
A Service-Oriented Architecture for Scientific
Computing on Cloud Infrastructures ?

Germán Moltó1, Amanda Calatrava1, and Vicente Hernández1

Instituto de Instrumentación para Imagen Molecular (I3M). Centro mixto CSIC
Universitat Politècnica de València CIEMAT, camino de Vera s/n, 46022 Valencia,

España
{gmolto,vhernand}@dsic.upv.es, amcaar@ei.upv.es

Abstract. This paper describes a service-oriented architecture that eases
the process of scientific application deployment and execution in IaaS
Clouds, with a focus on High Throughput Computing applications. The
system integrates i) a catalogue and repository of Virtual Machine Im-
ages, ii) an application deployment and configuration tool, iii) a meta-
scheduler for job execution management and monitoring. The developed
system significantly reduces the time required to port a scientific appli-
cation to these computational environments. This is exemplified by a
case study with a computationally intensive protein design application
on both a private Cloud and a hybrid three-level infrastructure (Grid,
private and public Cloud).

Topics Parallel and Distributed Computing.

1 Introduction

With the advent of virtualization techniques, Virtual Machines (VM) represent
a key technology to provide the appropriate execution environment for scien-
tific applications. They are able to integrate the precise hardware configuration,
operating system version, libraries, runtime environments, databases and the ap-
plication itself in a Virtual Machine Image (VMI) which can be instantiated into
one or several runnable entities commonly known as Virtual Appliances. With
this approach, the hardware infrastructure is decoupled from the applications,
which are completely encapsulated and self-contained. This has paved the way
for Cloud computing [1, 2], which enables to dynamically provision and release
computational resources on demand.

The efficient and coordinated execution of scientific applications on Cloud
infrastructures requires, at least: (i) the dynamic provision and release of com-
putational resources (ii) the configuration of VMs to offer the appropriate ex-
ecution environment required by the applications and (iii) the allocation and

? The authors wish to thank the financial support received from the Generalitat Va-
lenciana for the project GV/2012/076 and to the Ministerio de Economı́a y Com-
petitividad for the project CodeCloud (TIN2010-17804).

execution of the jobs in the virtualized computational resources. This requires
the coordination of different Cloud-enabling technologies in order to automate
the workflow required to execute scientific application jobs on the Cloud. To that
end, we envision a system where users express their application requirements via
declarative procedures and the burden of its deployment, execution and moni-
toring on an IaaS Cloud infrastructure is automated. There are previous studies
that aim at using Cloud computing for scientific computing [3, 4]. However, as
far as the authors are aware, there is currently no generic platform that provides
automated deployment of scientific applications on IaaS Clouds which deals with
VMI management, configuration of VMs and the meta-scheduling of jobs to the
virtual computing resources. This represents the whole life cycle of scientific
application execution on the Cloud.

For that, the main contribution of this paper is to present a service-oriented
architecture integrated by the following developed components: i) a generic cat-
alogue and repository system that indexes VMIs together with the appropriate
metadata describing its contents (operating system, capabilities and applica-
tions), ii) a contextualization system that allows to deploy scientific applications
together with its dependences, iii) a meta-scheduler to manage and monitor the
execution of jobs inside VMs and to access the generated output data of the
jobs with support for computational steering. The usage of such a system would
significantly reduce the time required to migrate an application to be executed
on the Cloud. The integration of the different components of the architecture
enables to abstract many of the details that arise when interacting with Cloud
platforms. This would reduce the entry barrier to incorporate the Cloud as a
new source of computational power for scientific applications. This way, scien-
tists would focus on the definition of the jobs and delegate on the proposed
platform the orchestration of the components to execute the jobs on the provi-
sioned virtualized infrastructure on the Cloud.

The remainder of the paper is structured as follows. First, section 2 introduces
the architecture and details the features of the principal components. Later,
section 3 addresses a case study for the execution of a protein design scientific
application. Finally, section 4 summarises the paper and points to future work.

2 Architecture for Scientific Application Execution on
the Cloud

Many scientific applications require the execution of batch jobs, where each job
basically consists of an executable file that processes some input files (or com-
mand line arguments) and produces a set of files (or data to the standard output)
without the user intervention. This is the case of many parameter sweep stud-
ies and Bag of Tasks (BoT) applications commonly found in High Throughput
Computing (HTC) approaches, where the jobs share common requirements. For
these applications, the benefits of the Cloud are two-fold. Firstly, computational
resources can be provisioned on demand according to the number of jobs to be
executed (and the budget of the user in the case of a public Cloud). Secondly, the

provisioned VMs can be configured for the precise hardware and software con-
figuration required by the jobs. This means that VMs can be reused to perform
the execution of multiple jobs.

User

Scientific

Application

Client Side 1. Job submit

8. Return results

Requeriments

+

C
lo

u
d

 E
n

a
c
to

r
C

lie
n

t
L

ib
ra

ry

C
lo

u
d

 E
n

a
c
to

r A
P

I

Cloud Enactor

Find the most

appropiate VMI

3. Create

Contextualizer

Configuration

A
g

g
re

g
a

tio
n

 A
P

I

VMRC

Requeriments

A
P

I

4. Deploy VM

5. Stage

Cntxtlztn Agent

6. Perform

Contextualization

7. Execution

&

 Monitoring

A B C

2. Find the

Appropiate VMI

A

App Req

=

Execute, monitoring and

get results

+

Copy ADD & Agent to

the VM

Contextualize VM with

required applications

Deploy VM in the Cloud

Virtual Machine AA

SCP

SSH

OPAL WS

Tomcat

Java

C++

Req ..

Scientific

Application

Contextualization

Service

Software A

Plug-in A

Software B

Plug-in B

8080

C
o

n
te

x
tu

a
liz

a
tio

n

A
g

e
n

t

App Deployment

Descriptor (ADD)

W
S

R
F

 / S
O

A
P

Amazon

S3

External

Catalog

HTTP(S)

Other

Cloud

Amazon EC2

Cloud

OpenNebula

Cloud

Virtual Machine

Manager

Fig. 1. Interaction diagram for scientific applications execution on IaaS Cloud via the
Cloud Enactor

Figure 1 summarises the main interactions between a user and the proposed
architecture. The user employs the client-side API to describe each task to be
executed (executable file or source code, and required input files) together with
the hardware (i.e. CPU architecture, RAM, etc.) and software requirements (OS,
applications, system packages, etc.). The jobs might optionally include budget
information, since the underlying Cloud infrastructure could require a pay-per-
use access to resources. These jobs are submitted (step 1) to the Cloud Enactor
(CE) which is the central manager that orchestrates all the components.

The CE checks whether the job could be executed on one of the already
deployed (if any) VMs. For the jobs that cannot be executed on the currently
deployed VMs, the CE queries the Virtual Machine image & Repository Cata-
logue (VMRC) [5] with the job’s requirements to find the most appropriate VMI
to execute the application (step 2). The VMRC, a software that we previously
developed, implements matchmaking capabilities to offer a ranked list of suit-
able VMIs to the Cloud Enactor. The VMRC discards the VMIs that do not
satisfy the mandatory requirements (i.e., different OS or CPU architecture) and
it ranks the resulting VMIs according to the degree of satisfaction with respect

to the optional requirements (mainly, software applications). The CE computes
the deviation from the current state of the most appropriate VMI found and the
desired state for the job execution in order to create the Application Deployment
Descriptor (ADD) for the contextualization software (step 3). The ADD specifies
the deployment process of the application so that the contextualization software
can unattendedly perform the installation of the application and its software
dependences. This will be executed inside the VM at boot time to deploy the
application and its dependences.

Next, the CE must decide the deployment strategy of VMs, which will be
in charge of executing the jobs. For that, it has to consider a mixture of per-
formance, economic and trust models to decide the optimum number of VMs
to be deployed, together with their Cloud allocation strategy. The performance
model should consider the execution time of the jobs (which can be initially es-
timated by the user but computed after each execution), the deployment time of
the VM in the Cloud infrastructure, the time invested in deploying the software
requirements of the job (contextualization) and the application itself, as well
as the time invested in data transfer, that is, staging out the generated output
data of the application inside the VM. The economical model should consider
the budget of the user allocated to the execution of each job (or a set of jobs),
and the billing policies of the Cloud provider (i.e. hourly rates, economic time
zones, etc.). Finally, the trust model plays an important role on scenarios with
multiple Cloud providers (Sky Computing), where reputation and the ability of
a provider to systematically fulfill the Service Level Agreement (SLA) must be
considered. The trust model would be employed to rank a Cloud provider ac-
cording to its adherence to SLA and the Quality of the Service it offered along
the time, among other possible characteristics. For example, a Cloud provider
that systematically violates its own SLA should be ranked lower than a provider
that has always fulfilled the terms of conditions. The user would express the
precise rank function according to the aforementioned categories, as performed
in other meta-scheduling softwares such as GridWay.

Therefore, the CE decides to fire up a new VM (or a group of them). This
is achieved by delegating on a Virtual Infrastructure Manager (VIM), which
deploys the VM on top of a physical infrastructure (step 4). Notice that the
CE could use elasticity rules in order to enlarge or shorten the number of VMs
dynamically assigned for the allocation of jobs, depending on the budget and
the deadline constraints imposed by the user.

When the VM has booted, the CE stages the contextualization agent and
the ADD into the VM using SSH (step 5). The VMRC service stores the login
name and the private key (or the password) of an account in the VM as part of
the metadata stored for a VMI. Then, the contextualization process is started,
where software dependences are retrieved from the Contextualization Service
and then installed. Next, the scientific application is deployed and a Web services
(WS) wrapper is automatically created and deployed into an application server,
which is finally started (step 6). This WS wrapper enables to remotely start

and monitor the application running inside the VM. All this automated process
results in a VA fully configured for the execution of the scientific application.

Once the VA is up and running, the meta-scheduler can perform the execu-
tion of the jobs inside the VAs (step 7). This involves managing and monitoring
the execution of the jobs inside the VM during their lifetime. For efficiency
purposes each VM would be in charge of the execution of several jobs. In the
case of parameter sweep studies and BoT applications commonly found in HTC
approaches, the jobs share common requirements and, therefore, they can be ex-
ecuted in the same contextualized VM. In addition, scientific applications might
require a periodical access of the generated output data during their executions,
mainly for computational steering purposes. Once the application inside the VM
has finished executing, then its output data must be retrieved so that another
job (with the same requirements) can execute inside the VM.

After all the executions have been carried out, the VAs can be gracefully
shutdown which is achieved by the VIM. Notice that it is possible to cata-
logue the resulting VMI (after the contextualization process) together with the
metadata information concerning the new applications installed. Therefore, this
would minimize the contextualization time for subsequent executions of that sci-
entific application, since no additional software should have to be installed. This
streamlined orchestration of components enables the user to simply focus on the
definition of the jobs and thus delegate to the central manager the underlying
details of interacting with the Cloud technologies for computational resource
provisioning and scientific application execution.

This Service-Oriented Architecture relies on several interoperable services
that can be orchestrated by the Cloud Enactor due to the usage of standard pro-
tocols and interfaces (WS, WSRF, XML). Concerning the software employed, we
have relied on the GMarte meta-scheduler [6], which provides execution manage-
ment capabilities of scientific tasks on computational Grid infrastructures. By
incorporating the functionality to access Cloud infrastructures in this software
we can simultaneously schedule jobs on both Grid and Cloud infrastructures. In
fact, once the virtual infrastructure of computational resources has been provi-
sioned, other job dispatchers could be fit within the proposed architecture, such
as Condor or GridWay. The WS Wrapper for the application is created by the
Opal 2 Toolkit [7], which has been integrated in the lightweight contextualization
software that we previously developed. Other tools for software configuration,
such as Puppet or Chef could also be employed.

3 Case Study

In order to test the suitability of the Cloud infrastructure as a computational
source for scientific applications, two case studies were performed. They involve a
scientific application that designs proteins with targeted properties via a compu-
tationally intensive process based on Monte Carlo Simulated Annealing (MCSA)
[8]. The application is developed in the C programming language and it depends

on common build tools available in Linux (configure, make and a C compiler).
It also requires the MPICH 2 library, which is a complex software dependence.

For the first case study, we used a fixed number of 8 jobs (an appropriate
number for our test infrastructure) and we analysed the total execution time.
This time includes from the beginning of the task allocation process until the
last job has been executed and its output results have been retrieved. Each job
requires the initial configuration of the protein and the matrix that indicates the
energetic interactions among the different rotamers of the protein. This amounts
to a total of 172 MBytes per job. The job outputs the results of the optimization
process to the standard output. This computationally intensive application is
typically CPU-bound, but we configured the executions to periodically read the
energy matrix from the disk (as part of the optimization process) so that I/O
would also be significant in the total runtime.

The test infrastructure is based on four dual-processor Intel Xeon QuadCore
with 16 GBytes of RAM Blade servers, with a total of 32 cores, managed by
OpenNebula 2.2 and the KVM hypervisor. Two nodes were exclusively used for
this particular case study. In order to focus on the execution time, the case study
was carried out on pre-started VMs where all the contextualization process had
finished and the VMs were ready to receive the execution of the jobs. The allo-
cation of tasks to VMs is achieved by the GMarte meta-scheduler. The current
configuration controls that only one job is executed inside a single VM. There-
fore, using N VMs allows the concurrent execution of up to N tasks. Other jobs
are executed as soon as free VMs are available.

Since the architecture can simultaneously schedule jobs to Grid and both
private and public Cloud infrastructures, the second case study executes 30
protein design jobs on a hybrid infrastructure composed by resources from a
Grid, the aforementioned private Cloud and the Amazon EC2 public Cloud.

3.1 Results

The solid line in Figure 2.a depicts the global execution time of the case study. As
expected, the global execution time decreases when the number of VMs increases,
since more computational resources are available to carry out jobs. The plateau
in the execution time seen between 4 and 7 VMs is explained by the fact that only
one job is executed in each VM and the execution time of each job is expected
to be quite similar. Therefore, the executions are actually carried out in groups.
As an example, with 5 VMs there is a first group of 5 jobs that are concurrently
executed and when they finish, the meta-scheduler allocates the remaining 3 jobs
to the free VMs. This would take a similar time as the allocation of the 8 jobs
into 7 VMs, which carries out 7 concurrent jobs and a final single job when spare
computational resources are available.

The dotted line in Figure 2.a compares the degree of scalability of the Blade
servers since it shows the global execution time of the case study when all the
VMs are running inside a single node. It can be seen that a similar execution
time is achieved except for the case of using 8 VMs, where a minor difference
is noticed. Since each node features a dual quad-core processor, it appears that

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4 5 6 7 8

T
ot

al
 E

xe
cu

tio
n

T
im

e
(S

ec
on

ds
)

Number of Virtual Machines

Influence of the Number of Virtual Machines in the Total Execution Time
2 Blade Nodes
1 Blade Node

(a) Execution time

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200

A
llo

ca
te

d
Jo

bs

Time (seconds)

Distribution of Tasks
Grid

Private Cloud
Public Cloud

(b) Grid, private and public Cloud

Fig. 2. Global execution time (a) of the case study, considering two different distribu-
tions of VMs. Allocated jobs (b) on an infrastructure composed of Grid, private Cloud
and public Cloud resources.

scalability issues are only noticeable starting from the 8-th VM in a single node,
where the usage of shared resources such as memory and disk start affecting
the execution of the applications. These results suggest that VM consolidation
in few physical nodes might still deliver good performances for computationally
intensive applications, depending on resource consumption.

Concerning the performance improvement gained using the Cloud infrastruc-
ture, the results show that up to an speed up of 7.13 is achieved with 8 VMs
evenly distributed among the two physical nodes. The global execution time of
the case study reduces from a total 6041 seconds in a single VM to just 847
seconds using the aforementioned 8 VMs. Therefore, the usage of virtualised
resources from a Cloud as a provider of computational power can deliver a sig-
nificant improvement for resource-starved scientific applications.

For the second case study, the task allocation is shown on Figure 2.b, further
detailed in [9]. The system delegates jobs to a Grid and when that infrastructure
is unable to process additional jobs, they are delegated to a provisioned virtual
infrastructure from the private Cloud. When neither the Grid or the private
Cloud deployment are able to execute more jobs (because all the execution slots
are in use), the system can provision computional resources from Amazon EC2
on a pay-per-use basis so that more jobs can be concurrently executed.

To assess that usage pattern we used 10 Grid nodes (from a local resource
integrated in the Spanish National Grid Initiative) and 4 provisioned VMs from
both the private and the public Cloud. The provisioned VMs where contextu-
alized at boot time in order to deploy the application. We used the Free Usage
Tier provided by Amazon EC2 to provision low-performance VMs, thus requir-
ing a noticeably larger time to execute the jobs. Therefore, the developed system
allows to simultaneously harvest computational power from three different in-
frastructures, in order to reduce the execution time of HTC-based applications.

4 Conclusion

This paper has introduced a software architecture that abstracts the details of
application deployment and execution on IaaS Clouds. The system features the
provision of computational virtualized resources, the configuration of these re-
sources to support the execution of the applications, the cataloguing of virtual
machine images and, finally, the job execution management on the virtual infras-
tructure. The benefits of the proposed architecture have been exemplified by the
execution of a protein design case study on both a private Cloud infrastructure
and a hybrid infrastructure (Grid, private and public Cloud). The automated
deployment and execution of scientific applications fosters the widespread adop-
tion of Cloud technologies by the scientific community. This way, Clouds deliver
important benefits for scientific computing in terms of the ability to rapidly
provision computational resources and the customizability of the execution en-
vironments.

Therefore, the main contribution of this work to the state-of-the-art is the
development of generic components and an architecture to integrate them all in
order to ease the process of executing scientific applications on the Cloud. Some
of the components of the architecture, such as the VMRC system, have been
released to the community.

References

1. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds.
ACM SIGCOMM Computer Communication Review 39(1) (2008) 50

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.: Above the clouds: A berkeley view
of cloud computing. Technical report, UC Berkeley Reliable Adaptive Distributed
Systems Laboratory (2009)

3. Rehr, J., Vila, F., Gardner, J., Svec, L., Prange, M.: Scientific computing in the
cloud. Computing in Science 99 (2010)

4. Keahey, K., Figueiredo, R., Fortes, J., Freeman, T., Tsugawa, M.: Science Clouds:
Early Experiences in Cloud Computing for Scientific Applications. In: Cloud Com-
puting and its Applications. (2008)

5. Carrión, J.V., Moltó, G., De Alfonso, C., Caballer, M., Hernández, V.: A Generic
Catalog and Repository Service for Virtual Machine Images. In: 2nd International
ICST Conference on Cloud Computing (CloudComp 2010). (2010)

6. Moltó, G., Hernández, V., Alonso, J.: A service-oriented WSRF-based architecture
for metascheduling on computational Grids. Future Generation Computer Systems
24(4) (2008) 317–328

7. Krishnan, S., Clementi, L., Ren, J., Papadopoulos, P., Li, W.: Design and Evaluation
of Opal2: A Toolkit for Scientific Software as a Service. In: 2009 IEEE Congress on
Services. (2009)

8. Moltó, G., Suárez, M., Tortosa, P., Alonso, J.M., Hernández, V., Jaramillo, A.: Pro-
tein design based on parallel dimensional reduction. Journal of chemical information
and modeling 49(5) (2009) 1261–71

9. Calatrava, A. In: Use of Grid and Cloud Hybrid Infrastructures for Scientific Com-
puting (M.Sc. Thesis in Spanish), Universitat Politècnica de València (2012)

