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Abstract—With the advent of cloud technologies the scientists 
have access to different cloud infrastructures in order to 
deploy all the virtual machines they need to perform the 
computations required in their research works. This paper 
describes a software architecture and a description language to 
simplify the creation of all the needed resources, and the elastic 
evolution of the computing infrastructure depending on the 
application requirements and some QoS features. 
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I.  INTRODUCTION 
This paper describes a software architecture designed in 

order to make it easy for scientists to create and to use 
computational infrastructures provisioning resources from 
different Infrastructure as a Service (IaaS) cloud providers.  

To that end, different component and services have been 
developed, dealing with aspects such as: i) the description of 
the infrastructure required for the end-user application; ii) the 
search of the most suitable Virtual Machine Images (VMIs) 
that are available to build such computing infrastructure; iii) 
the process of effectively deploying the Virtual Machines 
(VMs) in local or remote cloud providers; iv) the 
contextualization of the VMs for the successful execution of 
the applications.  

These different aspects mentioned above dictate the 
organization of the paper. First, we present the Resource and 
Application Description Language (RADL), a language for 
the end-users to describe the computational infrastructure 
needed to run their applications. Section 3 discusses the 
contextualization process, which automatically installs and 
configures the required software dependencies to execute the 
end-user applications. Section 4 presents the Infrastructure 
Manager, which orchestrates the different components, 
enabling the effective deployment of an initial computing 
infrastructure, and the further operations to modify it on 
demand, adding or removing virtual nodes. A case study for 
the creation of a Hadoop cluster is shown in section 5. The 
conclusions and future work are provided in section 6. 

References to previous works related to the areas covered 
by this paper are provided in the corresponding sections. 

II. RADL 
There are several languages that can be used to describe 
virtual machines or appliances. One of the most prominent is 
the Open Virtualization Format (OVF) [1], which provides a 

very detailed description of the virtual system. OpenNebula 
[2] also provides a language for describing single VMs. 

It is also possible to provide a low level description of a 
VM hardware using vendor specific languages (e.g. 
VMWare VMX files) that are easier to deal with. But they 
are too specific for describing the hardware of a single VM 
and leave apart aspects such as the applications that are 
installed in the VM or the network connections between the 
VMs. Therefore, these languages are not suitable for a high 
level definition of a set of VMs that should be able to interact 
with each other. Moreover, the use of any of these languages 
is unsuitable for the end user, because he/she would have to 
deal with low-level aspects (e.g. the bus for the disk), and 
would not be able to use high-level constructs (e.g a 20 node 
MPI-based cluster managed by PBS/Torque).  

The RADL aims at describing at a higher level the VM 
infrastructure that a user needs for a specific task. The 
purpose of the RADL is to describe the features that a given 
virtual infrastructure must offer instead of the virtual 
hardware. It is based on well-known languages and 
standards, borrowing their principles and abstractions, and 
putting them together into a more user-friendly language. In 
this sense, most of the semantic of the fields that describe the 
requirements for the VM has been taken from OVF in order 
to map them into the VM creation document. The principles 
for the separation of the environment from the VM and its 
integration have been taken from the OCCI (Open Cloud 
Computing Interface) [3] Open Grid Forum standard. The 
language itself is pretty much inspired in the syntax of the 
well-known Condor’s ClassAD language [4]. 

The result is a declarative language that describes virtual 
infrastructures, by declaring the features or requisites of the 
VMs to be deployed. Using these requisites, a description of 
the VM (using OVF or a vendor specific language) must be 
created to finally deploy the VM. 

RADL acts as a query language that must be processed 
by an infrastructure deployment component to deal with the 
features offered by the Cloud deployments to instantiate the 
actual network configuration, to build the VMs, and to 
configure them to fulfill the requirements of the user. 

The RADL provides a very comprehensive mechanism 
for the user to describe his infrastructure by defining the 
virtual hardware requirements of the application, but also the 
software that must be available on each of the VMs. In this 
sense, we have defined three types of constraints for the 
infrastructure: environmental features, virtual hardware 
features and software features. A RADL document must be 
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understood as a SLA that is likely to be accomplished by 
different components in the infrastructure. The stated 
features may be met by the available VMIs, or be provided 
by means of contextualization procedures [5], but also the 
Cloud platform in which the VMs are deployed must be able 
to provide the type of resources requested by the user. 
Additionally, the user will probably have some constraints 
on the maximum budget that he can afford for the 
infrastructure, the VMIs that he is allowed to use, etc. 

A. RADL document structure 
A RADL document consists of the declaration of the 

different elements that will compose the infrastructure and 
the desired features. The document includes environmental 
features and the different types of VMs. 

1) Environmental features 
The environmental features consist of devices, services, 

etc. that are not provided by the VMs. The existence of such 
elements should not depend on the deployment of the VMs. 
The VMs must be able to link to such environment. Some 
examples are connectivity networks, windows domain 
services or Storage Area Networks. 

Currently we are only considering the network 
environmental feature: a Local Area Network (LAN) to 
which the VMs may be linked. The “network” keyword is 
used, followed by the next features: 

• Outbound: indicates whether the VMs linked to the 
network have access to the public network or not. 

• Address: the IP addresses and network mask the 
VMs will receive from a DHCP server. 

2) Virtual Machine Types and Software Features 
The virtual infrastructure to be deployed is described by 

defining the type of VMs and how many of each type must 
be actually deployed. In this case, the system keyword is 
used to define a template with the set of the features that a 
VM must meet. Each template has a name, a set of features 
and a number of instances to be deployed. 
system <name> [(<features>)] <number> 

The features that a virtual system must meet are stated by 
an expression with the following grammar. 
<expression> := <expression> <bool_connector> 
<expression> | <attribute> <operator> <value> | 
soft <punctuation> ( <expression> ) | attribute 
<contains> ( <tuple> ) 
<tuple> := field <operator> <value> | <tuple> 
<bool_connector> <tuple> 
<punctuation> := integer 
<bool_connector> := and | or 
<operator> := = | > | < | >= | <= 
<value> := ' string ' | number [ <qualifier> ] 
<qualifier> := M | G | K 

At the end, such expression is a set of requirements for 

the virtual hardware components and some extra information 
about the VM contents. These components and metadata are 
referred to as attributes and they are expressed as LDAP 
entries that gather the class hierarchy for each attribute. 

Some of the attributes of a VM are multivalued. In some 
cases the order of such elements is important since it may be 
a decision factor on how the system behaves (e.g. the boot 
disk). In such cases the RADL follows the LDAP syntax for 
numbering the entries of an array-like attribute (e.g. 

attribute.0.field, attribute.1.field, etc.). In cases that the 
components contained by an attribute are not orderable we 
use the “contains” keyword to reflect the collection-like 
behavior (e.g. the applications that are installed in a VM). 

The user should be aware that it could be difficult to 
create a VM that meets all of the specified requirements. The 
“soft” expression enables to express that a requirement is 
interesting to be fulfilled but it is not mandatory. This 
expression is accompanied by a “rank” that is an integer that 
will be computed to get a final score for the VMI, expressed 
in a user-defined scale. The total score must be interpreted as 
“the goodness” of the VMI for the user, and it will help to 
select the most suitable VMI to deploy the VM. The 
requirements that are not under the influence of the “soft” 
construction are considered to be indispensable and if they 
are not met, the VM must not be deployed. 

We are currently considering several LDAP 
ObjectClasses that represent the components of a virtual 
machine that are represented by the next keywords: 

• system: It refers to the metadata associated to the 
VM (e.g. the virtualization subsystem: KVM or 
Xen). 

• cpu: It represents the features of the virtual CPUs, 
with the attributes “count” and “arch” (e.g. i386) 

• memory: It refers to the RAM memory of the VM. 
Its attribute “size” represents the amount of memory. 

• net_interface: It is an array of network interfaces 
(referred as net_interface.0, net_interface.1, etc.). 
Each interface contains an attribute named 
“connection” that links to a LAN by using its name. 
Other attributes considered are “ip” and “mac”. 

• disk: It is an array of disks (i.e. disk.0, disk.1, etc.) 
where the disk zero will act as the boot disk.  

Each of the attributes included above are related to the 
virtual hardware features of the VM and they should be 
negotiated with the cloud deployment to decide the actual 
values that should be used. The software features are related 
to the content of the disks that are attached to the VM that 
are, in fact, mapped to VMIs. The disks have some attributes 
that refer to the content of such images: 

• free_size: amount of free space in the disk. 
• os: operating system the VM will boot in case that 

the VMI is attached as the boot disk. It has four 
fields: (1) name (e.g. linux, windows, etc.); (2) 
flavor (e.g. ubuntu, fedora, SP3, etc.); (3) version, 
(e.g. XP, 7, 9.10, etc.); and (4) credentials that 
enables to configure the access method to the VM by 
specifying a user and a password, or a public key for 
ssh access. 

• applications: the collection of applications installed 
in the disk. Each of the elements has different fields: 
name (unique name for the application), version, 
path (where the application is installed), etc. 

Most of the attributes included in the document are designed 
to be directly mapped to OVF attributes. Therefore, their 
values must be set according to the semantic defined by such 
standard. Other attributes (e.g. the name of the applications 
or the style for the version numbering) will be specific for 
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the cloud deployment and the Infrastructure Manager that 
will interpret the RADL. It is advisable to follow the OVF 
recommendations for the name of the applications, but also 
for other items that are not officially standardized. 

III. CONTEXTUALIZER 
Once decided the most appropriate VMI it is important to 

automatically deploy the remainder software dependencies to 
execute a given scientific application. For example, a Matlab 
application requires the Matlab Runtime just like a Java 
application requires the Java Runtime.  

The deployment of software in VMs is usually performed 
manually. In fact, the deployment of an application in a 
master VMI will exist in the different VM instances. 
However, the coordinated usage of different providers that 
can support a myriad of diverse hypervisors, especially in the 
context of sky computing [6], demands automated software 
deployment. In these scenarios, VMIs cannot be easily 
transformed to support multiple hypervisors. Therefore, 
automated software deployment is a relevant task that eases 
the adaptation of the scientific application to the Cloud. 

There exist tools to perform the automated deployment of 
applications, such as Puppet, Chef or Capistrano, but they do 
have dependencies on other software packages, thus 
requiring a complex deployment. Moreover they are 
conceived for large infrastructures where the state must be 
maintained over the time while in cloud environments it is 
commonly required to simply achieve the specified 
configuration stated by the user. 

Instead, we have developed a lightweight and portable 
contextualizer [7] that only depends on the standard Python 
language, which is available in virtually every GNU/Linux 
distribution. This tool enables the unattended execution of 
commands specified in an XML document in order to 
perform the automated installation of software dependences 
and the application itself. The user can create an Application 
Deployment Description (ADD) to specify how to deploy the 
application (the compilation approach, the configuration, 
some required post-processing, etc.). There are ADDs 
already created for common software. Therefore, this tool 
performs the installation of the software so that the VM is 
configured to be able to successfully execute the application. 

The contextualizer can work as standalone software or in 
a client-server fashion where ADDs and software packages 
are dynamically retrieved on-demand from its server 
counterpart in order to reduce the size of the 
contextualization package for a VMI to the bare minimum. 
This mechanism is suitable for specific deployments such as 
computing clusters where only one of the nodes is accessible 
by a public IP address. 

IV. INFRASTRUCTURE MANAGER 
The main goal of the Infrastructure Manager (IM) is to 

provide a set of functions to enable the effective deployment 
of an initial computing infrastructure, and the further 
operations to modify it on demand, adding or removing 
nodes. The IM offers an API with a reduced and simple set 
of functions enabling the creation of the infrastructure, 
getting the information about the VMs and the addition or 

removal of VMs in the deployment (RADL is used to specify 
the requirements of the VMs). 

A. Architecture 
Fig. 1 depicts the architecture of the IM. The upper level 

shows the applications that use the functions provided by the 
API to connect to the manager.  

 
Figure 1. Infrastructure Manager Architecture 

The Cloud Connector (CC) layer provides a set of 
functions enabling to homogeneously access different cloud 
middlewares (OpenNebula, OpenStack, EC2, etc.). These 
functions provide the information needed by the IM about 
the cloud infrastructure VMs: available cores or memory, 
VM image types supported, etc. The drivers also abstract the 
deployment of VMs in each IaaS provider. A CC driver has 
been developed for OpenNebula, and work is in progress to 
develop an EC2 driver. 

The core component of the IM is the Cloud Selector 
(CS). It is in charge of selecting where to deploy the VMs 
specified in the RADL document. This central component 
will contact the rest of services of the architecture, 
orchestrating the deployment of the infrastructure. 

In order find a suitable VMI that accomplishes the 
requirements of the user and is compatible with the available 
cloud system, the Virtual Machine Catalog and Repository 
system (VMCR) [8] has been used. This component stores 
and indexes VMIs in order to be reused in multiple contexts. 
It also implements matchmaking algorithms to obtain the 
VMIs that satisfy a set of requirements. 

The CS contacts the VMCR to choose the best available 
VMIs, considering the requirements specified in the RADL 
document. The CS also uses the CC layer to obtain all the 
information about the available cloud infrastructures. At this 
point the CS selection task is two-fold. It must select the best 
image from the results provided by the VMCR and the best 
cloud infrastructure. In some cases the best images could not 
be compatible with the best cloud deployment, and the CS 
must balance in order to select the best combination to 
achieve the best results. 

The CS must also take into account the different SLAs of 
all the components of the systems. The SLA is a broad 
concept that must cover many kinds of system features: 
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• Authorization: the CS must check if a user has 
proper credentials to access the different clouds. 

• Cloud features: The list of capacities provided by the 
cloud infrastructure to the user: number of cores, 
available memory, transfer bandwidth, etc. 

• Economics: The prices of the different infrastructure 
components. If different cloud infrastructures are 
available, the economics are a key issue in order to 
select the most suitable resources at the lowest price. 

• Co-allocation features: Some applications may 
require all the VMs to be deployed in the same cloud 
infrastructure. Other applications without these 
restrictions can use mixed cloud infrastructures.  

Other important aspects related to the quality of service 
(QoS) must be considered when selecting the cloud (or 
clouds) where the deployment is made (e.g. selecting the 
closest cloud infrastructure and the VMI to minimize the 
time to transfer the image, or selecting the VMI with the 
specific format needed by the hypervisor to avoid an 
additional step to convert the image). 

Finally the last component is the Contextualizer and 
Configuration System (CCS). This element is in charge of 
the installation and configuration of all the required software 
in all the VMs in order to accomplish the requirements of the 
RADL document. The CCS has two different components: 

The first one is the Configuration Manager (CM) that 
coordinates the installation among different cloud 
deployments. It stores historical data about the installation of 
the software in order to provide information to the IM about 
the time needed to install some specific software. 

The second component is the configuration service that is 
in charge of the effective installation of the software in the 
VMs.  This service provides a small set of functions to ease 
the creation of the VAs by installing and configuring all the 
required software in the VMs.  It can also configure the set 
of VMs as a whole to work as a cluster. These services can 
also be used from the application layer in order to install or 
configure some application specific features in the VMs. 

The configurator service provides three functions: the 
first one enables ssh access without password among a set of 
machines (usually required in the configuration of any 
cluster). The second function is an interface to launch the 
contextualizer in the specified nodes, enabling to install and 
to configure the required software. The third function 
provides a list of the installable applications to the IM. 

This service uses two approaches to contextualize and 
configure the VMs. The first one is used in the local clouds, 
where the configuration service is deployed as part of the 
architecture. In this case the application must contact this 
service to configure all the VMs. The second approach is 
used in the case of external clouds where the configuration 
service cannot be deployed due to the provider’s restrictions. 
This approach is based on the idea that every deployed cloud 
infrastructure will have at least one VM with a public 
network interface. In these cases the IM connects to this 
service by the public interface and contextualizes and 
configures all the VMs. 

B. Functionality 
The steps needed to deploy an infrastructure in a cloud 

environment using the IM are the following: 
1. The application layer provides the IM with the RADL 

describing the features of the infrastructure. 
2. The IM uses the CS to contact the VMCR in order to 

select the most suitable images. 
3. The CS contacts the CC to get the information about the 

available cloud deployments. 
4. The CS contacts the CM to get information about the 

available applications that can be installed in the VMIs. 
The IM combines the information about the VMIs, the 
cloud list, and installable applications with the SLAs 
information, trying to get the best combination of image 
– cloud deployment to create the infrastructure denoted 
by the RADL document (the current version of the IM 
only considers the QoS parameters related to the 
proximity of the VM image to the cloud infrastructure). 
If the IM detects that any of the applications is not 
installed in the VMIs, and cannot be installed, it will 
notify the caller application. 

5. In some cases the CS may select an image that doesn’t 
have all the applications requested in the RADL 
document, and the IM must use the CCM in order to 
install all the needed applications. The CCM must test if 
the configurator service is enabled in the cloud 
deployment selected. If it is, the CCM will contact it. 
Otherwise the CCM must obtain a public IP address of 
one of the launched VMs in order to connect to it to 
launch the command-line version of the configurator. 

6. At this point the IM has deployed the infrastructure. The 
caller application can contact the IM to obtain all the 
information required to access and use the infrastructure. 

7. The last step is application dependent, so the upper level 
performs it. The application must contact again the 
configurator service in order to configure the software 
installed in the nodes, e.g. to configure a PBS cluster, or 
a Hadoop cluster, or some other specific software. 

V. CASE STUDY: CREATE A HADOOP CLUSTER 
To demonstrate the functionality of the IM, it has been 

used to automatically deploy a Hadoop cluster consisting of 
5 nodes. A high level application has been developed that 
uses the functionality provided by the IM. The application 
uses the next RADL document to create the infrastructure: 
network publicNet ( outbound = 'yes') 
network privateNet 
system ( cpu.arch='i686' and cpu.count>=1 and 
memory.size>=512M and 
net_interface.0.connection='publicNet' and 
net_interface.1.connection='privateNet' and 
disk.0.os.name='linux' and 
disk.0.applications contains (name='hadoop') 
) 1 
system ( cpu.arch='i686' and cpu.count>=1 and 
memory.size>=512M and 
net_interface.0.connection='privateNet' and 
disk.0.os.name='linux' and 
disk.0.applications contains (name='hadoop') 
) 4 
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This RADL file describes two different kinds of 
machines. Both of them have similar requirements (at least 
one 32-bit CPU, 512 MB of RAM, with Linux OS and 
Hadoop installed). The only difference between them is that 
the first system has two network interfaces (a public one and 
a private one), while the second system has only a private 
network interface. 

We used a testbed with two different cloud deployments 
using OpenNebula 2.2 software. The first one (kefren) has 18 
Xeon dual-processor nodes and uses VMware hypervisor. 
The second cluster (dellblade) is composed of 4 dual-
processor nodes with 4 cores and the KVM hypervisor. 

The VMCR service has two registered Linux images. 
The first one is a VMware image located in the kefren front-
end node and the second one a KVM image located in the 
dellblade. Both images are a fresh Ubuntu installation. 

These are the steps needed to complete the process of 
deploying the fully functional Hadoop cluster using the IM: 
1. The client application sends a “create infrastructure” 

request with the previous RADL document. 
2. The IM contacts the VMCR and obtains the list of the 

available images. None of them has Hadoop installed. 
3. The CS contacts the CC to obtain the information about 

the cloud infrastructures available. 
4. The CS selects dellblade and the image located in the 

dellblade front-end node, because it is the most powerful 
cloud infrastructure. 

5. The IM contacts the CC to submit the VMs. 
6. The IM must contact the configurator and contextualizer 

service in order to install Hadoop. Java is also installed 
because it is a requisite in the Hadoop installation. All 
the installation is managed by the contextualizer. 

7. Once the VMs are fully installed, the application must 
contact the configurator in order to configure all the 
individual VMs as a Hadoop cluster. 

8. We have a fully functional Hadoop cluster! At this point 
the caller function can connect to the front-end node to 
operate with the Hadoop cluster. 

From the point of view of the client application that 
contacts the IM, it must only call the function to create the 
infrastructure, and periodically call the function to get the 
information about the infrastructure. This function informs 
about the status of the deployment process and gives all the 
information needed to connect with the VMs once they have 
been correctly deployed. 

VI. CONCLUSIONS AND FUTURE WORKS 
This paper described a software architecture designed to 

simplify the management of infrastructures in Cloud 
environments, enabling the scientists an easy access to Cloud 
technology. Different elements composing the architecture 
have been addressed: The RADL language for describing the 
features required by the virtual computing infrastructure. The 
VMCR manages information about VMIs to be used in the 
deployment, enabling to select the most suitable image to 
create the virtual appliances. If these images lack some 
required software, the contextualizer component enables to 
easily install the required software, with minimal user 
intervention. Finally, the IM has been described as the core 

component of the architecture. This central element connects 
to the rest of the components in order to orchestrate the 
creation of the infrastructure. 

This work describes the initial version of the IM. As a 
prototype it must evolve to achieve all the objectives of the 
proposed architecture. It currently considers only some 
simple SLA elements such as the user authorization. Other 
CC connectors will be added to expand the functionality 
possibly by means of aggregation APIs such as jClouds or 
Apache LibCloud. Moreover automatic elasticity features 
can be introduced, to scale out or scale in the infrastructure 
according to the resources needed at each time. Also creating 
algorithms for the selection of the proper cloud deployment 
is an issue to be addressed. 

The usage of abstraction mechanisms for automated 
deployment of self-configurable infrastructures for the Cloud 
paves the way for an enhanced interoperability. This is of 
special importance in sky computing scenarios, with multiple 
Cloud providers. Therefore, the development of generic and 
customizable components for the Cloud contributes to the 
ecosystem of tools to embrace the adoption of Cloud 
technologies by the scientific community. 
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