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1. Introduction 
 

The development of Grid computing technologies 
provided the scientific community with an appropriate 
infrastructure to share and to use computational and 
storage resources among geographically distributed 
organizations [1]. The recent advance in virtualization 
techniques has leveraged Cloud computing as a new 
source of computational and storage capabilities for 
applications. An Infrastructure as Service (IaaS) Cloud 
provides its users with an elastic platform, based on 
Virtual Machines (VM), that can grow and shrink 
according to the user’s requirements and budget, since 
access is provided on a pay-per-use basis for public 
Clouds such as Amazon Elastic Compute Cloud [2]. 

The coordinated harnessing of Grid and Cloud 
resources is far from being a trivial task. While Grid 
computing leverages computational efficiency, the Cloud 
focuses on availability and scalability. This work aims at 
the collaborative usage of Grid and Cloud resources for 
the efficient execution of scientific applications. For that 
purpose we propose an architecture that enables to 
integrate the computational power of both computing 
paradigms via a system that orchestrates and abstracts the 
execution details with each infrastructure. 
 
2. Proposed architecture and implementation 
 

Figure 1 depicts the global architecture, which is 
divided in three main actors: The user, the Enactor and 
the computational resource infrastructures. 

The interaction starts with the user who wants to 
execute a certain number of batch jobs. These jobs might 
have different computing requirements, both hardware 
(available RAM, temporary storage space, CPU, etc.) and 
software (dependences with third-party software, 
libraries, OS, etc.). For that purpose, a high level API 
(Application Programming Interface) and a modified 
JSDL (Job Submission Description Language) [3] can be 
employed for the description of the jobs and their 
requirements. The user submits the jobs to the Enactor 
which is responsible for the execution of the applications 
on the available Grid and Cloud infrastructures. This 

requires the development of efficient meta-scheduling 
techniques for hybrid Grid/Cloud infrastructures, and the 
development of gateways able to dispatch and monitor the 
jobs in the different infrastructures. 

 
Client Side

Researcher

Scientific 
Applications

Enactor

Public Cloud Private Cloud

Orchestrator
Scheduler

Cloud Manager

Public GridPrivate Grid

Grid Manager

Catalog /
Repository 

Service

Virtual 
Machine

Contextualizer

OpenNebula
Amazon EC2

Eucalyptus

Internal to the 
Organization Large Scale

 
Figure 1. Platform architecture for the coordinated execution of 
scientific applications on Grid and Cloud infrastructures. 

 
The goal of the Enactor is to reduce the global 

execution time of the jobs while optimizing the usage of 
the available resources under the budget constraints of the 
user. It is the central component of the architecture in 
charge of integrating resources from private Grids 
(typically available in research centers as development 
platforms) to public Grids (large-scale deployments such 
as the WLCG/EGEE Grid [4]) and from private Clouds 
(privately managed inside an organization) to public 
Clouds (such as Amazon EC2). Whilst Grids enable 
scientists to access a large pool of computing power, this 
is typically achieved by means of a research collaboration 
which requires specific credentials and has a limited 
lifetime. Instead, Cloud computing can be offered on a 
pay-per-use basis and the main advantage over Grids is 
that the resource provider no longer establishes the 
execution environment of the applications (as it happens 
with Grids). When no Grid resources are available, a 
Cloud provides the illusion of endless scalability and high 
availability. By using VMs, applications can be safely 
executed on a virtualized environment provided that they 
have all the hardware and software dependencies 
installed. This application contextualization process 
requires creating specific installation plans out of the 
job’s requirements that guarantee the successful execution 
of the application on the virtual sandbox. 



Therefore, in the case of Cloud infrastructures, the 
computational resources must be allocated on demand and 
they have to be properly contextualized (install all the 
software dependencies) to satisfy the job’s requirements. 
For that, a catalogue and repository of Virtual Machine 
Images (VMI) is highly desirable in order to create 
generic VMIs that can be properly reused for different 
projects. For example, a VMI with the Matlab runtime 
installed and the Java JDK might be certainly reused for 
other applications with such dependences. This way, 
according to Fig. 1 the Enactor can contact the Cloud 
Manager to execute a certain job and this component uses 
the job’s requirements to find the most appropriate VMI, 
which must satisfy all the physical requirements such as 
CPU and architecture and might possible satisfy part of 
the software dependences. Then, the VM Contextualizer 
module computes the deviation from the job’s 
requirements to the state of this particular VMI in order to 
install the required software dependences into the VM. 

 
3. Current prototype and next steps 
 

We currently have a prototype implementation of the 
architecture based on our previous works on Grid and 
Cloud technologies. The GMarte Grid meta-scheduler [8] 
and its service-oriented counterpart [9] are being used to 
access Grid infrastructures and to coordinate the scientific 
application management and execution. Plugins to access 
Cloud infrastructures have been integrated in this 
software. In particular, we are using OpenNebula [5] for 
VM deployment but plans are to integrate other VM 
Managers such as Eucalyptus [6] and Nimbus [7]. A 
Virtual Machine Repository and Catalogue Service 
(VMRC) [10] has also been developed as the pivotal point 
of VMIs in the architecture. In addition, a prototype 
implementation of the contextualizer module has also 
been developed [11] which eases scientific application 
deployment via an XML-based declarative language to 
specify application installations. We have recently used 
this prototype for a Cloud-based application that aims at 
supporting the high availability of Grid services [12].  

All these aforementioned works focus strictly on the 
Cloud side. In this particular work we aim at integrating 
Grid and Cloud resources to computationally support 
scientific applications. This requires efficient and cost-
aware meta-scheduling techniques, that consider the 
economical (and energetic consumption) impact of 
starting new resources on the Cloud. This integration also 
poses the question of resource prioritization (when Cloud 
resources should be employed instead of Grid ones) in 
order to make the most effective usage of the 
infrastructures considering the jobs to be executed. 

The coordinated usage of Grid and Cloud resources 
paves the way for new sources of computational power 
for resource-starved scientific applications. For that, it is 
important to integrate the different computational sources 

and to hide the infrastructure details in the shape of high-
level tools that allow scientists to focus on job definitions 
instead of manual execution managements. 
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