
Platform to Ease the Deployment and Improve
the Availability of TRENCADIS Infrastructure

Damià Segrelles1, Miguel Caballer1, Erik Torres1, Germán Moltó1, Ignacio
Blanquer1

Instituto de Instrumentación para Imagen Molecular (I3M), Universitat Politècnica de
València, València, Spain

dquilis@dsic.upv.es, micafer1@upv.es, ertorser@upv.es, gmolto@dsic.upv.es,
iblanque@dsic.upv.es

Abstract. TRENCADIS is a Grid infrastructure to store and to process
large amounts of medical images and its associated data in DICOM objects.
This system enables radiologists to effectively group, search and manipu-
late images and structured reports in order to relate clinical findings and to
be of practical value in the diagnosis and treatment of diseases. The paper
presents a new platform for the deployment of TRENCADIS infrastruc-
tures, using virtualization and Cloud computing techniques. The presented
platform avoids intrusive deployment of services to reduce the amount of
effort required to install and maintain new TRENCADIS services. Also,
it provides mechanisms to monitor and handle performance and reliability
requirements by elastically provisioning computational resources from the
Cloud to cope with increased demand of the platform.

1 Introduction

Modern medicine cannot be conceived without medical imaging. These techniques
play a major role in the diagnosis and treatment of diseases and they are gaining in
importance in the prevention and control of epidemics. Hospitals have made large
inversions to implement Picture Archiving and Communication Systems (PACSs)
and Radiology Information Systems (RISs). These technologies provide storages of
medical images, but they are often limited in their access to Distributed Computing
Infrastructures (DCIs), such as Grid and Cloud computing environments, which
are reducing costs of computing service provision [1], fostering innovative practices
and accelerating their adoption by the healthcare professionals [2]. Reaching the
level of security that is necessary to ensure the protection from disclosure of the
identity of patients is a difficult task. Policy decision-makers have recently become
aware of the value of DCIs to improve public health and they are lowering the
barriers to Cloud adoption in the European Community [3].

In the last years, many authors have anticipated this trend by developing pro-
totypes that make use of different DCIs to store and process medical images, e.g.
[4]. TRENCADIS [5] is an example of the use of Grid computing infrastructures to
store and to process large amounts of medical images, in a secure way. This system
enables radiologists to effectively group, search and manipulate Digital Imaging

and Communications in Medicine [6] (DICOM) images and structured reports in
order to relate clinical findings and to be of practical value in the diagnosis and
treatment of diseases. DICOM is the accepted standard format for medical image
storage and transfer. Since the introduction of TRENCADIS, several hospitals
have reported the value within their organizational context of this technology as a
tool for improving the access to DICOM objects [5], and [7]. However, in all these
cases the deployment and maintenance of TRENCADIS required a considerable
investment of time and effort, mainly because of the intrinsic complexity of Grid
systems and also due to the network security restrictions imposed on the hospitals.
This fact makes difficult to extend or adapt a particular deployment to meet new
challenges, such as an unexpected increase in demand or in the number of images
stored in the system. This paper was motivated by these previous results, which
provided the basis for new TRENCADIS deployment strategies.

The objective of this paper is to present a new platform for the deployment of
TRENCADIS-based applications, using virtualization and Cloud computing tech-
niques. The presented platform avoids intrusive deployment of services to reduce
the amount of effort required to install and maintain new TRENCADIS sites.
Also, it provides mechanisms to monitor and handle performance and reliabil-
ity requirements together, allocating and de-allocating different computational re-
sources from the Cloud, such as virtual machines, as required by the applications.
Finally, the platform was designed to be portable to other application domains
that also rely on Grid computing.

In the case of reliability, the approach in this paper is to use proactive redun-
dancy in the instances of the services that supports critical functions, so that a
certain number of faults can be tolerated. In this way, the services are replicated
to multiple resources in the Cloud and their management and monitoring is au-
tomated to speed-up the creation of new replicas to replace failed ones, so that
reliability is maintained.

The rest of this paper is structured as follows. Section 2 analyzes the current
tools which allows to automate the deployment of Grid applications to Cloud com-
puting environments. Section 3 presents a comprehensive analysis of the software
components and customized required configurations of all TRENCADIS services,
from the point of view of their security, availability and performance requirements.
Section 4 describes the platform that was developed to automate the deployment of
these services on Cloud computing environments, describing the conditions under
which the presented platform can be used as a basis for application deployment.
Section 5 presents a test deployment to validate the presented platform and to
illustrate its capabilities and benefits respect to a traditional TRENCADIS de-
ployment. Finally, section 6 presents the conclusions of the paper, as well as the
future lines of work.

2 State of the Art

There can be found works in the literature that aim at easing the process of
software deployment on different platforms. For example, Puppet [9] and Chef
[10] are open-source configuration management systems that are typically used to

deploy applications on provisioned computational resources. This systems can be
used to create and manage configurations rules (recipes) that describe a series of
resources, such as software libraries that should be installed, services that should
be running or files that should be written, on a particular (virtual) machine, thus
automating the application deployment process.

With the success of Cloud computing environments like Amazon EC2 [11],
many open-source tools have been developed to deploy popular systems to these
infrastructures. For example, Apache Whirr [12] is a tool for running Apache
Hadoop and related services, such as Cassandra or HBase, in Amazon EC2. In
general, although these tools can be adapted to other Cloud providers or other
systems (with more or less effort), the use of generic tools seems to be more
convenient for our purposes.

In the case of applications that depend on a programming model, such as
message-passing, MapReduce or Grid programming models, different approaches
are required to deploy the applications. This is a very common requirement, es-
pecially in scientific applications. To this end, several platforms support not only
the configuration management, but also the specific programming models and
languages. CloudFoundry [13] is an example of open-source application deploy-
ment system that supports several popular application development frameworks,
such as the Spring Framework, Ruby on Rails or Grails. It also provides a set
of services to the application developers that includes relational (e.g. MySQL or
PostgreSQL) and NoSQL (e.g. Redis) database services, or messaging services (e.g.
RabbitMQ). AppScale [14] is an open-source implementation of the Google App
Engine [15] Cloud computing technology. It provides Neptune, an extension of
the Ruby programming language that supports Message Passing Interface (MPI)
and MapReduce programming models. AppScale can be used to automate the
configuration and deployment of existing HPC applications to Cloud.

In contrast to “pure” configuration management systems, such as Puppet or
Chef, Cloud platforms, such as CloudFoundry or AppScale, have the advantage
of integrating support for specific programming models and development frame-
works. Often, this support for development that is present in Cloud frameworks
limits the flexibility with which the virtual machines can be configured to meet
application requirements. For the purposes of this work, this is a serious limita-
tion that makes difficult to configure the services with the desired management
and security properties.

On the other hand, to our knowledge, there is no mention on the literature of
an efficient and affordable tool which allows to automate the deployment of Grid
applications to Cloud computing environments, and their configuration to be used
in a secure way, with constraints to minimize the overall system downtime.

3 Analysis of TRENCADIS Infrastructure Services

Figure 1 shows the TRENCADIS infrastructure deployment model. This infras-
tructure is composed by a set of services based on Grid technologies which are
integrated in a Virtual Organization (VO). There are two categories, the CORE

TRENCADIS

APPLICATIONS

MW

STORAGE

BROKER

 SERVICE

VOMS

SERVER

SERVICE

SERVER SERVICES

TRENCADIS CENTER

INFORMATION

SERVER

SERVICE

ONTOLOGIES

SERVER

SERVICE

DICOM

STORAGE

 SERVICE

KEY

SERVER

 SERVICE

EOUID

GENERATOR

SERVICE

INTERNET (COMMUNICATION LAYER)

CORE SERVICES

MEDICAL CENTER 2

DICOM

STORAGE

 SERVICE

KEY

SERVER

 SERVICE

CORE SERVICES

MEDICAL CENTER N

DICOM

STORAGE

 SERVICE

KEY

SERVER

 SERVICE

CORE SERVICES

MEDICAL CENTER 1

USER LAYER

Fig. 1. Deployment model of TRENCADIS infraestructure.

services and SERVER services. Scientific Linux 6.7 OS is recommended for all of
them, although another compatible GNU/Linux OS could be used.

3.1 CORE Services

The CORE services are the DICOM Storage services and the Key Server services.
At least one instance of each type should be deployed in each medical center in-
volved in the VO. The DICOM Storage Service is composed of the following
four software components. The implementation depends on the underlying tech-
nology that is used to support the functionality of the component:

– Base Toolkits. This component is the base of all services in TRENCADIS that
rely on Grid services. It is formed by the Globus 4 toolkit, JDK 1.6, and Ant
1.8. It allows implementing and deploying Grid services. This component does
not require a customized configuration.

– DICOM Storage Grid Service. This component is deployed on the service con-
tainer provided by Globus 4. This Grid service uses different versions of APIs
to connect to the Indexer and Backend components, depending on how these
are implemented. Depending on the version of the APIs used, a customized
configuration of each API employed is required. Moreover, it is needed to con-
figure the Grid service for integration in the VO.

– Indexer. This component enables to index data contained in DICOM struc-
tured reports and can be supported by SQL relational databases (PostgreSQL)
or by the Grid component gLite AMGA Server [16]. Currently, support for
NoSQL databases, such as Neo4j [18], is being implemented, although it is
not operational yet. This component does not require a customized configura-
tion because it is handled directly through an API by the component DICOM
Storage Grid service.

– BackEnd. This component stores encrypted DICOM images and associated
DICOM structured reports. The backend can be supported by a GridFTP
server, Grid components available on gLite (LFC and SE) [17], a File System
or a SQL relational database (PostgreSQL). Currently, support for integrating
CDMI interfaces [19] is being implemented to use Cloud backends, but it is not

operational yet. This component does not require a customized configuration
because it is handled directly through an API by the component DICOM
Storage Grid service.

The Key Server Service is composed of the following software components:

– Key Server Grid Service. This component is deployed on the service container
provided by Globus 4. This Grid service uses an API for connecting to the SQL
Key Database, installed in the backend. Moreover, it is needed to configure
the Grid service for integration in the VO.

– BackEnd. This component stores the keys used for encrypting/decrypting DI-
COM data. This is the same component presented above, but in this case it
can only be supported by a SQL relational database (PostgreSQL).

– SQL Keys Database. This component is a relational database installed into the
backend (PostgreSQL). The database has a predefined structure and needs to
be created and configured when the backend is deployed.

3.2 SERVER Services

Server services are a set of the five services, which have to be deployed in one
center (TRENCADIS Center). This center is external to medical centers involved
in the VO. The EOUID Generator Service is composed of one software com-
ponent. This component is deployed on the service container provided by Globus
4 and implements the logical for generating the Encrypted Object Unique Identi-
fier (EOUID). Moreover, it needs to be configured for integrating in the VO. The
database has a predefined structure and needs to be created and configured when
the backend is deployed. The Storage Broker Service is composed of one soft-
ware component. This component is deployed on the service container provided
by Globus 4 and implements the logic for distributing queries among the DICOM
Storage services involved and retrieving the results. Moreover, it needs to be con-
figured for integration in the VO. The Ontologies Server Service is composed
of these software component:

– Ontologies Server Grid Service. This component is deployed on the service
container provided by Globus 4. This Grid service uses an API for connecting
with the SQL Ontologies Database, installed in the backend. Moreover, it is
needed to configure the Grid service for integration in the VO.

– BackEnd. This component store the Ontologies used for organizing the DICOM
data. This is the same component presented in the Key Server service.

– SQL Ontologies Database. This component is a relational database installed
into the backend (PostgreSQL). The database has a predefined structure and
needs to be created and configured when the backend is deployed.

The Information Server Service (ISS) is part of the Monitoring and Discov-
ery System (MDS4) of Globus 4. Therefore, it is only composed by the component
base toolkits, which have been presented above. Moreover, it requires to configure
the service for integration in the VO. The VOMS Service is part of the gLite
Middleware for Grid Computing [20]. Also it is needed to configure the service for
integration in the VO.

4 TRENCADIS Cloud Deployment Platform

RADL

VMIs

Sofware

Components

Deploy

TRENCADIS

Services

Deploy

TRENCADIS

Services
MW

VMM

 Private Cloud

OpenStack / OpenNebula

Public Cloud

Amazon, EC2

Virtualization systems

LibVirt interface

C
o

n
te

x
tu

a
liz

a
tio

n

(P
U

P
P

E
T

/ A
n

s
ib

le
)

IN
F

R
A

S
T

R
U

C
T

U
R

E

 M
A

N
A

G
E

R
W

e
b

In
te

rfa
c
e

R
E

S
T

A
P

I

Repository of

VMIs(RVMI)

IS-2

TRENCADIS Service Descriptions

…

…

IS-3

TRENCADIS Base Sofware Components

VMI_NVMI_5VMI_4VMI_1

TRENCADIS Sofware Components

Repository of

Service

Descriptions

(RSDs)

…

IS-NIS-1

Repository of

Sofware

Components

(RSCs)

Fig. 2. TRENCADIS Cloud Deployment Platform.

The components of the platform architecture are described in Figure 2 and
described in the following subsections:

4.1 Repository of VMIs (RVMI)

Table 1. Created VMI for TRENCADIS Infrastructure

ID VMI Name VMRC Metadata Description

1 Base Toollkits Scientific Linux 5.7; Globus Toolkit 4.2.1; JDK 1.6.0.35; Ant 1.8.2
2 VOMS Service Scientific Linux 5.7; VOMS Service
3 PostgreSQL Scientific Linux 5.7; Postgres 8.4.9
4 LFC Scientific Linux 5.7; gLite LFC
5 SE Scientific Linux 5.7; gLite SE
6 File System Scientific Linux 5.7
7 GridFTP Scientific Linux 5.7; GridFTP

RVMI is implemented with the Virtual Machine image Repository and Catalog
(VMRC) [21]. VMRC is a software component that enables users to index and
store virtual Machine Images (VMIs) together with metadata descriptions about
the capabilities of each VMI in terms of CPU architecture, hypervisor for which it
was built, OS, applications, etc... This enables users to share and reuse VMIs for

different TRENCADIS services. A client-side API is provided in order to query
for the most appropriate VMIs that satisfy a given set of both hard and soft
requirements. Whereas the hard ones must be satisfied by VMIs, the soft ones
allow obtaining a ranked list of VMIs depending on the degree of satisfaction
of the requisites. For example, one could ask for a VMI created for the KVM
hypervisor that has Scientific Linux greater than 5.7, the Globus Toolkit 4 and
Java Development Kit (hard requirements) but it would be desirable to have Java
1.6.35 toolkit (soft requirement). Therefore, the VMRC enables to catalog a set
of base VMIs from which other VMIs can specifically customized in order to fit a
particular deployment.

Table 1 lists the created VMIs for deploying TRENCADIS infrastructures and
their VMRC metadata descriptions. These VMIs contain the base software com-
ponents that can be reused to deploy the different TRENCADIS services.

4.2 Repository of Sofware Components (RSCs)

This repository is a directory with installations files of software components that
are needed for creating and deploying the TRENCADIS services.

These software components have to be installed on top of the VMIs listed in
table 1. To provide reliability and auto scaling of services a specific configuration
is needed that depend on the Cloud used. Table 2 shows the files and their type.
For example, Grid Archive Files (Gar) are needed to deploy Grid services in the
Globus Toolkit 4 container.

Table 2. Installation Files for TRENCADIS Infrastructure

ID Instalation File Type of File

1 DICOM Storage Grid Service Gar
2 Key Server Grid Service Gar
3 EOUID Generator Grid Service Gar
4 Storage Broker Grid Service Gar
5 Ontologies Server Grid Service Gar
6 TRENCADIS Java API Indexer Jar
7 TRENCADIS Java API Data Backend Jar
8 TRENCADIS Java API SQL Keys DB Jar
9 TRENCADIS Java API SQL Ontologies DB Jar
10 SQL Keys database SQL
11 SQL Ontologies Database SQL
12 Reliability Configuration Conf
13 Auto scaling Configuration Conf

4.3 Repository of Service Descriptions (RSDs)

This repository is a set of documents that describe the composition and config-
uration of the TRENCADIS services. Each document specifies the set of VMs

involved in a service, and for each type of VM, its hardware requirements (num-
ber of CPUs, memory, etc.), software components, indicating the configuration
required to set up the services (creating users, directories, deploy Grid services,
create SQL databases, install Java APIs etc..). To write the documents, the Re-
source Application Description Language for Cloud environments (RADL) [22] has
been used. RADL expresses in a simple and declarative way the requirements of
the TRENCADIS services on a set of VMs, as well as to obtain information from
the VMs already instantiated. A RADL document consists of three sections: The
first one (system) declares the requirements of different types of VMs required.
The second one (configuration) describes the configuration steps required for each
type of VMs. The last one (deploy) indicates the number of instances of each one.

Table 3. Created RADLs for TRENCADIS Infrastructure

ID RADL ID VMI ID Installation File

1 DICOM Storage Service [1,3 or 4 or 5,6 or 7] [1,6,7]
2 Key Server Service [1,3] [2,8,10]
3 EOUID Generator Service 1 [3]
4 Storage Broker Service 1 [4]
5 Ontologies Server Service [1,3] [5,9]
6 VOMS Service 2 –
7 Information Server Service 1 –
8 TRENCADIS Center [1,2,3] [3,4,5,9]

Table 3 lists RADL documents created in this work, one for each TRENCADIS
service. A RADL document has also has been created to describe all services
grouped by TRENCADIS center.

As an example, figure 3 shows the RADL document needed to deploy the Key
Server service where two VMs are needed (GT4-JAVA-ANT and POSTGRESQL).
The first one needs a Scientific Linux (SL) 5.7 VM with Globus Toolkit 4, java and
ant installed. The second one also needs a SL 5.7 VM but only with PostgreSQL
installed. Also two network interfaces are specified: a private network to connect
the instances and a public network interface that is used by the Grid service for
interacting with other TRENCADIS services.

4.4 Infraestructure Instantiator (II)

This component is in charge of interpreting the infrastructure descriptions spec-
ified in the RADL documents, to finally perform the effective deployment of the
instances of the selected VMI in a cloud environment or in a virtualization system.
It is implemented by means of the Infrastructure Manager (IM) [22]. The IM is
a service that provides a high level REST API and Web Interface to enable the
deployment and automatic contextualization of Cloud infrastructures. It provides
a set of functions to create and destroy virtual infrastructures and also to provi-
sion and relinquish computational resources in an elastic manner. The IM enable

network private
network public (outbound = 'yes')

system GT4_JAVA_ANT (
 cpu.arch='x86_64' and cpu.count>=1 and memory.size>=1024m and
 net_interfaces.count = 2 and net_interface.0.connection = 'public' and
 net_interface.1.connection = 'private' and
 disk.0.os.name='linux' and disk.0.os.flavour='Scientific Linux' and
 disk.0.os.version='5.7' and
 disk.0.application contains (name='globus', version='4') and
 disk.0.application contains (name='java', version='1.6.0.35') and
 disk.0.application contains (name='ant', version='1.8.2')
)
system BACKEND_POSTGRESQL (
 cpu.arch='x86_64' and cpu.count>=1 and memory.size>=1024m and
 net_interfaces.count = 1 and net_interface.0.connection='private' and
 disk.0.os.name='linux' and disk.0.os.flavour='Scientific Linux' and
 disk.0.os.version='5.7' and
 disk.0.application contains (name='PostgreSQL', version>='8.4.9')
)

configure GT4-JAVA-ANT (
 add_user {'trencadis': }
 deploy_gs {'Key_Server_Grid_Service.gar': }
 install_conf_API_SQL_Keys_Database
 {'TRENCADIS_Java_API_SQL_Keys_DB.jar': }
)

configure BACKEND_POSTGRESQL(
 add_user {'trencadis': }
 create_database {'SQL_Keys':
 file =>'database.SQL'}
)

deploy GT4_JAVA_ANT 1
deploy POSTGRESQL 1

Fig. 3. RADL document for Key Server service.

to connect with different Cloud systems such as OpenNebula [24], OpenStack [25]
and Amazon EC2. It also enables to connect with virtualization systems like KVM
[26] using the LibVirt interface [23]. The functional scheme is the following: The
first step is to connect to the VMRC to select the most suitable image(s) with
respect to the user requirements. Then it selects the user credentials to access the
cloud deployments or virtualization systems to launch the VM instances. To launch
them, it must translate the RADL requisites into instances of the selected system.
Finally it waits the VMs to be running in order to perform the contextualization
process using Puppet.

For example, for deploying the Key Server service, the IM connects to the
VMRC to select the VMI 1 and 3. Then, it submits the VM instances to a cloud
or virtualized infrastructure. Finally, it waits for the VMs to be running in order
to perform the contextualization using the software components with ID 2, 8 and
10.

4.5 Virtual Machine Manager (VMM)

This component is in charge of managing the instances of VMs launched by the
IM. It must provide functionality to create and destroy infrastructures and also
data persistence when undeploying VMs. This component can be implemented in

the platform using software such as OpenStack or OpenNebula or public clouds
such as Amazon EC2.

5 Test Deployment

To test the platform designed in this work, a complete TRENCADIS infrastructure
has been set up following the deployment model presented in section 3. This in-
frastructure is shown in figure 4 deployment has emulated all the services required
for three medical centers and a TRENCADIS center.

For managing the instances of VMIs required to deploy the TRENCADIS ser-
vices, a public cloud, a private cloud and a virtualization platform have been
combined. Figure 4 shows the VMs involved in the deployment and the VMM
used in each one.

In particular, the private cloud used has been supported by four Dell Servers
in Blade format (M600 and M610 models). Each server has eight cores and 16
Gb of RAM and are mounted on a M1000e chassis. Three nodes were available to
run VMs submitted by OpenNebula (version 3.4.1) while one node could run VMs
submitted through OpenStack (Essex release). The public cloud used has been
Amazon EC2 and the virtualization platform has been supported by the KVM
hypervisor. The services Ontologies Grid service and EOUID Generator service
have been deployed using the reliability configuration file, setting two instances in
Amazon EC2 and the corresponding load balancer for proper workload distribu-
tion. The service Storage Broker Grid service has been deployed using the auto
scalable configuration file, setting an autoscaling group of Amazon EC2, where a
new storage a new Storage Broker is deployed if the CPU Utilization is above 80%
for more than 1 minute. The Amazon EC2 API supports auto scaling and allows
creating groups of instances, maintaining a minimum and maximum of instances
actives, automating the creation of new replicas to replace failed ones [27].

6 Conclusions and Future Work

The platform designed for deployment TRENCADIS infrastructures enable to
combine virtualization technologies and clouds (public and private), depending
on the needs of the deployment.

The use of these technologies significantly simplifies the deployment, while
improving its performance and reliability, as these technologies enable deploying
new services provisioning on demand, in an elastic and dynamic way.

Furthermore, the platform allows you to create, deploy and configure on-
demand services, combining different versions according to the required needs,
efficiently and without losing its scalability.

In this work, we have defined a methodology that has allowed to identify soft-
ware components required to deploy an infrastructure TRENCADIS, analyzing
all its services. Based on the identified components, these have been implemented
in the platform as VMIs or configuration files. This methodology can be applied
to other infrastructures and the platform can be used in other areas different

VOMS

SERVER

SERVICE

VMM: Amazon EC2

VMM: openStack

1 Server Blade

Key

Server Grid

Service

Database

Keys

BackEnd

(PostGresSQL)

DICOM

Storage Grid

Service

VMM: openNebula

3 Servers Blade

Key

Server Grid

Service

Database

Keys

BackEnd

(GridFTP)

DICOM

Storage Grid

Service

Indexer

(PostGresSQL)

Private NetworkPrivate Network

EOUID

Generator Grid

Service
Index

Information

Service

Database

Ontologies

Ontologies

Server Grid

Service

Storage Broker

Grid Service

Private Network

Indexer

(AMGA

SERVER

SERVICE)

Medical Center 1 Medical Center 2

Virtualization Systems KVM

Key

Server Grid

Service

Database

Keys

BackEnd

(File System)

DICOM

Storage Grid

Service

Indexer

(PostGresSQL)

Private Network

Medical Center 3

EOUID

Generator Grid

Service

Ontologies

Server Grid

Service

VO: TRENCADIS_TEST

Private Network

BackEnd

Fig. 4. Test Deployment of a TRENCADIS infraestructure

from TRENCADIS. Therefore, as a future work we plan to identify and apply the
methodology in use cases different from TRENCADIS.

Acknowledgements

The authors wish to thank the financial support received from The Vicerectorat
d’Investigació de la Universitat Politècnica de València (UPV) to develop the
project “Diseño de Componentes Cloud Facilitadores del Despliegue y la Alta
Disponibilidad de Servicios TRENCADIS, para compartir Imágenes Médicas DI-
COM e informes Asociados DICOM-SR”, with reference 20111013.

References

1. C. Vázquez, E. Huedo, R.S. Montero, I.M. Llorente, ”On the use of clouds for grid
resource provisioning”, Future Generation Computer Systems, 27(5): 600-605, 2011

2. A.M. Kuo, ”Opportunities and Challenges of Cloud Computing to Improve Health
Care Services”, J Med Internet Res. 13(3): e67, 2011

3. European Commission: ”Safeguarding privacy in a connected world a European data
protection framework for the 21st century”. Tech. rep., European Commission, Brus-
sels, Belgium (2012)

4. J. Kommeri, M. Niinimki, H. Mller, ”Safe storage and multi-modal search for medical
images”, Stud Health Technol Inform, 169:450-454, 2011

5. I. Blanquer, V. Hernńdez, F.J. Meseguer, J.D. Segrelles,”Content-based organisation
of virtual repositories of DICOM objects”, Future Gener. Comput. Syst., 25(6):627637
(2009)

6. Medical Imaging & Technology Alliance, ”DICOM - Digital Imaging and Communi-
cations in Medicine”, http://medical.nema.org

7. D. Segrelles, I. Blanquer, J. Salavert, V. Hernandez, J. Franco, G. Diaz, R. Ramos,
R. Medina, L. Marti, M. Guevara, N. Gonźlez, J. Loureiro, I. Ramos, ”Exchanging
Data for Breast Cancer Diagnosis on Heterogeneous Grid Platforms”, Computing
and Informatics. 31(1): 3-15, 2012

8. B. Narasimhan, R. Nichols, ”State of Cloud Applications and Platforms: The Cloud
Adopters’ View”, Computer, 44(3): 24-28, 2011

9. ”Puppet:” http://puppetlabs.com . visited 16/04/2013
10. Chef : http://www.opscode.com/chef/. visited 16/04/2013
11. Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2).

http://aws.amazon.com/ec2. visited 30/10/2012
12. Apache Whirr : http://whirr.apache.org/. visited 16/04/2013
13. CloudFoundry Open Source: http://www.cloudfoundry.org/. visited 16/04/2013
14. N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman, and R. Wolski.

AppScale: Scalable and Open AppEngine Application Development and Deployment.
In International Conference on Cloud Computing, Oct. 2009

15. Google App Engine: http://cloud.google.com/appengine. visited 30/10/2012
16. B. Koblitz, N. Santos, V.Pose. ”The AMGA Metadata Service”. JGC. ISSN: 1570-

7873 (Print) 1572-9814 (Online). Volume 6, Number 1 / March de 2008. Pages 61-76.
Springer Netherlands, 2007.

17. I. Blanquer, V. Hernandez, J. Salavert, D. Segrelles. ”Integrating TRENCADIS Com-
ponents in gLite to Share DICOM Medical Images and Structured Reports”. Health-
Grid Conference, 2010, pp 64-75 .ISBN 978-1-60750-582-2.

18. ”The Worlds Leading Graph Database”. http://neo4j.org . Visited 16/04/2013.
19. ”Cloud Data Management Interface - Specification Version 1.0.2h”, SINA, 2010.

http://cdmi.sniacloud.com . visited 26/10/2012
20. ”gLite-Lightweight Middleware for Grid Computing”. http://glite.cern.ch . visited on

16/04/2013
21. Carrion, Jose V., Germn Molto, Carlos De Alfonso, Miguel Caballer, and Vicente

Hernandez. 2010. ”A Generic Catalog and Repository Service for Virtual Machine
Images.” In 2nd International ICST Conference on Cloud Computing (CloudComp
2010).

22. C. de Alfonso, M. Caballer, F. Alvarruiz, G. Molto, V. Hernandez, Infrastructure
Deployment Over the Cloud, in: 3rd IEEE International Conference on Cloud Com-
puting Technology and Science (CloudCom 2011), 2011, pp. 517-521.

23. Bolte M, Sievers M, Birkenheuer G, Niehrster O, Brinkmann A. ”Non-intrusive virtu-
alization management using libvirt”. Proceedings of the 2010 Conference on Design,
Automation and Test in Europe (DATE), Dresden, Germany, 2010.

24. J. Fontan, et al. ”OpenNebula: The Open Source Virtual Machine Manager for Clus-
ter Computing”. In Open Source Grid and Cluster Software Conference, May 2008.

25. OpenStack Open Source Cloud Computing Software. http://www.openstack.org, vis-
ited 16/04/2013

26. Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori, A. KVM: the linux virtual
machine monitor. In Ottawa Linux Symposium (July 2007), pp. 225230.

27. http://aws.amazon.com/developertools/2535 . visited on 16/04/2013

