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Abstract. This paper summarizes the works towards a Service Oriented
Architecture to abstract the execution of scientific applications under dif-
ferent programming models, with a special focus on High Throughput
Computing. The platform features SLA-aware capabilities based on WS-
Agreements and the ability to deploy customized virtual infrastructures
with support for different IaaS Cloud providers. The proposed architecture
features both horizontal (scale in/scale out) and vertical (scale up/scale
down) elasticity capabilities in order to automatically fit the virtual infras-
tructure to the dynamic computing requirements of scientific applications.
An overview of the platform is described, together with the current imple-
mentation state and issues to be considered.

1 Introduction

In the last years, many computing and data management infrastructures and tech-
nologies have been developed with the aim of providing resources in a scalable,
transparent and reliable way, as any other utility. E-Infrastructures such as Grids
have played an important role on integrating, sharing and exploiting distributed
environments, and large experience has been acquired in many research groups.
However, this model of IT resources as utility has not been really available until
the development of Clouds. There is a great opportunity in both science and indus-
try to use more efficiently computing infrastructures, reducing costs, production
cycles, risk and environment impact. However, it still takes considerable effort to
adapt current applications to Cloud environments.

Cloud infrastructures offer resources for computing and storage in the form of
services, providing the flexibility, scalability and high availability needed by many
scientific applications. The execution of applications in this kind of infrastructures
is made by means of Virtual Appliances (VA), consisting of a Virtual Machine
(VM) that includes the application and the entire environment required for its
execution (numerical libraries, databases, runtime environments, etc.).

It is important to ease the development and deployment of applications in
Cloud environments. In order to achieve this, suitable services and models have
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to be provided so that the effort required to successfully adapt applications to
Cloud environments can be drastically reduced. Services will ease the management,
contextualization and execution of the resources and applications, and models will
enable applications to exploit the functionalities exposed. This means that many
existing applications will benefit from the resources offered by cloud environments,
while researchers will not need to spend time learning how to run their applications
in a Cloud.

To that end, this paper outlines an architecture that aims at abstracting the
execution details of scientific applications under different programming models on
Cloud infrastructures with support to Service Level Agreements (SLA) features in
order to guarantee the level of quality of service delivered to the application. The
architecture aims at managing both horizontal and vertical elasticity in order to
fit the underlying virtual infrastructure to the requirements of the application.

The remainder of the paper is structured as follows. First, section 2 outlines
the general architecture proposed. Next, section 3 introduces the management of
SLAs in order to guarantee the proper allocation of resources and the continuous
fulfillment of the agreement during the execution of the application. Then, section 4
covers the approaches considered to manage elasticity both horizontally (increasing
and decreasing the number of resources) and vertically (increasing and decreasing
the capacities of resources). Finally, section 6 summarizes the paper and points to
future works.

2 General Architecture to Abstract Execution

Figure 1 summarizes the main architecture employed to abstract the execution of
scientific jobs on a Cloud under different programming models. Support for dif-
ferent programming models has been considered to be included in the platform
(in particular MapReduce, Workflow, Master/Slave and MPI). In particular, this
paper focuses on Master/Slave in the shape of the High Throughput Comput-
ing (HTC) paradigm implemented by means of PBS/Torque or by other related
approaches such as Condor.

According to the figure, first of all the user has to describe the jobs to be
executed and the requirements of the virtual infrastructure required to support
the execution of the jobs (step 1). The jobs are described via a domain specific
declarative language based on XML that declares the main properties of a job
(executable file, input files, output files, computational requirements, elasticity
rules, etc.). Most properties are common to different programming models but for
High Throughput Computing (HTC) the scheme of independent jobs is commonly
assumed. The infrastructure is defined by means of the Resource Application De-
scription Language (RADL) language, a declarative language that specifies the
desired capabilities of the virtual infrastructure, which has been employed in pre-
vious works [1]. The RADL aims at describing at a higher level the VM infras-
tructure that a user needs for a specific task. Concerning the description of the
jobs, in case local files are referenced, these are copied to a Cloud Storage that
supports the Cloud Data Management Interface (CDMI) standard (step 2). The
usage of CDMI provides a uniform interface to store and access files regardless of
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Fig. 1. General Architecture for Programming Model Management on the Cloud. The
figure focuses on the master/slave programming model (based on PBS/Torque).

the actual back-end employed (for example Windows Azure Storage or Amazon’s
Simple Storage Service (S3)). This way, the input files for the jobs will be retrieved
from the Cloud storage prior to executing the jobs at destination.

The jobs, that include the description of the desired virtual infrastructure are
submitted to the CodeCloud Service (CCS) (step 3). This service is in charge of
mediating between the users and a Cloud and orchestrates the rest of the compo-
nents of the platform. The CodeCloud Service analyzes the programming model
specified by the user for the execution of the jobs and it determines the set of
additional requirements for the master VM of the underlying virtual infrastruc-
ture to support the execution of the jobs under a specific programming model
(step 4). In the figure, the focus is set on the Master/Slave programming model
by means of PBS/Torque. Therefore, in this particular case the underlying virtual
infrastructure should comply with both the requirements imposed by the user (in
terms of capabilities of computational resources, and software installed) and the
deployment of both PBS/Torque to support the specific programming model.

To manage the deployment of the specific virtual infrastructure employed to
support the execution of the jobs, the CodeCloud Service delegates on the In-
frastructure Manager (IM) (step 5). The IM, deeply covered in [1], provides the
CCS with a set of functions to enable the effective deployment of a computing
infrastructure on a Cloud, as well as operations to modify it on demand. The IM
takes as input a RADL document that describes the desired virtual infrastructure
(in terms of virtual machine’s features) and proper credentials to access a Cloud
and it performs the deployment of a virtual infrastructure. It currently supports



both public Cloud providers such as Amazon Elastic Compute Cloud (EC2) and
private Clouds based on OpenNebula and OpenStack.

For that end, the Infrastructure Manager can contact the Virtual Machine im-
age Repository and Catalog (VMRC) service [2], which is a software that enables
users to register Virtual Machine Images (VMIs) together with their metadata
(hypervisor, OS, applications installed, etc.). This way, the IM can use the speci-
fications issued in the RADL document in order to query the VMRC for the most
appropriate VMIs that satisfy a given set of requirements (step 6). For example,
a user might specify that a certain job requires a specific GNU/Linux distribu-
tion with a particular version of the Java Development Kit. This query can be
translated into the VMRC.

Back to the workflow in Figure 1, the Infrastructure Manager deploys an in-
stance which assumes the master role, in the case of the Master/Slave program-
ming model (step 7). The idea is to deploy a self-managed master that manages
the life cycle of the execution tasks. That instance is instrumented with a contex-
tualization service that will be later employed to install the dependencies on both
the Master the Worker instances. These Worker instances are again launched by
the IM, as requested by the Master instance with the additional set of require-
ments that these nodes require to properly execute the jobs (steps 8 and 9). The
Worker instances have a contextualization agent that contacts the contextualiza-
tion service in order to automatically deploy the required software (for example,
the PBS/Torque client together with the dependencies specified by the user) (step
10).

Once the virtual infrastructure is up and running, it is time for the Master
instance to submit the jobs to be executed on the Worker instances and monitor
their execution (step 11). Notice that the virtual infrastructure is created ad hoc
for the job execution request, and it is not shared by other users. The generated
output data is stored on the CDMI-based Cloud Storage so that the results can
later be retrieved by the client (steps 12 and 13).

3 SLA-aware Platform

The execution of scientific applications in Cloud infrastructures is a process driven
by the user’s requirements and expectations, and therefore the assurance of the
Quality of Service (QoS) levels becomes a relevant topic. In the context of Cloud
Computing, QoS is defined as the measure of the compliance of certain user re-
quirement in the delivery of a Cloud resource. In the scenario of execution of
scientific jobs, some QoS requirements may be the total time to execute the jobs
or the budget used to deploy the resources. In order to provide guarantees in the
delivery of the expected QoS level to users, several approaches have been explored.
In [3], the authors propose Service Level Agreements (SLAs) as the vehicle for the
definition of QoS guarantees, and the provision and management of resources. An
SLA is a formal contract between providers and consumers, which defines the re-
sources, the quality of service, the obligations and the guarantees in the delivery
of a specific good.



Using this approach, the execution of a Master/Slave scenario may be modeled
in a SLA document together with some elasticity rules. An SLA-aware Cloud
platform should be able to deploy the master and slaves nodes, executing the jobs
and scaling the virtual infrastructure according to the elasticity rules specified
by the user in the job definition. That way increasing the number or capacity
of running nodes would reduce the execution time of the application when the
number of jobs is high, and decreasing the number or capacity of running nodes
would reduce the cost of the infrastructure when the number of jobs is low.

To achieve that goal, we introduce Cloud ComPaaS. Cloud ComPaaS is a
software platform for the deployment of an SLA-driven layer on top of existing
deployments. This platform has been developed as a testbed tool for diverse SLA-
aware Cloud resource management techniques inside our research group, although
there are plans for releasing it as an open source development.
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Fig. 2. Architecture for SLA Management.

The architecture of Cloud ComPaaS is designed to produce a set of loosely
coupled components that interact among them. The decentralized and distributed
nature of its design improves the platform flexibility and resilience, and the loosely
coupled interfaces between components improve adaptability and extensibility. Fig-
ure 2 introduces the architecture for SLA management. The following sections
summarize the main functionality of Cloud ComPaaS by detailing its main com-
ponents.



3.1 Components

The SLA Manager is the entry point to the Cloud ComPaaS platform. The SLA-
driven nature of the platform implies that every interaction between components
is performed by means of SLAs (in particular, the WS-Agreement specification is
used to describe agreements). The SLA Manager can build agreement documents,
check an agreement offer for correctness and register a new SLA. The four basic
operations supported by this component are search, create, query and delete.

The Orchestrator is the central component of the platform and acts as a global
coordinator with an overall view of the state of the other components.

When a new SLA is accepted by the SLA Manager, a deployment request
is sent to the Orchestrator. This component keeps a view of all the available
Cloud backends, and performs the scheduling of the resource allocation based on
the SLA requirements and the available resources. The Orchestrator manages the
deployment process by delegating the allocation operations to an Infrastructure
Connector. Hence, this component selects the Cloud backend that will deploy the
resources, depending on the user’s requirements.

The Orchestrator performs a sequential process for the allocation of resources.
This way when a user requests a Virtual Service, the Orchestrator deploys a set
of Virtual Machines, retrieve their endpoint references and stores, installs and run
the selected software on them.

The Infrastructure Connector is the component in charge of translating the
infrastructure SLA (WS-Agreements) into the RADL language in order to properly
delegate the deployment of the virtual infrastructure to the aforementioned IM.
This way, it is possible to take advantage of the already deployed IM, which enables
access to the VMRC catalog, support for multiple IaaS Cloud providers, etc. This
connector enables to link ComPaaS with the rest of the system architecture.

3.2 SLA-driven lifecycle assessment in Cloud ComPaaS.

In Cloud ComPaaS the SLAs dictate the lifecycle of Cloud resources. This section
describe the lifecycle of resources in a typical usage scenario and details the role
fulfiled by each component.

The SLA Manager component provides the entry point and user interface to
the operations related to the management of agreements, in the system. Users can
search the system for available SLA templates by querying the SLA Manager.

The user can modify the values on this document to generate an agreement
offer. The create operation presents the SLA Manager with an agreement offer.
The component checks that the offer complies with the agreement template. If this
operation fails, the offer is rejected. If the offer is well defined, the SLA Manager
sends it to the Orchestrator to schedule its deployment. If this operation fails, for
instance because no free resources are available, the offer is rejected.

After an agreement has been accepted and its resources have been allocated,
the SLA Manager registers the agreement. Users can hence query the state of
agreements that they have sent to the platform (including the rejected ones) and
delete an active agreement. Accepted agreements are sent to the Orchestrator,



which deploys the resources required by the SLA. If the deployment process com-
pleted and the SLA is not rejected during the process, the SLA Manager proceeds
to the monitoring of the agreement terms and guarantees states.

The monitoring process consists on the monitoring of service and guarantee
terms. Service term monitoring implies gathering monitoring information from the
Cloud, which serves to determine the state of each different resource (for instance,
the amount of free CPU or memory for a Virtual Machine). The guarantee term
monitoring uses the information retrieved from the Cloud to determine the status
of the guarantee term (for instance, if the amount of CPU that is free on the Virtual
Machine is under a given threshold, then the guarantee is fulfilled). After each
monitoring cycle, the SLA Manager performs several additional actions, related
with the agreement assessment, such as accounting and billing, or it executes
corrective actions, in the case that guarantee terms are violated.

This monitoring continues until one of the following conditions becomes true.

– The SLA is completed. This condition can be met if the SLA is defined for a
certain period of time, or when it is defined on the basis of particular objectives
(e.g. associated to an individual experiment or execution), which must be
completed.

– The SLA is terminated by the consumer (e.g. to avoid consuming resources
when the results obtained are sufficient to understand an experiment).

– The SLA is rejected by the provider. Accepted SLA can be rejected by the
platform at any time, although this form of termination may involve penalties
to the service provider.

These are the three terminal states of an SLA. When the agreement reaches
one of these states, the SLA Manager request the undeployment of resources,
which is forwarded by the Orchestrator to the corresponding backend. Once the
deallocation of resources is performed, the SLA Manager stops the monitoring
process and the SLA is eliminated from the system.

4 Elasticity Management

Managing the inherent elasticity that arises from the usage of Cloud infrastructures
is of paramount importance in order to accommodate the virtual infrastructure to
the dynamic execution requirements of the applications.

Two elasticity modes are currently being considered, as shown in Figure 3. On
the one hand, horizontal elasticity enables a set of VMs to dynamically grow/shrink
by provisioning/releasing new VMs. On the other hand, vertical elasticity enables
a single VM to dynamically increase/decrease its computational capacity (in terms
of CPU and memory) depending on the dynamic requirements.

To understand the benefits of horizontal elasticity consider the following sce-
nario. A parameter sweep application (HTC) that dynamically generates jobs to be
executed is submitted to the platform. This allocates a certain number of virtual
computational resources to allocate the execution of jobs. If the job submission
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Fig. 3. Elasticity modes considered. Vertical elasticity dynamically increases/reduces the
capabilities of a VM. Horizontal elasticity dynamically increases/decreases the number
of VMs.

rate starts increasing and the related SLA provides room for increasing the under-
lying virtual infrastructure, then the virtual platform scales out by provisioning
new virtual machines to accommodate the execution of a large number of simul-
taneous jobs. Whenever the job rate is reduced, so is the virtual infrastructure by
scaling in accordingly reducing the allocated VMs.

Concerning vertical elasticity, the scenario proceeds as follows. If the scientific
application running on the virtual machine requests a larger amount of memory
than initially expected (either because the user underprovisioned the VM or the
application memory consumption depends on the evolution of a simulation), then
the VM is requested to scale up. This operation increases the amount of memory
of the VM without interrupting the execution of the application. Whenever the
application frees some memory, the actual allocation of RAM to the VM can also
be reduced. This approach would enable to better fit the VM memory allocation
to what the application dynamically consumes. In an scenario in which a single
physical machine shares the execution of different VMs, this scenario represents
a fair approach for resource consumption. Notice that vertical elasticity might
involve the migration of the VM to another more powerful computational resource
in which the scale up can be performed. This live migration would enable to swap
the underlying physical infrastructure prior to scaling up without ever stopping
the application.

Vertical elasticity must be supported both by the underlying hypervisors and
the OS of the running VM. In the case of the KVM hypervisor employed to run
GNU/Linux-based VMs, which is our scenario, memory ballooning is fully sup-
ported since kernel 2.6.27. This enables to dynamically change the allocated RAM
to a running VM without any noticeably downtime of the VM. In the case of CPU
hot plugging, which enables to dynamically add new virtual CPUs (vCPUs) to a
running VM, according to KVM documentation there is currently limited support
to it.

Horizontal scalability can be managed from the SLA manager, in order to ex-
pand a group of VMs in case of reaching some threshold metric conditions. In
the case of vertical scalability, the elasticity limits can be defined within an SLA



that specifies that VMs should be deployed into an instrumented host. The idea
is to deploy an agent running on the physical machine with access to libvirt/virsh
and monitoring information about the VMs. Monitoring information can be gath-
ered from the VMs with already existing monitoring software such as Ganglia.
Therefore, the agent in the physical machine becomes responsible to manage the
vertical elasticity of the VMs running on them, according to the predefined ca-
pabilities limits specified for each VM and the capacities of the physical machine
itself.

5 Related Work

Currently there are some projects working on creating Platform as a Service (PaaS)
environments to enable the users to access Cloud technologies. There are some well-
known commercial solutions such as Google App Engine (GAE) or Microsoft Azure
that provides PaaS solutions over their own commercial Cloud infrastructures.
Other commercial alternative is Aneka [4] provided by Manjrasoft, which is a
software platform for deploying Clouds and developing applications on top of it. It
provides a runtime environment and a set of APIs that allow developers to build
.NET applications that leverage their computation on either public or private
clouds.

Nimbus [5] is an open source IaaS system that allows a client to lease remote
resources by deploying VMs onto those resources. It also enables to automate
the configuration and deployment of different software packages using the Nimbus
Context Broker, enabling to deploy Clusters of PCs. These kind of solutions enable
to create and contextualize virtual infrastructures but does not support any type
of programming model.

Simple API for Grid Applications (SAGA) [6] is a programming system that
provides a high level API for users to use C++, Python, or Java languages to
interact with distributed computing resources. It was designed to be used in grid
environments but recently this project has added support for cloud infrastructure
interaction. A MapReduce implementation using SAGA has been created, enabling
users to launch MapReduce applications in all the environments supported by
SAGA.

Sector and Sphere [7] is a cloud framework specifically designed for writing
applications able to utilize the stream processing paradigm (similar approach to
MapReduce). Sector is a distributed file system that manages data across physical
compute nodes at the file level, and provides the infrastructure to manipulate data.
Sphere, on the other hand, provides the framework to utilize the stream processing
paradigm for processing the data residing on Sector. The Sphere system is com-
posed of Sphere Processing Engines (SPEs) running on the same physical nodes as
the Sector file system. These two projects provide support for programming mod-
els, but only one type is supported (MapReduce and stream processing), moreover
it does not enable to personalize the VMs using user requirements. AppScale is an
open source implementation of the Google App Engine (GAE) PaaS cloud technol-
ogy. As a new development over AppScale, Neptune is a domain specific language
that automates configuration and deployment of existing HPC software via cloud



computing platforms. It is an extension of the Ruby programming language that
enables to launch scientific applications with the MPI and MapReduce program-
ming models. In this case two programming models are supported, and also enable
to extend the language, but similar to the previous projects it does not enable to
personalize the VMs with user requirements.

In our proposed architecture, SLAs are employed to deliver QoS. Concerning
the usage of SLAs, the study of QoS in Cloud Computing focuses on providing
Cloud platforms and deployments with mechanisms to the enforcement of the re-
quirements of Cloud users. These studies have been made on two major models of
Cloud delivery, Cloud services and Cloud adapted workflows. Even though Cloud
services are the focus of the offer of the major Cloud providers, the QoS assess-
ment in Cloud workflows represents a more complex scenario that includes stricter
requirements. Therefore the techniques and algorithms developed for Cloud work-
flows can be readily adopted for the Cloud services scenario.

An algorithm to select services that comply with user requirements from a pool
is presented in [8]. The paper proposes modeling the QoS parameters of services
and enable users to query for services in different service pools. The SPSE algo-
rithm implements several stages to enable users to select Cloud services according
to QoS constraints. The system aims not only to provide users with a mechanism
to retrieve services that meet their QoS criteria, but to serve users with the services
that best fit their preferences, therefore enhancing the user experience.

In [9], the authors perform a deep analysis of the QoS assessment in the delivery
of Cloud services, and focuses on very specific problems of the Cloud platforms.
They propose Service Level Agreements as the vehicle for the QoS level speci-
fication. This formal document captures the requirements of an actor respect to
another, and provides a common framework for the definition of QoS criteria, obli-
gations and penalties. They also model the transitive relationship between Cloud
providers and Cloud users, and Cloud users as application providers and end-users
as application consumers. Even though the existence of this relationship has been
cited in [10], the paper analyses its impact in the QoS assessment.

Finally, in [11] the authors present the architecture and working prototype
of the WfMS platform for the QoS-aware execution of workflows. The platform
captures the QoS criteria for the execution of workflows in SLA documents, and a
monitoring system captures information related to these criteria from the running
components and publishes it to an index for other components to retrieve.

6 Conclusions and Future Work

This work has introduced a proposal of architecture to abstract the details of
scientific application execution on Cloud infrastructures. The architecture aims at
simplifying the execution of applications under different programming models, but
this paper has focused on the Master/Worker HTC model. The platform features
services ranging from (i) the description of jobs and infrastructures from high
level infrastructure-agnostic declarative languages, (ii) SLA-management in order
to satisfy the requirements imposed by the user, (iii) infrastructure management
to deploy VMs regardless of the underlying IaaS Cloud provider, (iv) cataloging of



VMIs in order to search for the most appropriate VMIs that satisfy a given set of
requirements and (v) support to horizontal elasticity and partial support to vertical
elasticity based on SLAs, in order to better fit the underlying infrastructure to the
dynamic requirements of the running applications.

The implementation of the platform is an ongoing work. Some components have
been completely implemented and even released as open source components, such
as the VMRC system1 to catalog VMIs. The Infrastructure Manager together
with the RADL language has also been completely developed and described in
[1]. Concerning the Cloud ComPaaS, a prototype implementation based on WS-
Agreements with horizontal elasticity support is already available [12]. Vertical
elasticity is currently an ongoing work and initial progress has been made.

Future works involve extending the proposed platform to implement support
to other programming models. This would certainly benefit scientific applications
that involve other execution patterns such as Workflows or MapReduce.
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Carácter Predoctoral grant number BFPI/2009/103, from the Conselleria d’Educació
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12. Garćıa, A., de Alfonso, C., Hernández, V.: Design of a Platform of Virtual Service
Containers for Service Oriented Cloud Computing. In: Cracow Grid Workshop ’09
Proceedings. (2010) 20—-27


