
Coherent Application Delivery on Hybrid Distributed Computing Infrastructures of
Virtual Machines and Docker Containers

Germán Moltó, Miguel Caballer, Alfonso Pérez, Carlos de Alfonso, Ignacio Blanquer
Instituto de Instrumentación para Imagen Molecular (I3M).

Centro mixto CSIC - Universitat Politècnica de València - CIEMAT
Camino de Vera s/n, 46022 Valencia, España

Email: gmolto@dsic.upv.es,{micafer1,caralla,alpegon,iblanque}@i3m.upv.es

Abstract—There is an opportunity for Distributed Comput-
ing Infrastructures (DCIs) to embrace container-based virtual-
isation to support efficient execution of scientific applications
without the performance penalty commonly introduced by
Virtual Machines (VMs). However, containers (e.g. Docker) and
VMs feature different image formats and disparate procedures
for deployment and management, thus hindering the adoption
of hybrid DCIs (HDCIs) comprised of those kind of resources.
This paper describes a workflow based on open-source tools
and standards to introduce coherent application delivery on
HDCIs in which applications require to be deployed on both
VMs and Docker containers. Leveraging and extending the
TOSCA standard to describe application requirements, and
adopting DevOps practices, resulted in the coherent creation
of the artifacts required for the execution of the applications
on different platforms. The paper features the adoption of this
approach in the INDIGO-DataCloud project.

Keywords-Cloud Computing; Distributed Infrastructures;
Containers; Docker; Scientific Computing

I. INTRODUCTION

Scientific applications typically require Distributed Com-
puting Infrastructures (DCIs) that can satisfy their execution
requirements. With the advances of the hypervisor tech-
nologies Cloud Computing raised as a computing paradigm
in which pools of shared computing resources are offered
for multiple tenants using Virtual Machines (VMs) as the
unit for application isolation and performance encapsulation.
VMs allowed the (virtual) infrastructure to be adapted to the
application and not viceversa. This simplified the process
of application execution on other physical infrastructures
at the expense of a performance penalty introduced by
virtualisation [1].

As technology evolves, container-based technology have
gained significant traction in the last years due to its near-
native performance (see [2] for details) for application
execution while featuring application isolation (though not
as comprehensive as for VMs) for multi-tenant environments
[3]. Among the different container technologies available
(e.g. OpenVZ, LXC, Rkt), Docker1 managed to widespread
container adoption and, thus, a huge ecosystem of tools
that adopted Docker containers blossomed. In particular

1Docker - http://www.docker.com

Docker is significantly suitable for application delivery and
there are examples in the literature that use container-based
computing for application deployment and the composition
of micro-services (see for example [4] or [5]).

Indeed, cloud-based infrastructures currently coexist with
container-based infrastructures. Examples of the former are
the infrastructures made available on a pay-as-you-go basis
by public Cloud providers such as Amazon Web Services
(AWS) or Google Cloud Platform (GCP) and on-premises
clouds created by Cloud Management Platforms (CMPs)
such as OpenNebula and OpenStack. Examples of the latter
are the infrastructures created by Container Orchestration
Platforms (COPs) such as Kubernetes, Docker Swarm or
Apache Mesos. Even more, it is not uncommon to create
container-based infrastructures on top of cloud-based ones,
as is the case of the Amazon EC2 Container Service (EC2)
which provides a highly scalable, fast, container manage-
ment service for Docker containers.

Unfortunately, cloud-based infrastructures are not seam-
lessly compatible with container-based infrastructures. As
an example, Virtual Machine Images (VMIs) created for
a specific hypervisor (KVM, Xen or VMware) cannot be
directly transformed into a Docker image, required to de-
ploy a Docker container. However, Docker images have
considerable benefits for application delivery across a range
of multiple Operating Systems (OSs) and multiple hard-
ware architectures platforms. This introduces build-once-
run-anywhere capabilities for applications, a feature that is
very much required on heterogeneous computing platforms,
such as DCIs.

In this paper we use the term Hybrid DCIs (HDCIs)
to refer to a collection of sites that offer computational
capabilities in the shape of either VMs or Docker containers
to support the execution of the different applications required
by a set of scientific communities. There are other uses
of the term hybrid in the computing literature such as the
one employed by Moca et al. [6] in which a hybrid DCI
comprises Internet Desktop Grid, Clouds and Best Effort
Grids. Therefore, to clarify the scope of the paper, Figure
1 describes the different types of computational sites of
a HDCI, as considered in this paper. Firstly, Figure 1.a)



On-Premises 
Cloud of VMs

IaaS Cloud Site 
(e.g. OpenNebula / OpenStack)

Cloud of 
Docker 

Containers

Container Orchestration Platform 
(e.g. OpenStack with nova-docker)

VM

VM VM

VMVM

Apache Mesos Cluster

App

Docker

App

Docker 
Container

App

Hybrid Distributed Computing Infrastructure (DCI)

Public Cloud 
Provider

IaaS Cloud Site 
(e.g. AWS / GCP / 
Microsoft Azure)

VM

App

a) b) c)

Figure 1. A sample hybrid Distributed Computing Infrastructure (DCI) composed of IaaS Cloud sites (both on-premises and public) and Container
Orchestration Platforms.

depicts a public Cloud provider, which provide computing
and storage capacity on a pay-as-you-go basis. This can be
used by scientific communities for several reasons includ-
ing, but not limited to: i) the ability to access computing
power without requiring external approval by a scientific
committee, as it typically happens when applying for su-
percomputing resources; ii) the ability to perform Cloud
burst or to elastically supplement existing computational
facilities with resources from a public Cloud in order to
cope with increased workload and iii) the ability to provision
an increased amount of simultaneous co-located resources
to perform parallel execution of a scientific application by
means of a virtual cluster. Secondly, Figure 1.b) depicts an
on-premises Cloud site supported by a Cloud Management
Platform such as OpenNebula or OpenStack on which VMs
can be provisioned to support the execution of scientific
applications. This is the case of the EGI Federated Cloud2

a grid of academic private clouds and virtualised resources,
built around open standards that supports the resource re-
quirements of scientific communities. Users can provision
individual VMs on which applications are executed.

Nowadays, there is a major trend in the use of DevOps
approaches to support Infrastructure as Software (IaS). As
Fitzgerald et al. [7] states, IaS proposes, among others:
i) version controlled infrastructure, allowing rollback of
changes not working as expected; ii) immutable infrastruc-
ture, where changes to the infrastructure are only made
through version control to know the precise configuration
of the infrastructure; when changes are applied to an infras-
tructure, the components are terminated an provisioned again
rather than being dynamically changed while running; iii)
test-driven development, i.e., the ability to consistently test
infrastructure changes via automated testing and iv) Continu-
ous Faster Deployment, by allowing automated, reproducible
deployments without introducing manual configuration of
resources.

2EGI Federated Cloud - https://www.egi.eu/infrastructure/cloud

Indeed, there exists an inherent gap that prevents scientific
applications from being effectively deployed in hybrid DCIs
composed by both VM-based infrastructures and container-
based infrastructures. Different deployment strategies are
currently required for VMs and Docker containers. There-
fore, scientific communities require effective strategies to
package and deploy applications on such diverse compu-
tational infrastructures. This is one of the goals of the
INDIGO-DataCloud project3 an H2020 EU project that in-
volves 26 partners across Europe to develop an open-source
data and computing platform targeted at scientific communi-
ties, deployable on multiple hardware and provisioned over
hybrid, private or public, e-infrastructures. In particular, this
paper summarises the procedure, tools and lessons learned
to perform application delivery in hybrid DCIs based on
both VMs and Docker containers, highlighting the approach
adopted in the INDIGO-DataCloud project.

The remainder of the paper is structured as follows. First
section II describes the proposed architecture to support
coherent application delivery on different types of virtual
resources. Then, section III describes an use case in order
to highlight the benefits of the proposed architecture. Finally,
section IV summarises the main achievements of the paper
pointing to future work.

II. ARCHITECTURE FOR APPLICATION DEVELOPMENT

This section identifies the components of the architecture
employed to support the deployment of scientific applica-
tions that intend to be executed on HDCIs composed of
Virtual Machines and Docker containers via a standard-
based fully open-source approach, show in Figure 2.

In the figure, a distributed version control and Source
Code Management (SCM) hosting service (GitHub) is used
as a central code repository providing versioning support
for all the files and traceability of the changes. It includes
repositories for: i) the open-source scientific application,

3INDIGO-DataCloud - https://www.indigo-datacloud.eu



Ansible Role

Ansible 
Galaxy

Shared in

GitHub Docker Hub

Ansible Role 
(Repo)

Application 
(Repo)

Hosted on Hosted on

TOSCA Templates
(Repo)

Hosted on

Application Docker 
Image (Repo)

Code in
Recipe to 

install

TOSCA Template

Stored in

Automated 
Build

Hosted on

Deploy

Figure 2. Overview of the platforms and their interrelation for application deployment support.

which also includes a Dockerfile to describe the application
deployment procedure in a container; ii) an Ansible [8] Role
with the recipe to install the application on the underlying
platform (regardless of a Docker container or a VM) and;
iii) the TOSCA templates that allow users to describe appli-
cations to be deployed on a HDCI. TOSCA (Topology and
Orchestration Specification for Cloud Applications) [9] is an
OASIS standard to describe Cloud application architectures
as a topology template. In particular, we adopted the TOSCA
Simple Profile in YAML version 1.0 [10] specification and
included new non-normative types to support additional
capabilities and applications. A TOSCA template is em-
ployed to describe the resources and configuration required
to deploy a certain application.

Therefore, we rely on a single approach to describe appli-
cation deployment both for VMs and for Docker containers.
The very same Ansible Role is used to: i) dynamically
deploy the application at runtime on a vanilla VM and ii)
create the Docker image that will contain the application.
This avoids having two different approaches for application
deployment on VMs and Docker containers, thus easing
maintenance. The Ansible Role is registered into Ansible
Galaxy [11] so that it can be easily retrieved and shared.
This way, Dockerfiles are simplified to the extent that they
just retrieve the role from Ansible Galaxy and execute it.

The Ansible Roles are designed to be multi-platform (in
particular, INDIGO-DataCloud supports both Ubuntu 14.04
and CentOS 7) so that the application can be seamlessly
deployed under different Operating Systems. Also, they are

specifically designed so that if the application to be deployed
is already installed in the node all the recipe steps are
rapidly skipped. This way, if the Ansible Role is executed on
a container spawned out of the already-configured Docker
image, no extra time is dedicated to its configuration.

The Docker images must encapsulate application code that
has been tested to comply with the expected functionality.
For this, a Continuous Integration (CI) strategy has been
adopted so that proper SQA that involves code style, unit
testing and integration testing, is assessed prior to creating
the deployment artifacts (i.e. the Docker images), which are
automatically built.

III. CASE STUDY: INDIGO-DATACLOUD

The aforementioned approach has been adopted in
INDIGO-DataCloud, supporting the deployment of appli-
cations from specific user communities on an HDCI. This
section provides further details by showcasing one of the
applications supported in the area of bioinformatics: the
Galaxy Portal [12], a web-based platform for data intensive
biomedical research. Other research areas addressed by the
project are Environmental and Earth Science and Physics
and Astrophysics.

A. The Galaxy TOSCA Template

The TOSCA template, available in GitHub4, describes the
deployment of a single node that will host the Galaxy Portal.
The TOSCA template receives as inputs the number of CPUs

4TOSCA Template for Galaxy (single node): https://github.com/
indigo-dc/tosca-templates/blob/master/galaxy.yaml



and memory required for the execution of application. This
information is used by the Orchestration components of the
PaaS layer of INDIGO-DataCloud to choose the appropriate
node on which to perform the execution of the application.
Further information about these components is available in
a public deliverable [13].

In particular, the TOSCA template references two non-
normative node types: tosca.nodes.indigo.GalaxyPortal and
tosca.nodes.indigo.LRMS.FrontEnd.Local to specify that the
front-end node will be used for the execution of jobs.These
node types are defined in the file that includes the non-
normative types for INDIGO-DataCloud5. Indeed, different
non-normative types are defined for the different applica-
tions supported in project. Each non-normative type for an
application references a specific Ansible Role registered in
Ansible Galaxy. In this particular case it is the indigo-
dc.galaxycloud6 Ansible Role.

The TOSCA node types provide the abstraction and the
Ansible Roles the recipe to deploy the application on multi-
ple platforms. More complex TOSCA templates are available
in the indigo-dc/tosca-templates GitHub repository, such as
galaxy elastic cluster.yaml which deploys the Galaxy Portal
on a front-end node of a virtual elastic cluster that features
horizontal elasticity to provision additional working nodes
on demand depending on the number of jobs queued up at
the LRMS, supporting the SLURM batch job manager.

B. HDCI Testbed

An evaluation has been carried on a testbed composed by:
• A Container Orchestration Platform managed by One-

Dock [14]. OneDock introduces support for OpenNeb-
ula to create Docker containers as if they were VMs.
The very same OpenNebula APIs and interfaces can be
employed since Docker is supported as an additional
hypervisor. This way, support for lightweight virtu-
alization by means of containers is introduced while
maintaining compatibility with existing applications
that require resource provisioning from an IaaS Cloud
site.

• An on-premises Cloud managed by OpenNebula, to
deploy VMs on a cluster of physical nodes.

C. Deployment of Application on HDCIs

Figure 3 describes the deployment process of applications
on a HDCI. First of all, the Docker images required to
support the scientific applications are pulled from Docker
Hub and registered in the site’s catalog of virtual images.
This has a double intention. First of all, OneDock uses the
Docker image repository in the front-end of the cluster as a
cache so that the Docker containers executed in the working

5Non-normative types for INDIGO-DataCloud: https://github.com/
indigo-dc/tosca-types/blob/master/custom types.yaml

6The indigo-dc.galaxycloud Ansible Role is available at: https://galaxy.
ansible.com/indigo-dc/galaxycloud/

1.Use

Orchestrator

IM
(TOSCA Runtime)

OneDock Site OpenNebula Site

4. Provision

2. Deploy

3. Delegate

Client-Side GUI

TOSCA Template

Docker Hub

0. Pull

Docker 
Container

Docker 
Image

Vanilla 
VM

5. Configure

Ansible 
Galaxy

GitHub

6. Retrieve

7. Download

App App

Figure 3. Deployment of applications on HDCIs.

nodes of the Cloud site are rapidly spawned. Also, the site
is autonomous to decide which images, and in turn which
scientific communities, are supported on that site.

The TOSCA templates are submitted to the Orchestrator
which delegates (after choosing the right site) to the Infras-
tructure Manager (IM) [15] which is an open-source tool to
deploy and customise virtual infrastructures on IaaS Clouds.
The IM has been extended in INDIGO-DataCloud to support
the TOSCA 1.0 Simple Profile in YAML together with the
additional non-normative types developed in the context of
the project. Therefore, the IM is a TOSCA runtime.

In the case of provisioning resources from an IaaS Cloud
site based on VMs, the IM proceeds, as part of the deploy-
ment process of the TOSCA template, to contextualize and
configure the VM by retrieving the corresponding Ansible
Role for the application specified in the TOSCA template
from Ansible Galaxy, and in turn downloading the code for
the Ansible Role from GitHub, and executing the role inside
the VM. Notice that, in the case of VMs, vanilla VMs (e.g.
plain Ubuntu 14.04 and plain CentOS 7) have to be available
and pre-registered in the site’s image repository. Once the
execution of the Ansible Role has finished, the IM reports
back to the Orchestrator that the infrastructure is ready to
be used. The user may access the infrastructure with the
information specified in the “outputs” section of the TOSCA
template. This is typically the IP of the node, to be accessed
via SSH, or the endpoint to be accessed using a web browser.

In the case of provisioning resources from an IaaS site
based on OneDock, a Docker container out of the specified
image in the TOSCA template is created. In this case, the



configuration step from the IM is analogous as with the VMs
(to maintain consistency) but the execution of the Ansible
Role is skipped since the application is already available
in the container. This speeds up the deployment procedure
since no installation occurs at runtime.

D. Execution Results
The same Galaxy Portal TOSCA template has been sub-

mitted to the OpenNebula site providing VMs and to the
OneDock testbed. In the first case the average time to get the
VM instance fully configured and ready to be accessed by
the users was 20:48 (minutes:seconds). In the OneDock case
the time needed was 7:25. As expected, the time needed in
OneDock is reduced, due to the advantages of the container
technology. The time needed to create and boot the instance
is reduced from 1:27 in the VM case to 0:20 in case of
containers. Also, the time to install the Galaxy portal is
reduced, since in the container case it is already installed
and the Ansible playbook only checks that the application
is installed as expected: from 19:21 to 7:05. It is important to
point out that the OneDock testbed is not running directly on
bare metal but over VMs, thus introducing an extra overhead
and preventing a further reduction in the configuration
time. Notice that, with this approach, users can run their
applications either on VMs or on Docker containers with
the same execution environment across infrastructures.

IV. CONCLUSIONS AND FUTURE WORK

This paper has described the experience gained when
simultaneously harnessing computing platforms based on
Virtual Machines and based on Docker containers by means
of open standards, open-source tools and publicly available
platforms. The adoption of Ansible Roles together with the
Automated Build capabilities of Docker Hub has introduced
the ability to simultaneously create Docker images to be
distributed to container-based infrastructures. At the same
time, applications can be automatically deployed via a
DevOps approach at runtime on vanilla VMs. Future works
involves further extensions to the TOSCA Simple Profile in
YAML version 1.0 with the inclusions of new non-normative
types for additional support to other scientific communities.

ACKNOWLEDGMENTS

The authors would like to thank the European Commis-
sion for the support through the Horizon 2020 INDIGO-
DataCloud project under grant agreement RIA 653549 and
to the Spanish “Ministerio de Economı́a y Competitividad”
for the project CLUVIEM (TIN2013-44390-R).

REFERENCES

[1] L. Ramakrishnan, R. S. Canon, K. Muriki, I. Sakrejda, and
N. J. Wright, “Evaluating Interconnect and Virtualization
Performance for High Performance Computing,” ACM
SIGMETRICS Performance Evaluation Review, vol. 40,
no. 2, p. 55, oct 2012. [Online]. Available: http://dl.acm.org/
citation.cfm?doid=2381056.2381071

[2] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio,
“An updated performance comparison of virtual machines
and Linux containers,” in 2015 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, mar 2015, pp. 171–172.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=7095802

[3] T. Bui, “Analysis of Docker Security,” Tech. Rep., jan 2015.
[Online]. Available: http://arxiv.org/abs/1501.02967

[4] G. M. Tihfon, S. Park, J. Kim, and Y.-M. Kim, “An efficient
multi-task PaaS cloud infrastructure based on docker and
AWS ECS for application deployment,” Cluster Computing,
vol. 19, no. 3, pp. 1585–1597, sep 2016. [Online]. Available:
http://link.springer.com/10.1007/s10586-016-0599-0

[5] J. Stubbs, W. Moreira, and R. Dooley, “Distributed Systems
of Microservices Using Docker and Serfnode,” in 2015 7th
International Workshop on Science Gateways. IEEE, jun
2015, pp. 34–39. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=7217926

[6] M. Moca, C. Litan, G. C. Silaghi, and G. Fedak, “Multi-
criteria and satisfaction oriented scheduling for hybrid dis-
tributed computing infrastructures,” Future Generation Com-
puter Systems, vol. 55, pp. 428–443, 2016.

[7] B. Fitzgerald, N. Forsgren, K.-J. Stol, J. Humble, and
B. Doody, “Infrastructure Is Software Too!” SSRN Electronic
Journal, 2015. [Online]. Available: http://www.ssrn.com/
abstract=2681904

[8] “Ansible.” [Online]. Available: https://www.ansible.com/

[9] J. Crandall and P. Lipton, “OASIS Topology and
Orchestration Specification for Cloud Applications (TOSCA)
TC.” [Online]. Available: https://www.oasis-open.org/
committees/tc{\ }home.php?wg{\ }abbrev=tosca

[10] D. Palma, M. Rutkowski, and T. Spatzier,
“TOSCA Simple Profile in YAML Version
1.0,” Tech. Rep., 2016. [Online]. Available: http:
//docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/
v1.0/TOSCA-Simple-Profile-YAML-v1.0.html

[11] “Ansible Galaxy.” [Online]. Available: https://galaxy.ansible.
com/

[12] “Galaxy Project.” [Online]. Available: https://galaxyproject.
org

[13] INDIGO-DataCloud, “Design Document and Work Plan
for the PaaS Architecture - D5.4,” Tech. Rep. [On-
line]. Available: https://www.indigo-datacloud.eu/documents/
design-document-and-work-plan-paas-architecture-d52

[14] “OneDock.” [Online]. Available: https://github.com/
indigo-dc/onedock

[15] M. Caballer, I. Blanquer, G. Moltó, and C. de Alfonso,
“Dynamic management of virtual infrastructures,” Journal
of Grid Computing, vol. 13, no. 1, pp. 53–70, 2015.
[Online]. Available: http://link.springer.com/article/10.1007/
s10723-014-9296-5


