda function re-
trieves the video from the S3 bucket and stores it in a folder
shared with the container. Then the container is launched
and the function extracts the keyframes of the video and
stores the in the $SCAR_OUTPUT_FOLDER. The SCAR supervi-
sor stores those files in the output folder of the specified S3
bucket, thus triggering the image processing lambda func-
tion.

(4) To finish, each image stored triggers an image processing
lambda instance that analyzes the keyframe and through the
supervisor, stores the result in the output folder of the S3
bucket.

The logs generated by all the invocations are stored automatically
in the log service (i.e. Amazon CloudWatch). After the execution
finishes, using the SCAR client, the user can check the log files and
retrieve the generated output files stored in the S3 bucket.

5.3 Results
To test the scalability and parallel file processing capabilities of the
architectures several workloads were tested. This section resumes
the results from the two case studies. Figure 4 shows the execution
times of the medical image analysis service. Figure 5 shows the
execution times of the video analysis service. In both figures, the
vertical axis (i.e. seconds) is represented using a logarithmic scale.

Both case studies were executed in four different environments:
1) a local PC machine with 4 CPUs (model i5-4590) and 8GB of RAM,
2) a c5.large EC2 machine with 2 virtual CPUs and 4GB of RAM,
3) a c5.18xlarge EC2 machine with 72 virtual CPUs and 144GB of
RAM, and 4) a Lambda function with 3008MB of RAM.

To avoid the cold start of the lambda functions (see [36] and
[32] for details), the SCAR client preheats the lambda functions
doing a synchronous first call during the initialization step. Once
the initialization finishes, the invocations done during the running
phase (i.e. step 3 of Figure 2) or the function invocations from the
S3 bucket, are performed asynchronously and executed in parallel.

In Figure 4 it can be seen how AWS lambda starts to outperform
the rest of platforms when a high level of parallelism is required.
Also, due to the high number of cores and threads available in
the c5.18xlarge machine this EC2 machine presents also a good
performance when facing up to 100 images, although when the

Figure 4: Average execution times for the process of differ-
ent number of medical images in different execution envi-
ronments.

Figure 5: Average execution times for processing videoswith
different number of keyframes in different execution envi-
ronments.

load is increased it suffers from the lack of scalability like the other
static environments.

Figure 5 shows how the video processing function is acting as
a bottleneck. Since each video is processed by exactly one invo-
cation of this function, the more keyframes we extract the more
time the function takes, thus not taking advantage of the parallel
infrastructure. Notice that an extension of this architecture using
a coordinator function that spawns multiple invocations of video
processing function to process part of the video would increase the
throughput.

To finish, it is important to remind that the parallel execution of
the 1000 instances is achieved automatically by the Lambda service
without any extra configuration and services like a load balancer or
a job scheduler. Moreover, matching the execution times achieved
by the lambda functions with the c5.large instances would require
a significantly large number of instances, beyond the default limits
set by the Cloud provider.

5.4 Cost analysis
This section provides an analysis of the economic cost of the case
study carried out in section 5.1. To analyze if it is cost-wise to use
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AWS
Service Type Cost

($/h)
CPU units
(ECU)

Lambda 3008MB 0.176292 5.75*

EC2
c5.large 0.085 8

c5.18xlarge 3.06 278
Table 1: AWS services used in the case study shown in sec-
tion 5.1. Data extracted from the AWS documentation. The
EC2 instances used are on-demand. ECUs for lambda are es-
timated on the basis of the execution times of the case study.

the serverless programming model in combination with the archi-
tecture proposed, we are going to calculate the costs of processing
1000 medical images using different AWS services (i.e. Lambda
and EC2), representing two different computational paradigms. Ta-
ble 1 resumes the AWS infrastructures used and their respective
properties.

In order to compare different instance types with different under-
lying architectures, AWS introduces the EC2 Compute unit or ECU3.
As it can be seen in Table 1, only the ECU units for the c5.large
and the c5.18xlarge are defined in the official documentation4.
Thus, the ECU provided by the Lambda service are estimated by
comparing the execution time of processing the same test image
in an already measured machine (i.e. c5.large) and then applying
c5.larдe_cpu_t ime∗c5.larдe_ECU

instance_t ime being instance_time the time used
by a lambda invocation to process one image.

Table 2 summarizes the cost calculations for the case study. The
equation used to calculate the cost of different EC2 instances (rep-
resented in the 4th column (Cost ($)) of Table 2 is the following:

(instance_time ∗ 60)min ∗

⌈
instance_cost

60

⌉
$/min (1)

In equation 1, we adapt the calculations made for EC2 instances
to the new per-second billing policies of Amazon EC25.

Also, Table 2 shows the number of concurrent instances needed
to match the lambda execution time and its respective costs. To
calculate the total cost presented in the last column, first it is calcu-
lated the number of machines needed, dividing the total execution
time of the application in each instance by the time used by lambda
and rounding up. Then, with the number of machines (N ) and using
equation 2, it can be calculated the total cost of a multi-instance
execution.

N ∗

⌈
lambda_time

60

⌉
min ∗

instance_cost
60

$/min (2)

In Lambda, the average execution time for the complete execu-
tion is 142 seconds. An invocation is performed for every image to
analyze, so SCAR concurrently instantiates 1000 lambda functions.
When using lambda functions the time to process 1 or 1000 images
is the same and the total cost of the execution is, applying equation
1, 6.934$.

3http://aws.amazon.com/ec2/faqs/
4https://aws.amazon.com/ec2/pricing/on-demand/
5https://aws.amazon.com/about-aws/whats-new/2017/10/announcing-amazon-

ec2-per-second-billing/

In Figure 4 we can see that the c5.large instance takes 102500
seconds (i.e. almost 29 hours) to process the 1000 images with a
cost of 2.42$. Using c5.large instances concurrently would require
722 machines to match the Lambda execution time. The final cost
is not calculated because 722 EC2 instances surpasses by far the
default maximum number of machines allowed by the provider
for each zone (i.e. 20). On the other hand, the c5.18xlarge takes
2820 seconds (aprox. 47 min) with a cost of 2.397$. If we wanted to
execute the case study in the same time as lambda, we would need
20 c5.18xlarge machines and it would cost us 2.414$.

6 DISCUSSION
The following section discuss the cost-effectiveness of the proposed
architectures, based on serverless computing, compared to tradi-
tional solutions based on Virtual Machines, i.e. Infrastructure as a
Service Cloud Computing. Two important aspects need to be em-
phasized at this point. First, AWS sets a default limit in the number
of concurrent instances running at the same time at 20, although
the limit can be raised if it is requested to the provider. Second, and
the most important, launching several instances at the same time to
execute a high number of jobs inside them requires orchestration.
We would need to use a system able to deploy all the instances con-
currently, like Auto Scaling, and also a job scheduler (i.e., SLURM,
Torque, HTCondor or similar) to ensure the job execution and track-
ing. This complicates the multi-instance execution, in contrast with
the easy parallelism that the Lambda services offer in combination
with the middleware presented.

Considering the cost analysis done in section 5.4, it can be out-
lined that the ease of use and the reduced execution times of the
Lambda platform supposes a price increment. The AWS Lambda
service is more expensive than the EC2 instances, but is easier to
configure and launch, specially when used in combination with
SCAR. Moreover, cheaper solutions involve increasing the complex-
ity of the execution, since orchestration tools would be needed to
manage the execution (as explained above). Thus, in cost terms,
better solutions than Lambda exist, but featuring important draw-
backs that can made them unfeasible to the user with little or no
experience in infrastructure deployment, which are the target users
of the programming model and middleware presented in this paper.
Also, it is important to point that the SCAR enables to deploy a
complex application and automatically provide an HTTP endpoint
to trigger its execution where the cost is linearly dependent on the
amount of requests to the endpoint and the resources consumed.
Exposing a highly-available highly-scalable cost-effective endpoint
for a generic application on a Cloud platforms paves the way for
the adoption of serverless computing for the execution of complex
scientific applications, even data-oriented workflows.

7 CONCLUSIONS AND FUTUREWORK
This paper has introduced a programming model and an update
of an existing middleware to create highly-parallel event-driven
serverless applications. The execution environment for this applica-
tions was provided by containers created out of customized Docker
images. To test the proposal, the deployment of two different appli-
cations was done in a real world provider, that is the AWS Lambda
serverless computing platform.
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AWS Service Type Time to process
1000 images (s) Cost ($) Number of machines needed

to match lambda execution time
Cost of the machines needed

to match lambda execution time ($)

Lambda 3008MB 142 (2.36 min.) 6.934 - -

EC2 c5.large 102500 (28.47 h.) 2.42 722 -

c5.18xlarge 2820 (47 min.) 2.397 20 2.414
Table 2: Summary of the costs of the medical image case study. The cost uses data from Table 1, adopting per-minute billing.

The ability to run code in response to events and the large-scale
elasticity provided by the underlying serverless platform opens new
avenues for efficient High Throughput Computing tasks. This was
demonstrated by the case studies where the programming model
abstracted away many implementation details typically required on
computing frameworks. Several challenges are also identified, such
as limitations in the amount of memory allocated to each function
invocation and, the most limiting one, the maximum execution
time. Moreover a cost analysis was done comparing the serverless
programming models presented and the usual Cloud Computing
architectures. Although the cost analysis revealed that running a
serverless architecture could be costlier than deploying a simple
EC2 machine, the savings in configuration and execution time in
combination with the pay-per-use model offered by AWS make the
serverless architectures a good option to deploy applications that
have to deal with a high amount of short lived tasks.

In the future, we plan to simplify the definition of data driven
workflows, so the user can define complete applications by using
a simple infrastructure definition file. Moreover, we have plans to
add support for more cloud providers and also tackle on-premises
functions-as-a-service frameworks. This would lead to the deploy-
ment of hybrid serverless applications that encompass the high
scalability capabilities of the cloud providers and the less restricted
environments of the on-premises deployments.
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