
Infrastructure deployment over the Cloud

Carlos de Alfonso, Miguel Caballer, Fernando Alvarruiz, Germán Moltó and Vicente Hernández
Instituto de Instrumentación para Imagen Molecular (I3M).

Centro mixto CSIC – Universitat Politècnica de València – CIEMAT.
Camino de Vera s/n, 46022 Valencia, España

{caralla, micafer1}@upv.es, {fbermejo, gmolto, vhernand}@dsic.upv.es

Abstract—With the advent of cloud technologies the scientists
have access to different cloud infrastructures in order to
deploy all the virtual machines they need to perform the
computations required in their research works. This paper
describes a software architecture and a description language to
simplify the creation of all the needed resources, and the elastic
evolution of the computing infrastructure depending on the
application requirements and some QoS features.

Keywords- cloud; infrastructure manager; Cloud computing

I. INTRODUCTION
This paper describes a software architecture designed in

order to make it easy for scientists to create and to use
computational infrastructures provisioning resources from
different Infrastructure as a Service (IaaS) cloud providers.

To that end, different component and services have been
developed, dealing with aspects such as: i) the description of
the infrastructure required for the end-user application; ii) the
search of the most suitable Virtual Machine Images (VMIs)
that are available to build such computing infrastructure; iii)
the process of effectively deploying the Virtual Machines
(VMs) in local or remote cloud providers; iv) the
contextualization of the VMs for the successful execution of
the applications.

These different aspects mentioned above dictate the
organization of the paper. First, we present the Resource and
Application Description Language (RADL), a language for
the end-users to describe the computational infrastructure
needed to run their applications. Section 3 discusses the
contextualization process, which automatically installs and
configures the required software dependencies to execute the
end-user applications. Section 4 presents the Infrastructure
Manager, which orchestrates the different components,
enabling the effective deployment of an initial computing
infrastructure, and the further operations to modify it on
demand, adding or removing virtual nodes. A case study for
the creation of a Hadoop cluster is shown in section 5. The
conclusions and future work are provided in section 6.

References to previous works related to the areas covered
by this paper are provided in the corresponding sections.

II. RADL
There are several languages that can be used to describe
virtual machines or appliances. One of the most prominent is
the Open Virtualization Format (OVF) [1], which provides a

very detailed description of the virtual system. OpenNebula
[2] also provides a language for describing single VMs.

It is also possible to provide a low level description of a
VM hardware using vendor specific languages (e.g.
VMWare VMX files) that are easier to deal with. But they
are too specific for describing the hardware of a single VM
and leave apart aspects such as the applications that are
installed in the VM or the network connections between the
VMs. Therefore, these languages are not suitable for a high
level definition of a set of VMs that should be able to interact
with each other. Moreover, the use of any of these languages
is unsuitable for the end user, because he/she would have to
deal with low-level aspects (e.g. the bus for the disk), and
would not be able to use high-level constructs (e.g a 20 node
MPI-based cluster managed by PBS/Torque).

The RADL aims at describing at a higher level the VM
infrastructure that a user needs for a specific task. The
purpose of the RADL is to describe the features that a given
virtual infrastructure must offer instead of the virtual
hardware. It is based on well-known languages and
standards, borrowing their principles and abstractions, and
putting them together into a more user-friendly language. In
this sense, most of the semantic of the fields that describe the
requirements for the VM has been taken from OVF in order
to map them into the VM creation document. The principles
for the separation of the environment from the VM and its
integration have been taken from the OCCI (Open Cloud
Computing Interface) [3] Open Grid Forum standard. The
language itself is pretty much inspired in the syntax of the
well-known Condor’s ClassAD language [4].

The result is a declarative language that describes virtual
infrastructures, by declaring the features or requisites of the
VMs to be deployed. Using these requisites, a description of
the VM (using OVF or a vendor specific language) must be
created to finally deploy the VM.

RADL acts as a query language that must be processed
by an infrastructure deployment component to deal with the
features offered by the Cloud deployments to instantiate the
actual network configuration, to build the VMs, and to
configure them to fulfill the requirements of the user.

The RADL provides a very comprehensive mechanism
for the user to describe his infrastructure by defining the
virtual hardware requirements of the application, but also the
software that must be available on each of the VMs. In this
sense, we have defined three types of constraints for the
infrastructure: environmental features, virtual hardware
features and software features. A RADL document must be

2011 Third IEEE International Conference on Coud Computing Technology and Science

978-0-7695-4622-3/11 $26.00 © 2011 IEEE

DOI 10.1109/CloudCom.2011.77

517

understood as a SLA that is likely to be accomplished by
different components in the infrastructure. The stated
features may be met by the available VMIs, or be provided
by means of contextualization procedures [5], but also the
Cloud platform in which the VMs are deployed must be able
to provide the type of resources requested by the user.
Additionally, the user will probably have some constraints
on the maximum budget that he can afford for the
infrastructure, the VMIs that he is allowed to use, etc.

A. RADL document structure
A RADL document consists of the declaration of the

different elements that will compose the infrastructure and
the desired features. The document includes environmental
features and the different types of VMs.

1) Environmental features
The environmental features consist of devices, services,

etc. that are not provided by the VMs. The existence of such
elements should not depend on the deployment of the VMs.
The VMs must be able to link to such environment. Some
examples are connectivity networks, windows domain
services or Storage Area Networks.

Currently we are only considering the network
environmental feature: a Local Area Network (LAN) to
which the VMs may be linked. The “network” keyword is
used, followed by the next features:

• Outbound: indicates whether the VMs linked to the
network have access to the public network or not.

• Address: the IP addresses and network mask the
VMs will receive from a DHCP server.

2) Virtual Machine Types and Software Features
The virtual infrastructure to be deployed is described by

defining the type of VMs and how many of each type must
be actually deployed. In this case, the system keyword is
used to define a template with the set of the features that a
VM must meet. Each template has a name, a set of features
and a number of instances to be deployed.
system <name> [(<features>)] <number>

The features that a virtual system must meet are stated by
an expression with the following grammar.
<expression> := <expression> <bool_connector>
<expression> | <attribute> <operator> <value> |
soft <punctuation> (<expression>) | attribute
<contains> (<tuple>)
<tuple> := field <operator> <value> | <tuple>
<bool_connector> <tuple>
<punctuation> := integer
<bool_connector> := and | or
<operator> := = | > | < | >= | <=
<value> := ' string ' | number [<qualifier>]
<qualifier> := M | G | K

At the end, such expression is a set of requirements for

the virtual hardware components and some extra information
about the VM contents. These components and metadata are
referred to as attributes and they are expressed as LDAP
entries that gather the class hierarchy for each attribute.

Some of the attributes of a VM are multivalued. In some
cases the order of such elements is important since it may be
a decision factor on how the system behaves (e.g. the boot
disk). In such cases the RADL follows the LDAP syntax for
numbering the entries of an array-like attribute (e.g.

attribute.0.field, attribute.1.field, etc.). In cases that the
components contained by an attribute are not orderable we
use the “contains” keyword to reflect the collection-like
behavior (e.g. the applications that are installed in a VM).

The user should be aware that it could be difficult to
create a VM that meets all of the specified requirements. The
“soft” expression enables to express that a requirement is
interesting to be fulfilled but it is not mandatory. This
expression is accompanied by a “rank” that is an integer that
will be computed to get a final score for the VMI, expressed
in a user-defined scale. The total score must be interpreted as
“the goodness” of the VMI for the user, and it will help to
select the most suitable VMI to deploy the VM. The
requirements that are not under the influence of the “soft”
construction are considered to be indispensable and if they
are not met, the VM must not be deployed.

We are currently considering several LDAP
ObjectClasses that represent the components of a virtual
machine that are represented by the next keywords:

• system: It refers to the metadata associated to the
VM (e.g. the virtualization subsystem: KVM or
Xen).

• cpu: It represents the features of the virtual CPUs,
with the attributes “count” and “arch” (e.g. i386)

• memory: It refers to the RAM memory of the VM.
Its attribute “size” represents the amount of memory.

• net_interface: It is an array of network interfaces
(referred as net_interface.0, net_interface.1, etc.).
Each interface contains an attribute named
“connection” that links to a LAN by using its name.
Other attributes considered are “ip” and “mac”.

• disk: It is an array of disks (i.e. disk.0, disk.1, etc.)
where the disk zero will act as the boot disk.

Each of the attributes included above are related to the
virtual hardware features of the VM and they should be
negotiated with the cloud deployment to decide the actual
values that should be used. The software features are related
to the content of the disks that are attached to the VM that
are, in fact, mapped to VMIs. The disks have some attributes
that refer to the content of such images:

• free_size: amount of free space in the disk.
• os: operating system the VM will boot in case that

the VMI is attached as the boot disk. It has four
fields: (1) name (e.g. linux, windows, etc.); (2)
flavor (e.g. ubuntu, fedora, SP3, etc.); (3) version,
(e.g. XP, 7, 9.10, etc.); and (4) credentials that
enables to configure the access method to the VM by
specifying a user and a password, or a public key for
ssh access.

• applications: the collection of applications installed
in the disk. Each of the elements has different fields:
name (unique name for the application), version,
path (where the application is installed), etc.

Most of the attributes included in the document are designed
to be directly mapped to OVF attributes. Therefore, their
values must be set according to the semantic defined by such
standard. Other attributes (e.g. the name of the applications
or the style for the version numbering) will be specific for

518

the cloud deployment and the Infrastructure Manager that
will interpret the RADL. It is advisable to follow the OVF
recommendations for the name of the applications, but also
for other items that are not officially standardized.

III. CONTEXTUALIZER
Once decided the most appropriate VMI it is important to

automatically deploy the remainder software dependencies to
execute a given scientific application. For example, a Matlab
application requires the Matlab Runtime just like a Java
application requires the Java Runtime.

The deployment of software in VMs is usually performed
manually. In fact, the deployment of an application in a
master VMI will exist in the different VM instances.
However, the coordinated usage of different providers that
can support a myriad of diverse hypervisors, especially in the
context of sky computing [6], demands automated software
deployment. In these scenarios, VMIs cannot be easily
transformed to support multiple hypervisors. Therefore,
automated software deployment is a relevant task that eases
the adaptation of the scientific application to the Cloud.

There exist tools to perform the automated deployment of
applications, such as Puppet, Chef or Capistrano, but they do
have dependencies on other software packages, thus
requiring a complex deployment. Moreover they are
conceived for large infrastructures where the state must be
maintained over the time while in cloud environments it is
commonly required to simply achieve the specified
configuration stated by the user.

Instead, we have developed a lightweight and portable
contextualizer [7] that only depends on the standard Python
language, which is available in virtually every GNU/Linux
distribution. This tool enables the unattended execution of
commands specified in an XML document in order to
perform the automated installation of software dependences
and the application itself. The user can create an Application
Deployment Description (ADD) to specify how to deploy the
application (the compilation approach, the configuration,
some required post-processing, etc.). There are ADDs
already created for common software. Therefore, this tool
performs the installation of the software so that the VM is
configured to be able to successfully execute the application.

The contextualizer can work as standalone software or in
a client-server fashion where ADDs and software packages
are dynamically retrieved on-demand from its server
counterpart in order to reduce the size of the
contextualization package for a VMI to the bare minimum.
This mechanism is suitable for specific deployments such as
computing clusters where only one of the nodes is accessible
by a public IP address.

IV. INFRASTRUCTURE MANAGER
The main goal of the Infrastructure Manager (IM) is to

provide a set of functions to enable the effective deployment
of an initial computing infrastructure, and the further
operations to modify it on demand, adding or removing
nodes. The IM offers an API with a reduced and simple set
of functions enabling the creation of the infrastructure,
getting the information about the VMs and the addition or

removal of VMs in the deployment (RADL is used to specify
the requirements of the VMs).

A. Architecture
Fig. 1 depicts the architecture of the IM. The upper level

shows the applications that use the functions provided by the
API to connect to the manager.

Figure 1. Infrastructure Manager Architecture

The Cloud Connector (CC) layer provides a set of
functions enabling to homogeneously access different cloud
middlewares (OpenNebula, OpenStack, EC2, etc.). These
functions provide the information needed by the IM about
the cloud infrastructure VMs: available cores or memory,
VM image types supported, etc. The drivers also abstract the
deployment of VMs in each IaaS provider. A CC driver has
been developed for OpenNebula, and work is in progress to
develop an EC2 driver.

The core component of the IM is the Cloud Selector
(CS). It is in charge of selecting where to deploy the VMs
specified in the RADL document. This central component
will contact the rest of services of the architecture,
orchestrating the deployment of the infrastructure.

In order find a suitable VMI that accomplishes the
requirements of the user and is compatible with the available
cloud system, the Virtual Machine Catalog and Repository
system (VMCR) [8] has been used. This component stores
and indexes VMIs in order to be reused in multiple contexts.
It also implements matchmaking algorithms to obtain the
VMIs that satisfy a set of requirements.

The CS contacts the VMCR to choose the best available
VMIs, considering the requirements specified in the RADL
document. The CS also uses the CC layer to obtain all the
information about the available cloud infrastructures. At this
point the CS selection task is two-fold. It must select the best
image from the results provided by the VMCR and the best
cloud infrastructure. In some cases the best images could not
be compatible with the best cloud deployment, and the CS
must balance in order to select the best combination to
achieve the best results.

The CS must also take into account the different SLAs of
all the components of the systems. The SLA is a broad
concept that must cover many kinds of system features:

519

• Authorization: the CS must check if a user has
proper credentials to access the different clouds.

• Cloud features: The list of capacities provided by the
cloud infrastructure to the user: number of cores,
available memory, transfer bandwidth, etc.

• Economics: The prices of the different infrastructure
components. If different cloud infrastructures are
available, the economics are a key issue in order to
select the most suitable resources at the lowest price.

• Co-allocation features: Some applications may
require all the VMs to be deployed in the same cloud
infrastructure. Other applications without these
restrictions can use mixed cloud infrastructures.

Other important aspects related to the quality of service
(QoS) must be considered when selecting the cloud (or
clouds) where the deployment is made (e.g. selecting the
closest cloud infrastructure and the VMI to minimize the
time to transfer the image, or selecting the VMI with the
specific format needed by the hypervisor to avoid an
additional step to convert the image).

Finally the last component is the Contextualizer and
Configuration System (CCS). This element is in charge of
the installation and configuration of all the required software
in all the VMs in order to accomplish the requirements of the
RADL document. The CCS has two different components:

The first one is the Configuration Manager (CM) that
coordinates the installation among different cloud
deployments. It stores historical data about the installation of
the software in order to provide information to the IM about
the time needed to install some specific software.

The second component is the configuration service that is
in charge of the effective installation of the software in the
VMs. This service provides a small set of functions to ease
the creation of the VAs by installing and configuring all the
required software in the VMs. It can also configure the set
of VMs as a whole to work as a cluster. These services can
also be used from the application layer in order to install or
configure some application specific features in the VMs.

The configurator service provides three functions: the
first one enables ssh access without password among a set of
machines (usually required in the configuration of any
cluster). The second function is an interface to launch the
contextualizer in the specified nodes, enabling to install and
to configure the required software. The third function
provides a list of the installable applications to the IM.

This service uses two approaches to contextualize and
configure the VMs. The first one is used in the local clouds,
where the configuration service is deployed as part of the
architecture. In this case the application must contact this
service to configure all the VMs. The second approach is
used in the case of external clouds where the configuration
service cannot be deployed due to the provider’s restrictions.
This approach is based on the idea that every deployed cloud
infrastructure will have at least one VM with a public
network interface. In these cases the IM connects to this
service by the public interface and contextualizes and
configures all the VMs.

B. Functionality
The steps needed to deploy an infrastructure in a cloud

environment using the IM are the following:
1. The application layer provides the IM with the RADL

describing the features of the infrastructure.
2. The IM uses the CS to contact the VMCR in order to

select the most suitable images.
3. The CS contacts the CC to get the information about the

available cloud deployments.
4. The CS contacts the CM to get information about the

available applications that can be installed in the VMIs.
The IM combines the information about the VMIs, the
cloud list, and installable applications with the SLAs
information, trying to get the best combination of image
– cloud deployment to create the infrastructure denoted
by the RADL document (the current version of the IM
only considers the QoS parameters related to the
proximity of the VM image to the cloud infrastructure).
If the IM detects that any of the applications is not
installed in the VMIs, and cannot be installed, it will
notify the caller application.

5. In some cases the CS may select an image that doesn’t
have all the applications requested in the RADL
document, and the IM must use the CCM in order to
install all the needed applications. The CCM must test if
the configurator service is enabled in the cloud
deployment selected. If it is, the CCM will contact it.
Otherwise the CCM must obtain a public IP address of
one of the launched VMs in order to connect to it to
launch the command-line version of the configurator.

6. At this point the IM has deployed the infrastructure. The
caller application can contact the IM to obtain all the
information required to access and use the infrastructure.

7. The last step is application dependent, so the upper level
performs it. The application must contact again the
configurator service in order to configure the software
installed in the nodes, e.g. to configure a PBS cluster, or
a Hadoop cluster, or some other specific software.

V. CASE STUDY: CREATE A HADOOP CLUSTER
To demonstrate the functionality of the IM, it has been

used to automatically deploy a Hadoop cluster consisting of
5 nodes. A high level application has been developed that
uses the functionality provided by the IM. The application
uses the next RADL document to create the infrastructure:
network publicNet (outbound = 'yes')
network privateNet
system (cpu.arch='i686' and cpu.count>=1 and
memory.size>=512M and
net_interface.0.connection='publicNet' and
net_interface.1.connection='privateNet' and
disk.0.os.name='linux' and
disk.0.applications contains (name='hadoop')
) 1
system (cpu.arch='i686' and cpu.count>=1 and
memory.size>=512M and
net_interface.0.connection='privateNet' and
disk.0.os.name='linux' and
disk.0.applications contains (name='hadoop')
) 4

520

This RADL file describes two different kinds of
machines. Both of them have similar requirements (at least
one 32-bit CPU, 512 MB of RAM, with Linux OS and
Hadoop installed). The only difference between them is that
the first system has two network interfaces (a public one and
a private one), while the second system has only a private
network interface.

We used a testbed with two different cloud deployments
using OpenNebula 2.2 software. The first one (kefren) has 18
Xeon dual-processor nodes and uses VMware hypervisor.
The second cluster (dellblade) is composed of 4 dual-
processor nodes with 4 cores and the KVM hypervisor.

The VMCR service has two registered Linux images.
The first one is a VMware image located in the kefren front-
end node and the second one a KVM image located in the
dellblade. Both images are a fresh Ubuntu installation.

These are the steps needed to complete the process of
deploying the fully functional Hadoop cluster using the IM:
1. The client application sends a “create infrastructure”

request with the previous RADL document.
2. The IM contacts the VMCR and obtains the list of the

available images. None of them has Hadoop installed.
3. The CS contacts the CC to obtain the information about

the cloud infrastructures available.
4. The CS selects dellblade and the image located in the

dellblade front-end node, because it is the most powerful
cloud infrastructure.

5. The IM contacts the CC to submit the VMs.
6. The IM must contact the configurator and contextualizer

service in order to install Hadoop. Java is also installed
because it is a requisite in the Hadoop installation. All
the installation is managed by the contextualizer.

7. Once the VMs are fully installed, the application must
contact the configurator in order to configure all the
individual VMs as a Hadoop cluster.

8. We have a fully functional Hadoop cluster! At this point
the caller function can connect to the front-end node to
operate with the Hadoop cluster.

From the point of view of the client application that
contacts the IM, it must only call the function to create the
infrastructure, and periodically call the function to get the
information about the infrastructure. This function informs
about the status of the deployment process and gives all the
information needed to connect with the VMs once they have
been correctly deployed.

VI. CONCLUSIONS AND FUTURE WORKS
This paper described a software architecture designed to

simplify the management of infrastructures in Cloud
environments, enabling the scientists an easy access to Cloud
technology. Different elements composing the architecture
have been addressed: The RADL language for describing the
features required by the virtual computing infrastructure. The
VMCR manages information about VMIs to be used in the
deployment, enabling to select the most suitable image to
create the virtual appliances. If these images lack some
required software, the contextualizer component enables to
easily install the required software, with minimal user
intervention. Finally, the IM has been described as the core

component of the architecture. This central element connects
to the rest of the components in order to orchestrate the
creation of the infrastructure.

This work describes the initial version of the IM. As a
prototype it must evolve to achieve all the objectives of the
proposed architecture. It currently considers only some
simple SLA elements such as the user authorization. Other
CC connectors will be added to expand the functionality
possibly by means of aggregation APIs such as jClouds or
Apache LibCloud. Moreover automatic elasticity features
can be introduced, to scale out or scale in the infrastructure
according to the resources needed at each time. Also creating
algorithms for the selection of the proper cloud deployment
is an issue to be addressed.

The usage of abstraction mechanisms for automated
deployment of self-configurable infrastructures for the Cloud
paves the way for an enhanced interoperability. This is of
special importance in sky computing scenarios, with multiple
Cloud providers. Therefore, the development of generic and
customizable components for the Cloud contributes to the
ecosystem of tools to embrace the adoption of Cloud
technologies by the scientific community.

ACKNOWLEDGMENT
The authors wish to thank the financial support received

from The Spanish Ministry of Science and Innovation to
develop the project “Servicios avanzados para el despliegue
y contextualizacion de aplicaciones virtualizadas para dar
soporte a modelos de programación en entornos cloud”, with
reference TIN2010-17804, and to the “Vicerrectorado de
Investigación de la Universitat Politècnica de Valencia” for
the project PAID-06-09-2810.

REFERENCES
[1] Crosby, S., et al.: Open Virtualization Format Specification (OVF).

Technical Report DSP0243, Distributed Management Task Force,
Inc. (2009)

[2] Fontán, J., Vázquez, T., Gonzalez, L., Montero, R. S., and Llorente, I.
M.. “OpenNEbula: The open source virtual machine manager for
cluster computing”, in Open Source Grid and Cluster Software
Conference - Book of Abstracts, San Francisco, USA. (2008).

[3] OCCI working group within the Open Grid Forum. “Open Cloud
Computing Interface – Infrastructure” (http://ogf.org/documents/
GFD.184.pdf)

[4] Raman, R., Livny, M., Solomon, M. “Matchmaking: Distributed
Resource Management for High Throughput Computing.” in
Proceedings of the Seventh IEEE International Symposium on High
Performance Distributed Computing, pp. 28-31, (1998).

[5] Keahey, K. and Freeman, T., “Contextualization: Providing One-
Click Virtual Clusters,” in Fourth IEEE International Conference on
eScience, pp. 301-308. (2008)

[6] Keahey, K., Tsugawa, M., Matsunaga, A., and Fortes, J., “Sky
Computing,” IEEE Internet Computing, vol. 13, no. 5, pp. 43-51.
(2009).

[7] Moltó, G., Hernández, V.: “Management and Contextualization of
Scientific Virtual Appliances”, in Cloud Futures 2010: Advancing
Research with Cloud Computing. (2010)

[8] Carrión, J. V., Moltó, G., De Alfonso, C., Caballer, M., Hernández,
V., “A Generic Catalog and Repository Service for Virtual Machine
Images”, in: 2nd International ICST Conference on Cloud Computing
(CloudComp 2010), (2010).

521

