
Scalable Software Practice Environments Featuring
Automatic Provision and Configuration in the Cloud

Germán Moltó, Miguel Caballer

Instituto de Instrumentación para Imagen Molecular (I3M).
Centro mixto CSIC - Universitat Politècnica de València - CIEMAT

Camino de Vera s/n, 46022 Valencia, España
Email: gmolto@dsic.upv.es,micafer1@upv.es

Abstract—This paper describes an architecture to deploy
scalable Software Practice Environments (SPE) to support the
practice lessons that require computer resources that can be
remotely accessed. The architecture enables (i) to dynamically
and on-demand provision the required computing resources
from different IaaS Cloud providers, (ii) to perform the
automatic software configuration to satisfy the requirements
of the practical lesson, (iii) to suspend and resume the virtual
infrastructure in order to cut down costs during a course
and (iv) to support different elasticity approaches in order to
create scalable virtual infrastructures. The paper describes the
proposed architecture and details a case study that involves
deploying the virtual infrastructure of an online course on
Cloud Computing with Amazon Web Services (AWS) on top of
AWS itself. It also describes scalability approaches that can be
employed to provide infrastructure access to SPEs for larger
audiences, such as those found in MOOCs.

Keywords: Cloud computing, virtual infrastructures, automated
deployment, elasticity

I. INTRODUCTION

The students of Computer Science, specially those of
Distributed Computing subjects, require access to different
computing infrastructures in order to develop the appropriate
skills required to efficiently use them. For example, when
developing distributed algorithms, the students require access
to a set of computers with the appropriate software tools
(i.e., compilers, libraries, debuggers, etc.) that allow them
to efficiently program those algorithms during the practice
lessons. In the context of this paper, a Software Practice
Environment (SPE) includes:

• A hardware configuration that satisfies the requirements
of the practice lesson. This includes the CPU architecture,
the disk size available for students and also special de-
vices (as an example, a practical lesson on programming
GPUs requires access to a GPU on which to run the
developed codes).

• A software configuration that satisfies the requirements of
the practice lesson. This includes the Operating System
(OS), the required software, libraries and utilities required
for the students to develop the practice lesson. It also
includes the user accounts and the configuration of each
account.

• Supporting Data. This includes all the data required to
perform the practice lesson. For example, the developed
algorithms might require certain input data files to per-
form some benchmarks.

However, deploying and configuring SPEs is far from being
a trivial task. Traditionally, many organizations prepare Golden
Images that encapsulate the software and data configuration to
perform the duties of some (or all of the) subjects. These disk
images are then deployed on the PCs of a physical laboratory.
However, these approach exhibits many problems. First of
all, it hinders extensibility, since including a new application
implies modifying the golden image and redeploy it on all
the PCs of the laboratory. Second, using a physical laboratory
sets an upper bound to the scalability of the computational
resources configured to perform the practice lessons (typically
no more than two students per PC).

Nowadays, there are two trends that coexist and which
enable to surpass the limitations of traditional approaches
when it comes to providing a customized software experience
for students. On the one hand, Cloud computing is a model that
provides network access to a pool of configurable computing
resources which can be rapidly provisioned with minimal
effort, typically on a pay-per-use basis in the case of public
Clouds [1]. On the other hand, the Bring Your Own Device
(BYOD) [2] approach enables students to use their own
computers and devices in order to access the subject materials.
Specially in the case of online courses, where users are not
required to attend a physical laboratory, these two trends can
be combined in order to offer the users a remote Software
Practice Environment (SPE).

This way, the professor can automatically deploy in a Cloud
provider (which involves provisioning the virtual infrastructure
and configuring it) right before the course starts the required
virtual infrastructure that the students require. In the case of
using a public Cloud provider, the cost is proportional to the
computational and storage resources consumed (mainly hours
of Virtual Machine and GBytes of data stored and transferred).
Once the course has finished, the infrastructure is relinquished
in order to avoid additional costs. In addition, we propose
to suspend the deployed infrastructure during unused hours
(for example at night) in order to cut down costs. For online
courses with different editions through an academic year,

this approach is very beneficial, since a new edition of the
course simply involves deploying an instance of the virtual
infrastructure, which represents a fresh and new install for the
new users (without any potentially malicious modifications by
the previous students).

The remainder of the paper is structured as follows. First,
section II describes related work in this area. Next, section III
introduces the main architecture of the proposed system and
describes its main components. Later, section IV describes a
case study that involves deploying the virtual infrastructure
required to support an online course on Cloud Computing
with AWS. Next, section V extends the proposed architecture
to consider the case of MOOCs, where a scalable virtual
infrastructure is required for a large number of students.
Finally, section VI summarises the paper and points to future
work.

II. RELATED WORK

This paper focuses on the automatic deployment of a virtual
infrastructure in a Cloud back-end to support a Software
Practice Environment (SPE) that can be remotely accessed by
students.

There are different tools that enable to deploy virtual infras-
tructures in a Cloud. If we focus on open-source tools, Nimbus
[3] is project that provides Nimbus Infrastructure, which
enables to create Infrastructure as a Service (IaaS) Clouds.
It also deals with application contextualization, enabling to
deploy virtual clusters on the Cloud. StarCluster [4] also
enables to create and manage distributed computing clusters
hosted on Amazon EC2. This is also the case of ViteraaS [5], a
tool that provides on-demand high performance computing, in
the shape of virtual clusters, for research projects, e-learning
and teaching within a private Cloud.

All the aforementioned previous works focuses on clusters
of PCs deployed on the Cloud. However, our proposed archi-
tecture does not focus exclusively on virtual clusters (although
it is also able to deploy virtual clusters in a Cloud). In addition,
this work extends previous works with two contributions:
i) it leverages dynamic configuration without requiring pre-
configuration of the Virtual Machine Images, and ii) it focuses
on scalability approaches in order to accommodate a large
number of users.

There are also commercial tools that automate application
deployment and software configuration. For example, rPath,
before it was acquired by SAS in November 2012, provided
methods to automate the process of packaging, deploying and
updating software stacks across physical, virtual and cloud-
based environments. Tools such as Kace or BMC Application
Automation provide software deployment tools together with
automated solutions in order to deploy and manage software
throughout an organization.

In our case, we combine application provisioning from a
Cloud provider and application deployment and configuration,
relying on open-source DevOps tools. This enables to have
high level recipes to specify the desired infrastructure and
enact them on different Clouds.

III. PROPOSED ARCHITECTURE

The proposed architecture enables to dynamically provision
and configure virtual infrastructures. It features both horizontal
and vertical elasticity capabilities to enable scaling the virtual
infrastructure, composed of multiple replicated Software Prac-
tice Environments (SPEs), to accommodate an increased or
reduced number of students. The students can remotely access
them using their own devices, typically via SSH, in order to
perform a practice lesson.

The proposed architecture builds on some previous devel-
opments which, for the sake of completeness, are summarised
here:

• The Resource Application Description Language (RADL)
[6] is a high level declarative language that includes
the hardware, software and configuration requirements of
the virtual infrastructure to be deployed. For example,
one could describe the requirements for 10 VMs with
GNU/Linux Ubuntu 12.04, JDK 1.7+, the installation of
the ImageMagick software and 15 user accounts with a
set of pre-defined passwords.

• The Infrastructure Manager (IM) [6] is a service-oriented
component that takes as input a RADL description of
a virtual infrastructure and it provisions the required
resources and configures them in order to satisfy the
requirements imposed by the RADL description. The
IM supports different IaaS Cloud backends, such as
OpenNebula [7], OpenStack [8] and Amazon EC2 [9].
As such, it provides a uniform layer to deploy virtual
infrastructures on multiple Clouds with the same RADL
document. Provisioning resources from multiple Cloud
providers is typically known as Sky Computing [10].

• The Configuration Manager. This component is part of
the IM and is in charge of performing the deployment and
configuration of software, together with the customization
of the Virtual Machines (VM). It automates the creation
of user accounts, downloading software packages, mod-
ifying files, etc. The Configuration Manager currently
supports Puppet [11] and Ansible [12]. Both software
packages belong to the DevOps category and they allow
to create recipes in order to automate software deploy-
ment and configuration, thus guaranteeing determinism.
Puppet uses a pull approach, where agents installed in
the VMs of the virtual infrastructure contact a server
for instructions on how to configure the VMs. However,
Ansible uses a push approach, where configuration is
pushed into the VMs from a central server. In our case, we
currently rely on Ansible which has proved to be highly
scalable.

• The Virtual Machine image Repository & Catalog
(VMRC) [13] enables to index and store Virtual Machine
Images (VMIs). A VMI is an encapsulation of a vir-
tual hardware configuration together with an Operating
System (OS), a set of applications and data. VMs can
then be created as instances of a VMI, thus exposing the
configuration specified by the VMI. Unlike other catalogs

Public IaaS Cloud

On-premise IaaS Cloud

Professor

Infrastructure
Manager (IM)

Virtual Machine
image Repository
& Catalog (VMRC)

Software
Practice

Environment
(SPE)

SPE

Organization

Software &
Data

Repository
(SDR)

Students

Access

Cloud Bursting

Access

RADL File

Fig. 1. Simplified architecture to deploy a multi-node Software Practice
Environment in a hybrid Cloud scenario.

of VMIs, VMRC stores metadata of the VMIs (such as
the OS, the hypervisor employed to create it, the appli-
cations installed, etc.). This metadata can be employed
using a query language in order to obtain a ranked list
of VMIs that satisfy a given set of requirements (the
rank is user-dependent according to the satisfaction of
the requirements imposed by the user). For example,
one could query the catalog for a suitable list of VMIs
based on GNU/Linux Ubuntu greater than 12.04 (hard
requirement) and it would be desirable that it had SciLab
4.2+ (this is an example of a soft requirement, where
this software can be installed at runtime to satisfy the
requirement of the user).

Figure 1 summarises a simplified version of the architecture
employed to provision and configure a Software Practice
Environment (SPE). The figure assumes an scenario in which
the organization (an education center) has an on-premise IaaS
Cloud deployment (these are also known as private Clouds,
supported by tools such as OpenNebula [7], OpenStack [8] or
Eucalyptus [14]). It has also access to a public IaaS Cloud
provider such as Amazon Web Services [15], or Rackspace
[16], among many others. An IaaS Cloud enables to deploy
VMs and manage their life cycles when executing on top of
a physical hardware with the help of a hypervisor (or Virtual
Machine Monitor) such as KVM [17], Xen [18] or VMware
[19].

The idea is to deploy the SPE in the on-premise Cloud and
in the public Cloud. This could be performed simultaneously
or using a Cloud bursting approach [20], where the public

Cloud is only employed when the on-premise Cloud cannot
cope with the workload (an increase in the number of SPE
instances due to a large number of users). Regardless of the
scenario, using a hybrid approach composed of an on-premise
and a public Cloud where the same precise configuration exists
on both instances of the SPE, introduces fault-tolerance and
better ability to workload distribution (different students can
connect to different SPE instances).

We summarize the steps required for the professor (or
sysadmin) to deploy a SPE using the proposed architecture.
First of all, the professor describes the requirements of the
infrastructure in a RADL document. This description is sub-
mitted to the Infrastructure Manager (IM) which queries the
VMRC system to obtain a list of the most appropriate VMIs
that satisfy the requirements imposed by the user (the professor
in our case). The IM provisions the VMs with the credentials
supplied by the professor to access each Cloud infrastructure.
Notice that the very same RADL document serves to deploy
similar virtual infrastructures with the same configuration.
Then, the IM delegates on Ansible to perform all the software
installation and configuration. In particular this means:

• To download and install software and required data from
both the Software & Data Repository (SDR) or from
other external repositories (such as the Ubuntu software
repositories). The SDR stores course-dependent data files
such as practice guides, input data sets, specific software
versions, etc.

• To configure system services. For example, to provide a
specific configuration for the SSH server.

• To create user accounts. Using a pre-defined list of
account names and passwords, this enables to provide
SSH-based access to the SPE for the students.

Once the SPE is up and running, the students connect
to it via SSH (or using a graphical desktop via tools such
as FreeNX). The ability to define the virtual infrastructure
only once in a high-level declarative recipe (using RADL)
to deploy a similar virtual infrastructure on different Cloud
providers represents a huge step forward when compared to
the manual installation and configuration of software. First of
all, the professor is now able to perform multiple, determin-
istic deployments of a similar virtual infrastructure regardless
of the Cloud back-end. Secondly, software updates become
automatic, since new deployments of the virtual infrastructure,
if accompanied by on-demand installation of software, results
in an updated virtual infrastructure. Finally, it is possible to
deploy new SPE instances on-demand (either in the on-premise
Cloud or in the public Cloud) in order to accommodate a larger
number of students.

IV. CASE STUDY: THE ONLINE COURSE OF CLOUD
COMPUTING AND AWS

The Institute for Molecular Imaging Technologies (I3M) at
the Universitat Politcnica de València in Spain offers a three-
week online course on Cloud Computing with Amazon Web

Services (AWS)1. The course involves theoretical concepts
about the Cloud and hands-on practice lessons that demon-
strate the usage of the AWS services to create scalable Cloud
applications that efficiently access data in the Cloud. The aws
command-line tool [21] is used to manage AWS services such
as Amazon EC2 (Elastic Compute Cloud), Amazon S3 (Simple
Storage Service), Amazon SQS (Simple Queue Service) and
Amazon SimpleDB. In addition, the official command-line
tools to interact with Amazon CloudWatch and Auto Scaling
are used. Other services such as Amazon RDS (Relational
Database Service) are accessed via a web browser and a
database client.

The students connect to a GNU/Linux machine (the SPE) on
which they find a pre-configured environment (user accounts,
AWS credentials, required tools to interact with AWS). There
can be many replicas of this machine since the user state
during the practice lessons is always stored in AWS and not in
the SPE and, thus, students can connect to whichever instance
of the SPE is available. Therefore, students need access to a
SPE with the following configuration:

• A VM with GNU/Linux Ubuntu 12.04+, 512+ MB,
outbound and inbound connectivity.

• A set of user accounts, each one with the following
configuration:

– A specific username and password pre-allocated by
the professor.

– The Access Key ID and the Secret Access Key to
authenticate the student to use the AWS services.

• The following software packages installed:
– The aws tool, described earlier.
– The Auto Scaling and CloudWatch tools to access

those services.
– A MySQL client (to access databases created with

Amazon RDS).
– OpenJDK JRE 7. This is a requirement for the Auto

Scaling and CloudWatch tools.
• The following services configuration:

– Enable password-based SSH access to the instance
(which is disabled by default in Amazon EC2’s
instances).

• The following data:
– A package containing the practice guides, sample

scripts that demonstrate some AWS services, scripts
to populate databases, sample files to be uploaded to
Amazon S3, etc.

All this information is specified in an RADL document,
which is summarized in Figure 2. The syntax and data has been
slightly modified to accommodate the formatting of the paper.
Notice that the RADL specifies: i) the physical requirements
(such as network with outbound connectivity or a minimum
number of RAM), ii) the OS requirements (a minimum version
of Ubuntu) and iii) the software and services configuration
required in the SPE. Notice that software is automatically

1Further information available at http://www.grycap.upv.es/cursocloud

network public (outbound = ’yes’)
system cursoaws (
cpu.arch=’x86_64’ and
cpu.count>=1 and
memory.size>=512m and
net_interfaces.count = 1 and
net_interface.0.connection = ’public’ and
net_interface.0.dns_name = ’cursoaws’ and
disk.0.os.name=’linux’ and
disk.0.os.flavour=’ubuntu’ and
disk.0.os.version>=’12.04’
)
configure cursoaws (
@begin
- vars:
- pw_00: O3Je2QxgM0w
- ak_00: AKIAJAIPMN42O7ADSC5A
- sk_00: ft0ftS7FD0M5L5Tu3V/
tasks:

- user: name=alucloud00 password=$pw_00
- copy: dest=/home/alucloud00/.awssecret

content="$ak_00 $sk_00"
- get_url: url=<sdr_url>/${item} dest=/tmp/${item}

with_items:
- cursoaws_1.0_all.deb
- autoscaling_1.0.61.2_all.deb
- cloudwatch_1.0.13.4_all.deb

- command: dpkg -i /tmp/${item}
with_items:
- cursoaws_1.0_all.deb
- autoscaling_1.0.61.2_all.deb
- cloudwatch_1.0.13.4_all.deb

- apt: pkg=openjdk-7-jre state=latest
- get_url: url=<location>/aws

dest=/usr/local/bin/aws
- apt: pkg=mysql-client-5.5 state=installed
- service: name=ssh state=restarted

@end
)
deploy cursoaws 1

Fig. 2. An excerpt of the RADL document to deploy the SPE for the course
on Cloud Computing with AWS.

downloaded from the SDR and installed. If files are updated in
the SDR, the next deployment of the virtual infrastructure will
have updated software. The SSH is automatically configured
(not shown in RADL) and restarted to allow password-based
connections, which is by default disabled in Amazon EC2.

In this online course, the SPE is deployed on Amazon EC2,
although in past courses we also deployed the SPE in an on-
premise Cloud based on OpenNebula. Using an on-premise
Cloud enables to reduce the costs and offer the same SPE for
the students. The number of SPE instances depends on the
number of users enrolled in each edition. In order to cut down
costs it is convenient to schedule the practice lessons (or at
least to have available the infrastructure only during the day,
and suspend it at night) in a suspend-resume approach that
will be described in the next section.

With the developed system it is possible to deploy, for
example, two SPE instances in an average of 7 minutes,
involving resource provisioning, software and data download-
ing and installation and customization (user accounts, ssh
configuration, etc.). Notice that multiple instances of SPE are
submitted and configured in parallel.

V. SCALABLE VIRTUAL INFRASTRUCTURES FOR MOOCS

With the advent of Massively Open Online Courses
(MOOC), we wanted to explore the feasibility of providing
a scalable cost-effective access to a Software Practice Envi-
ronment (SPE) for remote users. Popular courses enroll tens
of thousands of students. At the moment, the most common
approach to provide a SPE for MOOC students is to prepare a
Virtual Machine Image (VMI) with a predefined configuration
of the OS, tools and data required to perform the course
activities. However, if online services have to be employed
(as in the case of the online course on Cloud Computing
and AWS), there is no other alternative than providing stu-
dents with remote access to a GNU/Linux-based SPE so
that the student can perform the practice lessons. Some of
these courses distribute the cost of using Cloud resources by
encouraging students to sign up with a public Cloud provider.
In this section, we wanted to explore the possibility that the
educational center pays for the infrastructure costs.

Figure 3 describes an architecture to offer scalable SPEs,
by leveraging different services from Amazon Web Services
(AWS). The proposed architecture is generic enough to be
deployed in other public Cloud provider (such as Windows
Azure) using the corresponding services.

AWS consists of geographically distributed regions across
the world which consist of several isolated locations called
availability zones. The Amazon EC2 service provisions Virtual
Machines (called instances) from Amazon Machine Images
(AMIs). AWS includes many services that fit in the proposed
architecture:

• AWS Identity and Access Management (IAM). The pro-
fessor creates one user credential per student from a
single AWS account. These accounts can be temporarily
suspended (useful to prevent AWS usage when an edition
of the course has finished) and reused by the students of
the new edition (since those are not personal accounts).

• Amazon CloudFront. It enables to distribute content at a
scale by distributing replicas to different edge locations
in the world. Users that request the content will access
the nearest replica. This is useful when starting a MOOC
with expected peaks in data access (for example, an
introductory video accessed by 70k students).

• Auto Scaling. It enables to increase (scale out) and
decrease (scale in) the size of the virtual infrastructure.
The next subsection focuses specifically on scaling ap-
proaches.

A. On Scaling the Virtual Infrastructure

When considering a variable number of users requiring
access to a SPE, elasticity, or the ability to increase and
decrease the number of instances and the capacities of a SPE,
is a key feature. AWS supports different elasticity schemes:

B. Horizontal Elasticity

Within a region, the Auto Scaling service enables to create
fleets of instances (an auto scaling group (ASG)) that can
shrink and grow according to some elasticity rules based

mainly on workload or schedule. The ASG includes an Elastic
Load Balancer (ELB) that distributes incoming requests for
the ELB to the instances of the ASG. The elasticity rules
can indicate for example that if the average CPU usage of
the instances of the ASG exceeds a 70% during the last 3
periods of 5 minutes, then increase the ASG with 4 additional
instances (there are similar rules to scale in).

This approach can accommodate new online students that
are performing the practice lessons. If workload is increased,
the ASG is increased, and new students that connect to the
ELB will be forwarded to an instance of the SPE. Since all the
SPE instances are clones and provide the same environment,
it does not matter which instance fulfills the request. However,
if shared state among the different instances of SPEs is
mandatory, these data can be stored in Amazon S3 and pulled
by the user to the local instance upon login in the SPE.

Notice that ELB at the moment only supports HTTP(S).
Therefore, if access via SSH is required to the SPE then
another load balancer such as HAProxy [22], or specific
solutions for SSH load balancing such as Ballast [23] should
be employed.

In fact Figure 3 depicts an scenario with a two-level load
balancing scheme. The students connect to an instance of
HAProxy (there could be several of them) which distributes the
requests among different ASG in different regions. As such,
this provides an scalable approach to perform access to a SPE
for multiple students.

Notice that horizontal elasticity automatically manages the
number of SPE instances to accommodate an increased or
decreased number of students accessing to perform the practice
lessons.

C. Vertical Elasticity

In the right lower side of Figure 3, a vertical elasticity
approach to scalability is shown. Vertical elasticity is the abil-
ity to modify the performance features of a Virtual Machine
in order to accommodate an increased (scale up) or reduced
(scale down) workload.

Many hypervisors support the ability of dynamically in-
creasing the memory of a running VM without downtime (see
for example [24] for a case study with the KVM hypervisor).
However, in the case of Amazon EC2, the performance fea-
tures of an instance cannot be modified without downtime.

Amazon EC2 offers different instance types that range from
m1.small (1.7 GB of RAM, 160 GB of disk, 32-bit or 64-bit
CPU architecture) to cr1.8xlarge (244 GB of RAM, 32 virtual
CPUs, 240 GB of SSD disk).

AMIs in Amazon EC2 can be of two types: (i) instance-
store, where changes in the filesystem are lost when the
instance is terminated and (ii) EBS-backed, where an EBS
volume (block-based storage) is attached to the instance to
store the filesystem changes. An EBS-backed instance can be
started (where a per-hour cost for the running instance and
a per GB-month for the allocated EBS volume is charged).
These instances can be stopped and thus, only the per GB-

Amazon Web Services
 (AWS)

Professor

Infrastructure
Manager (IM)

Region 1

Availability Zone (AZ)

SPE SPE

Availability Zone (AZ)

SPE SPE... ...

Auto Scaling Group

Region N

Auto Scaling Group

Load
Balancer

SPE

SPE

SPE SPE

SPE

SPE

SPE SPE

SPE
Horizontal
Elasticity

Auto Scaling Group

SPE

SPE

V
e

rt
ic

al

El
as

ti
ci

ty

Load
Balancer

(HAProxy)

Load
Balancer

Access

Students

Virtual Machine
image Repository
& Catalog (VMRC)

Amazon
CloudFront

AWS Identity and
Access Management

(IAM)

AMI

AMI

...

RADL File

Fig. 3. An architecture to provide scalable Software Practice Environments for MOOCs in Amazon Web Services.

month cost applies (which is in the order of $0.10 per GB-
month in the region on Virginia as of June 2013).

Therefore, vertical elasticity can be achieved by stopping
the instance, modifying the instance type for an increased or
reduced performance and start the instance again, to be able
to accommodate a larger workload (a larger number of users).
However, the resumed instance changes its IP, a problem that
can be circumvented by using Amazon’s Elastic IP, an IP
address that can be dynamically allocated to different instances
(by making the resumed instance to attach itself to the Elastic
IP).

D. Virtual Infrastructure Life Cycle

Depending on each course, the SPE might be available
24x7 for students to perform the practice lessons at anytime
(probably because there are students from different time zones,
as in the case of MOOCs). However, consider an scenario in
which practice lessons are performed at scheduled intervals (or
only during the day). Then it is possible to suspend the virtual
infrastructure so that only storage costs (of the EBS volume)
are charged. This assumes a suspend-resume approach of the
virtual infrastructure, like the one depicted in Figure 4.

When an edition of the course starts, the professor auto-
matically provisions and configures the virtual infrastructure
(composed by the SPEs) so that they are ready for users to
access them via SSH.

Provision Configure Access

Suspend

ResumeRelinquish

Professor

Infrastructure
Manager

1-day life cycle

New
Course
Edition

Fig. 4. Flow diagram with the life cycle of a virtual infrastructure.

To have an idea of the costs, consider the following scenario
of a 3-week course with 400 enrolled students and 10 SPEs
to accommodate 40 students per SPE (a GNU/Linux box to
which students connect via SSH to use some online services).
Deploying a virtual infrastructure 24x7 with 10 m1.medium
instances on the Virginia region, and 10 EBS volumes with 80
GB each, costs $955 per month. If you implement a suspend-

and-resume approach to maintain the SPEs only accessible
for 8-hours a day the cost can be cut down to $369.80, thus
achieving a reduction of 61%.

Having the infrastructure suspended enables to have the
virtual infrastructure ready for service much faster (in the order
of a minute) than dynamically deploying and configuring the
virtual infrastructure from scratch (which can be performed in
the order of 7-10 minutes depending on the complexity of the
recipe).

Once the course has finished and the infrastructure of SPEs
is no longer required it can be torn down to avoid unnecessary
costs.

VI. CONCLUSIONS AND FUTURE WORK

This paper has proposed an architecture to dynamically
deploy virtual infrastructures to create Scalable Software
Practice Environments (SPE) in IaaS Cloud providers. The
infrastructure features automatic provision of computational
resources from multiple Cloud back-ends, with the help of
the Infrastructure Manager (IM). It also provides automatic
deployment and configuration of software and data into the
SPEs, with the help of Ansible.

The usage of the architecture has been described to create
the SPEs required for an online course. In addition, the
architecture has been extended to accommodate larger number
of students such as those typically found in popular MOOCs.

The ability to specify in a high level language a declarative
description of an infrastructure and to let the system provision,
deploy and configure it represents a step forwards towards
the widespread adoption of Cloud technologies in online
education.

Future works involves providing this tool as a SaaS ap-
plication so that external users can access its functionality
to deploy on other Clouds on behalf of the user. We also
plan to extend the tool in order to coordinate the deployment
of complex virtual infrastructures (hybrid clusters, Grids,
etc.) on the computational resources of an education center.
These technologies can greatly simplify the administration of
computing resources in an educational center, dealing with
the multiple configurations required by the different subjects
or courses.

ACKNOWLEDGEMENTS

The authors would like to thank the financial support
received from the Generalitat Valenciana for the project
GV/2012/076 and to the Ministerio de Economı́a y Competi-
tividad for the project CodeCloud (TIN2010-17804)

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud Computing.
NIST Special Publication 800-145 (Final),” Tech. Rep., 2011.
[Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf

[2] M. R. Rafael Ballagas, “BYOD: Bring Your Own Device,” in
Proceedings of the Workshop on Ubiquitous Display Environments,
Ubicomp, 2004. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.58.9939

[3] K. Keahey and T. Freeman, “Contextualization: Providing One-Click
Virtual Clusters,” in Fourth IEEE International Conference on eScience,
2008, pp. 301–308.

[4] MIT, “StarCluster.” [Online]. Available: http://web.mit.edu/stardev/
cluster/

[5] F. Doelitzscher, M. Held, A. Sulistio, and C. Reich, “ViteraaS: Virtual
Cluster as a Service,” wolke.hs-furtwangen.de. [Online]. Available: http:
//www.wolke.hs-furtwangen.de/assets/downloads/CRL-2010-03.pdf

[6] C. de Alfonso, M. Caballer, F. Alvarruiz, G. Molto, and V. Hernández,
“Infrastructure Deployment Over the Cloud,” in 2011 IEEE Third
International Conference on Cloud Computing Technology and
Science. IEEE, Nov. 2011, pp. 517–521. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6133186

[7] B. Sotomayor, R. Montero, I. Llorente, I. Foster, and F. de Informatica,
“Capacity leasing in cloud systems using the opennebula engine,” Cloud
Computing and Applications, vol. 2008, pp. 1–5, 2008.

[8] OpenStack, “OpenStack.” [Online]. Available: http://openstack.org
[9] Amazon, “Amazon Elastic Compute Cloud (EC2).” [Online]. Available:

http://aws.amazon.com/ec2
[10] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes, “Sky

Computing,” IEEE Internet Computing, vol. 13, no. 5, pp. 43–51, Sep.
2009. [Online]. Available: http://www.computer.org/portal/web/csdl/doi/
10.1109/MIC.2009.94

[11] P. Labs, “Puppet,” http://www.puppetlabs.com, 2010. [Online].
Available: http://www.puppetlabs.com

[12] AnsibleWorks, “Ansible.” [Online]. Available: http://ansible.cc
[13] J. V. Carrión, G. Moltó, C. De Alfonso, M. Caballer, and V. Hernández,

“A Generic Catalog and Repository Service for Virtual Machine Im-
ages,” in 2nd International ICST Conference on Cloud Computing
(CloudComp 2010), 2010.

[14] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The Eucalyptus Open-source Cloud-computing
System,” in Proceedings of 9th IEEE International Symposium on
Cluster Computing and the Grid, 2009.

[15] Amazon, “Amazon Web Services (AWS).” [Online]. Available:
http://aws.amazon.com

[16] Rackspace, “Rackspace.” [Online]. Available: http://www.rackspace.com
[17] A. Kivity, Y. Kamay, and D. Laor, “KVM: the Linux virtual

machine monitor,” Proceedings of the Linux Symposium, pp. 225–
230, 2007. [Online]. Available: http://www.kernel.org/doc/ols/2007/
ols2007v1-pages-225-230.pdf

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proceedings of the nineteenth ACM symposium on
Operating systems principles. ACM, 2003, pp. 164–177. [Online].
Available: http://portal.acm.org/citation.cfm?id=945462

[19] VMware, “VMware.” [Online]. Available: http://www.vmware.com
[20] S. K. Nair, S. Porwal, T. Dimitrakos, A. J. Ferrer, J. Tordsson, T. Sharif,

C. Sheridan, M. Rajarajan, and A. U. Khan, “Towards Secure Cloud
Bursting, Brokerage and Aggregation,” in 2010 Eighth IEEE European
Conference on Web Services. IEEE, Dec. 2010, pp. 189–196. [Online].
Available: http://dl.acm.org/citation.cfm?id=1932685.1932867

[21] T. Kay, “aws-simple access to Amazon EC2 and S3 and SQS and SDB
and ELB.” [Online]. Available: http://timkay.com/aws/

[22] HAProxy, “The Reliable, High Performance TCP/HTTP Load Balancer.”
[Online]. Available: http://haproxy.1wt.eu

[23] NASA, “Ballast.” [Online]. Available: http://ti.arc.nasa.gov/opensource/
ballast/

[24] G. Moltó, M. Caballer, E. Romero, and C. de Alfonso, “Elastic
Memory Management of Virtualized Infrastructures for Applications
with Dynamic Memory Requirements,” in International Conference on
Computational Science (ICCS 2013), 2013.

