
Scientific Application Execution on Hybrid Platforms Based on Grid and Cloud
Computing

G. Moltó, J.V. Carrión, V. Hernández

Instituto de Instrumentación para Imagen Molecular
Universidad Politécnica de Valencia

Camino de Vera S/N, 46022 Valencia, SPAIN
{gmolto,vhernand}@dsic.upv.es,jocarbur@upv.es

1. Introduction

The development of Grid computing technologies
provided the scientific community with an appropriate
infrastructure to share and to use computational and
storage resources among geographically distributed
organizations [1]. The recent advance in virtualization
techniques has leveraged Cloud computing as a new
source of computational and storage capabilities for
applications. An Infrastructure as Service (IaaS) Cloud
provides its users with an elastic platform, based on
Virtual Machines (VM), that can grow and shrink
according to the user’s requirements and budget, since
access is provided on a pay-per-use basis for public
Clouds such as Amazon Elastic Compute Cloud [2].

The coordinated harnessing of Grid and Cloud
resources is far from being a trivial task. While Grid
computing leverages computational efficiency, the Cloud
focuses on availability and scalability. This work aims at
the collaborative usage of Grid and Cloud resources for
the efficient execution of scientific applications. For that
purpose we propose an architecture that enables to
integrate the computational power of both computing
paradigms via a system that orchestrates and abstracts the
execution details with each infrastructure.

2. Proposed architecture and implementation

Figure 1 depicts the global architecture, which is
divided in three main actors: The user, the Enactor and
the computational resource infrastructures.

The interaction starts with the user who wants to
execute a certain number of batch jobs. These jobs might
have different computing requirements, both hardware
(available RAM, temporary storage space, CPU, etc.) and
software (dependences with third-party software,
libraries, OS, etc.). For that purpose, a high level API
(Application Programming Interface) and a modified
JSDL (Job Submission Description Language) [3] can be
employed for the description of the jobs and their
requirements. The user submits the jobs to the Enactor
which is responsible for the execution of the applications
on the available Grid and Cloud infrastructures. This

requires the development of efficient meta-scheduling
techniques for hybrid Grid/Cloud infrastructures, and the
development of gateways able to dispatch and monitor the
jobs in the different infrastructures.

Client Side

Researcher

Scientific
Applications

Enactor

Public Cloud Private Cloud

Orchestrator
Scheduler

Cloud Manager

Public GridPrivate Grid

Grid Manager

Catalog /
Repository

Service

Virtual
Machine

Contextualizer

OpenNebula
Amazon EC2

Eucalyptus

Internal to the
Organization Large Scale

Figure 1. Platform architecture for the coordinated execution of
scientific applications on Grid and Cloud infrastructures.

The goal of the Enactor is to reduce the global

execution time of the jobs while optimizing the usage of
the available resources under the budget constraints of the
user. It is the central component of the architecture in
charge of integrating resources from private Grids
(typically available in research centers as development
platforms) to public Grids (large-scale deployments such
as the WLCG/EGEE Grid [4]) and from private Clouds
(privately managed inside an organization) to public
Clouds (such as Amazon EC2). Whilst Grids enable
scientists to access a large pool of computing power, this
is typically achieved by means of a research collaboration
which requires specific credentials and has a limited
lifetime. Instead, Cloud computing can be offered on a
pay-per-use basis and the main advantage over Grids is
that the resource provider no longer establishes the
execution environment of the applications (as it happens
with Grids). When no Grid resources are available, a
Cloud provides the illusion of endless scalability and high
availability. By using VMs, applications can be safely
executed on a virtualized environment provided that they
have all the hardware and software dependencies
installed. This application contextualization process
requires creating specific installation plans out of the
job’s requirements that guarantee the successful execution
of the application on the virtual sandbox.

Therefore, in the case of Cloud infrastructures, the
computational resources must be allocated on demand and
they have to be properly contextualized (install all the
software dependencies) to satisfy the job’s requirements.
For that, a catalogue and repository of Virtual Machine
Images (VMI) is highly desirable in order to create
generic VMIs that can be properly reused for different
projects. For example, a VMI with the Matlab runtime
installed and the Java JDK might be certainly reused for
other applications with such dependences. This way,
according to Fig. 1 the Enactor can contact the Cloud
Manager to execute a certain job and this component uses
the job’s requirements to find the most appropriate VMI,
which must satisfy all the physical requirements such as
CPU and architecture and might possible satisfy part of
the software dependences. Then, the VM Contextualizer
module computes the deviation from the job’s
requirements to the state of this particular VMI in order to
install the required software dependences into the VM.

3. Current prototype and next steps

We currently have a prototype implementation of the
architecture based on our previous works on Grid and
Cloud technologies. The GMarte Grid meta-scheduler [8]
and its service-oriented counterpart [9] are being used to
access Grid infrastructures and to coordinate the scientific
application management and execution. Plugins to access
Cloud infrastructures have been integrated in this
software. In particular, we are using OpenNebula [5] for
VM deployment but plans are to integrate other VM
Managers such as Eucalyptus [6] and Nimbus [7]. A
Virtual Machine Repository and Catalogue Service
(VMRC) [10] has also been developed as the pivotal point
of VMIs in the architecture. In addition, a prototype
implementation of the contextualizer module has also
been developed [11] which eases scientific application
deployment via an XML-based declarative language to
specify application installations. We have recently used
this prototype for a Cloud-based application that aims at
supporting the high availability of Grid services [12].

All these aforementioned works focus strictly on the
Cloud side. In this particular work we aim at integrating
Grid and Cloud resources to computationally support
scientific applications. This requires efficient and cost-
aware meta-scheduling techniques, that consider the
economical (and energetic consumption) impact of
starting new resources on the Cloud. This integration also
poses the question of resource prioritization (when Cloud
resources should be employed instead of Grid ones) in
order to make the most effective usage of the
infrastructures considering the jobs to be executed.

The coordinated usage of Grid and Cloud resources
paves the way for new sources of computational power
for resource-starved scientific applications. For that, it is
important to integrate the different computational sources

and to hide the infrastructure details in the shape of high-
level tools that allow scientists to focus on job definitions
instead of manual execution managements.

4. Acknowledgment

The authors would like to thank the financial support

received from the Vicerrectorado de Investigación de la
Universidad Politécnica de Valencia for the project
PAID-06-09-2810 and to the Ministerio de Ciencia e
Innovación for the project CodeCloud (TIN2010-17804).

5. References
[1] Foster, I, and C Kesselman. The GRID 2: Blueprint for a

new computing infrastructure. Morgan Kaufmann, 2004.
[2] Amazon. “Amazon Elastic Compute Cloud (EC2)”, 2010.

http://aws.amazon.com/ec2.
[3] Anjomshoaa, A., F. Brisard, M. Drescher, D. Fellows, A.

Ly, S. McGough, D. Pulsipher, and A. Savva. “Job
Submission Description Language (JSDL) specification,
version 1.0.” In Open Grid Forum, GFD, 56, 2005.

[4] “WLCG: Worldwide LHC Computing Grid.”
http://lcg.web.cern.ch/LCG/public/.

[5] Sotomayor, Borja, Rubén S. Montero, Ignacio M. Llorente,
and Ian Foster. “Virtual infrastructure management in
private and hybrid clouds.” IEEE Internet Computing 13,
no. 5 (September 2009): 14-22.

[6] Nurmi, Daniel, Rich Wolski, Chris Grzegorczyk, Graziano
Obertelli, Sunil Soman, Lamia Youseff, and Dmitrii
Zagorodnov. “The Eucalyptus Open-source Cloud-
computing System.” In Proceedings of 9th IEEE
International Symposium on Cluster Computing and the
Grid, 2009.

[7] Keahey, Kate, Renato Figueiredo, Jose Fortes, Tim
Freeman, and Mauricio Tsugawa. “Science Clouds: Early
Experiences in Cloud Computing for Scientific
Applications.”, 2008.

[8] Alonso, J M, V Hernández, and G Moltó. “GMarte: Grid
middleware to abstract remote task execution.”
Concurrency and Computation: Practice and Experience
18, no. 15 (2006): 2021-2036.

[9] Moltó, G., V. Hernández, and J.M. Alonso. “A service-
oriented WSRF-based architecture for metascheduling on
computational Grids.” Future Generation Computer
Systems 24, no. 4 (2008): 317-328.

[10] Carrión, Jose V., Germán Moltó, Carlos De Alfonso,
Miguel Caballer and Vicente Hernandez. “A Generic
Catalog and Repository Service for Virtual Machine
Images.” In 2nd International ICST Conference on Cloud
Computing (CloudComp 2010), 2010.

[11] Moltó, G, and V Hernández. “Management and
Contextualization of Scientific Virtual Appliances.” In
Cloud Futures 2010: Advancing Research with Cloud
Computing, 2010.

[12] Moltó, G., and V. Hernández. “On Demand Replication of
WSRF-based Grid Services via Cloud Computing.” In 9th
International Meeting on High Performance Computing for
Computational Science (VecPar 2010), 2010.

