
Combining Grid and Cloud Resources for Hybrid Scientific Computing Executions

Amanda Calatrava, Germán Moltó, Vicente Hernández

Instituto de Instrumentación para Imagen Molecular (I3M).
Centro mixto CSIC - Universitat Politècnica de València - CIEMAT

Camino de Vera s/n, 46022 Valencia, España
Email: amcaar@ei.upv.es, {gmolto,vhernand}@dsic.upv.es

Abstract—The advent of Cloud computing has paved the
way to envision hybrid computational infrastructures based on
powerful Grid resources combined with dynamic and elastic
on-demand virtual infrastructures on top of Cloud deploy-
ments. However, the combination of Grid and Cloud resources
for executing computationally intensive scientific applications
introduces new challenges and opportunities in areas such
as resource provisioning and management, meta-scheduling
and elasticity. This paper describes different approaches to
integrate the usage of Grid and Cloud-based resources for
the execution of High Throughput Computing scientific ap-
plications. A reference architecture is proposed and the the
opportunities and challenges of such hybrid computational
scenarios are addressed. Finally, a prototype implementation
is described and a case study that involves a protein design
application is employed to outsource job executions to the
Cloud when Grid resources become exhausted.

Keywords-Cloud computing; Grid computing;

I. INTRODUCTION

Grid computing [1] has enabled the deployment of large

scale distributed computational infrastructures among re-

search institutions, such as the WLCG (Worldwide LHC

Computing Grid). This has leveraged collaborations across

institutions in the shape of Virtual Organizations (VOs),

which have faced research challenges beyond what was

possible before these infrastructures existed.

Grid infrastructures deliver the computational power re-

quired for resource-starved scientific applications. However,

Grid technologies have also revealed some drawbacks in

its current implementation approaches. Currently, the access

to the large scale Grid infrastructures requires approval

from scientific committees which evaluate the impact and

scientific merit of the applications requesting access to

the Grid. This procedure discourages scientists who might

require immediate access to a large pool of computational

resources on a specific time frame (because of a conference

deadline, for example).

In addition, Grid resources are configured by the remote

site administrators and, therefore, the scientific jobs must

be previously adapted in order to satisfy the appropriate

hardware and software environment (i.e, Operating System,

required libraries, CPU architecture, etc.) to guarantee the

successful execution of the application on the remote re-

source. This has been a major drawback of Grids, since

scientists need to have substantial knowledge of the remote

execution environments and Grid middleware to properly

adapt the applications to these environments. Frequently,

they are reluctant to adapt their applications to the underly-

ing computational infrastructure.

The advances in virtualization technologies and hyper-

visors have opened new avenues to pre-package scientific

applications into Virtual Machines (VM) which encapsu-

late the required hardware and software configuration for

their execution (into the so called Virtual Appliances),

thus decoupling the physical hardware from the application

execution, a dependence that exists when using the Grid.

The development of Virtual Machine Management (VMM)

technologies has fostered the realization of elastic computa-

tional infrastructures in the shape of a pool of VMs that can

grow and shrink as per-user demand and that execute on top

of a physical computing infrastructure. This is the basis of

Cloud computing which, according to the NIST definition,

is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications and

services) that can be rapidly provisioned and released with

minimal management effort or provider interaction [2].

This paper advocates for the combined usage of Grid

and Cloud resources to execute computationally intensive

scientific applications. By leveraging the combined ben-

efits of Grid platforms (high performance, large pool of

resources, etc.) and Cloud platforms (elasticity, on-demand

access, customizability, etc.) an increased computational

performance can be obtained. For that, it is important to

envision the different scenarios on which both technologies

can coexist. This paper describes three different scenarios on

which the Cloud can be used alongside the Grid to increase

computational efficiency for High Throughput Computing

(HTC) scientific applications. It focuses on the features to

be considered when deploying a virtualized infrastructure

and meta-scheduling the jobs on a hybrid Grid/Cloud in-

frastructure. It then introduces a modular architecture and

describes the technologies employed.

The remainder of the paper is structured as follows.

2011 Third IEEE International Conference on Coud Computing Technology and Science

978-0-7695-4622-3/11 $26.00 © 2011 IEEE

DOI 10.1109/CloudCom.2011.73

494

First, section II provides an overview of related work in

hybrid usage of Grid and Cloud resources. Next, section

III describes the three proposed models of integrating Grid

and Cloud resources for job executions. Then, section IV

introduces a case study using a protein design application

which uses one of the proposed models of integration to

assess the benefits of the hybrid approach. Finally, section

VI concludes the paper and points to future work.

II. RELATED WORK

There are previous works in the literature that aim at

combining the usage of Grid and Cloud infrastructures. For

example, in [3] the authors focus on the integration of High

Performance Grids with Cloud environments, determining

different usage models for applications (acceleration, con-

servation and resilience). For that, they use the CometCloud

software, an autonomic framework to execute application

on dynamically federated hybrid infrastructures based on

Grids and Clouds. In [4], the authors study the usage of

hybrid infrastructures for the execution of workflows, where

the scheduling criteria are chosen through the SLA (Service

Level Agreement) specified by the user from these ones:

runtime, execution cost, reliability and network bandwidth.

Other works in the literature also address the integration

of Cloud concepts in Grid infrastructures, such as the

virtualization of Grid resources, as described in [5] or the

illusion of elastic Grid infrastructures using a Cloud provider

as a backend when peak demands of computing resources

are requested, as proposed in [6].

There are also different approaches, like in [7], where

the ProActive middleware is employed to perform High

Performance Computing (HPC) executions of applications

on hybrid infrastructures based on Grid and Cloud resources.

SAGA [8] is an API that enables applications to be sub-

mitted to Grid and Cloud resources without application

modification. However, the decision of the infrastructure

to be employed relies on the user. Swarm [9] is a job

manager that enables application execution on three different

infrastructures (Grid, Windows Server Cluster and Cloud).

However, for simplicity the Virtual Machines are assumed

to be already set up before the scheduling process, thus ne-

glecting the typical overheads on Cloud deployments such as

deployment of Virtual Machines and their contextualization

and configuration.

This paper focuses on hybrid meta-scheduling for High

Throughput Computing (HTC) applications rather than High

Performance Computing (HPC).

III. CONCURRENT USAGE OF GRID AND CLOUD

INFRASTRUCTURES

The usage of computational resources from mixed infras-

tructures can be achieved by means of pluggable components

to access each infrastructure linked to an orchestrating cen-

tral manager that coordinates both the resource provisioning

and the meta-scheduling of jobs on these resources.

For that, Figure 1 depicts the reference architecture of a

hybrid Grid/Cloud infrastructure, together with the required

components for job meta-scheduling, as considered in this

paper. On the left hand side, the user wants to execute

an HTC application, such as a parameter sweep study that

consists of many independent jobs. The user submits the

set of jobs to the Enactor module together with the job’s

hardware (architecture, available RAM, etc.) and software

requirements (OS, application dependencies, etc.). The En-

actor decides the most appropriate infrastructure for each

job and orchestrates the Grid and the Cloud connectors to

perform the execution.

Executing the jobs on a Grid can be directly performed

via a Grid metascheduler such as GridWay or GMarte [10]

and has been extensively studied in the literature. However,

scheduling jobs to be executed on a Cloud infrastructure

is a three-stage process. First of all, the infrastructure of

VMs must be deployed on top of the physical infrastructure.

Next, the jobs must be allocated to be executed on the VMs.

Finally, the infrastructure of VMs must be decommissioned

(undeployed) if there are no pending jobs to be executed.

Concerning the policies of deployment and undeployment

of VMs, certain parameters should be considered such as

the number of pending jobs, their estimated duration, the

current state of the Grid infrastructure and the allocated

budget for the executions, when requesting computational

resources from a Cloud provider. This is responsibility of

the Cloud Enactor, depicted in detail in Figure 2.

When performing job executions in a Cloud environment,

the architecture on which this paper is based includes a

catalog and repository service of Virtual Machine Images

(VMIs) such as the Virtual Machine Image Repository &

Catalog (VMRC) [11] that enables to search for the most

appropriate VMI to execute a given job considering both

the hardware and software requirements of the job. The

architecture includes a contextualization service that is in

charge of configuring the VMIs to deploy the appropriate

software dependences for the execution of an application

on a VM. For example, when a job that requires the Java

Virtual Machine to be executed is submitted to the Cloud

enactor, this component would try to find an appropriate

VMI that already satisfies the job requirements. If no one is

found, then the contextualization service would be employed

to dynamically deploy Java onto the VM at runtime before

the execution of the job. Notice that the combined usage

of the contextualization service and the VMRC service

reduces the average contextualization and configuration time

of VMIs since this phase might only be performed once if

the configured VMI is later stored in the VMRC and used

for subsequent executions.

495

Figure 1. Combined management of Grid and Cloud resources for scientific application execution.

A. Parameters involved in the meta-scheduling process

The concurrent usage of Grid and Cloud resources re-

quires analyzing the parameters involved in the meta-

scheduling process in order to decide the most convenient

infrastructure and the computational resources that are able

to support the execution of the job. There are common

parameters to be considered for both infrastructures to per-

form hybrid meta-scheduling on Grid and Cloud infrastruc-

tures and specific items, specially for Cloud infrastructures.

Firstly, we analyze the most important common parameters:

• Estimated execution time of the job. This should be

an estimator of the makespan of the job in a concrete

platform in order to extrapolate the required time on

other platforms. If appropriate, the execution of multi-

parametric batch jobs can be instrumented to have a

historical background of the average execution time of

the jobs on a particular infrastructure. A fine grain detail

of the execution time of the jobs allows, for example, to

schedule shorter jobs to slow computational resources

when scheduling groups of inhomogeneous jobs.

• Data transfer time. The time requires for file staging

from user space into the computational infrastructure

(and vice versa) needs to be calculated in order to com-

pute the overhead of performing a remote execution.

A data-intensive application might not benefit from

a remote execution if a 1 GByte database should be

transferred for a 5 minute processing. Both the required

input files to the job and the bandwidth between user

space and the remote computational resources is em-

ployed to estimate this value. Notice that the bandwidth

can be dynamically recomputed after each transfer, so

that the meta-scheduler can adapt to network changes.

• Application dependences. Scientific applications rely

on software dependencies such as numerical libraries,

software packages and specific operating systems.

Therefore, application dependences should be consid-

ered when scheduling jobs since this information is

employed to find computational resources that (partly)

match these dependences. The hardware dependences,

such as CPU architecture or available RAM are manda-

tory for a successful and efficient execution.

• Type of job. The type of application determines how

appropriate a computational resource is. An HPC par-

allel application would certainly benefit a dedicated

cluster on a Grid with low latency communications

among the nodes. However, independent serial jobs can

seamlessly run on virtualized resources from a Cloud.

These are the most important parameters that should be

considered when provisioning virtualized resources from a

Cloud infrastructure and scheduling jobs to be executed on

them. Notice that depending on the Cloud provider, some

of these could be neglected. For example, the budget only

plays a role for a public Cloud provider.

• Access time to the Catalog of VMIs. This component

enables to choose the most appropriate VMI consid-

ering the application requirements. The time required

to interact with this service involves mainly the VMI

transfer from the catalog to the deployment site in

the Cloud, which merely depends on the state of the

underlying network and the VMI size.

• Deployment time of the VMs. This is the time required

by the VMM to deploy a new VM on top of the physical

496

infrastructure. With the advent of Green Computing

techniques, which enable to dynamically turn on and

off physical resources where the VMs are executed, this

time might get increased to include the time required

to boot up the physical node and the VMI.

• Contextualization and configuration time. This phase

enables to deploy the appropriate software dependen-

cies of the application and the application itself onto the

VM in order to satisfy the job software requirements.

• Availability of already-deployed VMs. A user might

already have deployed and contextualized VMs in a

Cloud (due to previous executions, for example). There-

fore, under these circumstances the overhead introduced

by the deployment of new VMs would be alleviated.

• User budget. Accessing a public cloud on a pay-

per-use basis requires defining a maximum budget

to be spent on provisioning resources. This imposes

restrictions on the amount of VMs to be deployed and

the time these VMs should be active.

• Billing policies. If the provider bills for complete hours,

the allocation of jobs could try to refine scheduling

decisions to avoid a 61-minutes execution, since two

hours would be charged. Alternatively, there is no point

in shutting down the VMs if a full hour has already

been paid. These could be used as spare resources to

execute jobs.

• Time slots. If the Cloud provider defines certain time

slots with different prices, these should be consid-

ered when deciding to provision and release virtual

resources, trying to minimize the budget consumption

of the user while maintaining an appropriate QoS.

• Trust and reputation. In a multi-cloud scenario, where

virtual computational resources can be provisioned

from different Cloud providers, trust and reputation

play a fundamental role. The trust might be estimated

by a historical log of failures obtained when using a

certain provider, the adherence to the Service Level

Agreement (SLA) and the QoS obtained.

B. Models of Grid/Cloud Integration

There are different scenarios in which a hybrid Grid/Cloud

infrastructure introduces potential benefits for scientific com-

puting. We have identified three different scenarios that will

be analyzed in this subsection.

1) Outsourcing to the Cloud when Grid resources become
exhausted: A Cloud infrastructure would be used when

the Grid infrastructure cannot cope with the workload (in

terms of number of jobs) to be executed by the user.

Despite the large scale of Grid infrastructures, the users

are typically restricted to the resources from one or several

VOs. Therefore, depending on the current workload of

the accessible resources, the user’s jobs might suffer from

resource starvation. This is where the Cloud infrastructure

can temporarily alleviate this problem, with its ability to

Figure 2. Detailed view of the Cloud Enactor.

elastically deploy a virtual computational infrastructure on

which to delegate the execution of additional jobs until

the Grid infrastructure is ready to accept the execution of

new jobs. Outsourcing computations to a Cloud enables to

complement the computational power of Grid with the on-

demand elasticity provided by the Cloud. This allows to

maintain an appropriate quality of service when facing an

unexpected peak workload or an outage.

This scenario proceeds as follows. The meta-scheduling

process decides that a job should be executed on the Grid.

For that, the job is delegated to the appropriate enactor in

our architecture. When the job is scheduled to be submitted

to the Grid, the enactor detects that the infrastructure has

no available execution slots, by querying the information

system (MDS, BDII, etc.) Since the job cannot be executed

the Grid metascheduler notifies the enactor. If there is no

available Cloud infrastructure, the execution of the job

would be postponed until a free execution slot could be

found. However, if a Cloud infrastructure can be accessed,

the enactor delegates the job into the Cloud metascheduler

which requires the appropriate virtual infrastructure for the

execution of the job(s) onto the virtual machines.

2) Using the Cloud when job requirements cannot be
met: Scientific applications might involve a large number

of software and hardware dependencies. If no computational

resource is found that satisfies the requirements of the job,

then it cannot be executed. In a Grid infrastructure, this

problem arises when complex software must be executed

on a machine that is not under the control of the user. It

is not feasible to try to adapt the computational resource to

the requirements of the jobs. For the hardware requirements,

this is definitely impossible. For the software requirements,

497

the Grid user might try to deploy the software dependences

at runtime before the execution of the job although the

installation might be tricky and since no admin access to

Grid resources can be achieved. This is where the Cloud

infrastructure helps to solve this problem.

This scenario proceeds as follows. After analyzing the

hardware and software dependencies of the job, the infor-

mation system of the Grid is queried in order to find the

most appropriate computational resource that matches the

specified requirements. If there is no available Grid resource

to execute the job, the enactor delegates the execution of

the job to the Cloud scheduler, which would deploy the

appropriate virtual infrastructure to support the execution of

the job.

3) Using the Grid and the Cloud for workload distri-
bution: This scenario involves using both the Cloud and

the Grid infrastructure as shoulder-to-shoulder providers of

computational power for the concurrent execution of jobs.

This involves a workload distribution among both infras-

tructures in order to access a larger pool of computational

resources to accelerate the execution of jobs. A workload

distribution among separate infrastructures allows executing

the jobs with a higher throughput, since a larger number of

resources is concurrently used (depending on the availability

and budget of the user). This is of special importance for

multi-parametric batch jobs, where independent jobs are

executed.

In this scenario, the enactor is in charge of dispatching

jobs to the Grid and the Cloud schedulers, trying the balance

the load among both infrastructures. The desirable outcome

in this model consists in maximizing the throughput of both

infrastructures in terms of resource usage, that is, trying to

increase the rate of finished jobs per time unit. This might

involve greedy approaches that try to take advantage of the

peak computational capabilities obtaining as much resources

as possible from both infrastructures.

C. Assessing the mixing of Grid and Cloud infrastructures

For the sake of a better explanation of the benefits of

a hybrid Grid/Cloud infrastructure, this section details the

conditions concerning the first execution model described

in the previous section. This one will be employed for the

execution of the case study in section IV.

Figure 3 depicts the workload conditions, based on al-

located jobs versus time, of a combined usage of a Grid

infrastructure and a Cloud infrastructure where the latter is

only used when the former has no free available resources

left. A High Throughput Computing scheme is assumed,

where a certain pool of jobs is available to be executed by

the enactor or a flow of jobs arrives to the meta-scheduler.

The jobs are assumed to have a similar execution time. This

is precisely the case of parameter sweep applications and

case studies that arise in many scientific and engineering

applications.

(a) Ideal situation

(b) Real situation

Figure 3. Workload conditions of Grid and Cloud infrastructures under
ideal and real situations.

On the one hand, Figure 3.a assumes ideal conditions in

which no overheads exists when dealing with the compu-

tational infrastructures and the meta-scheduling process is

perfect, distributing the workload evenly among the infras-

tructures so that it has the highest rate of job executions. The

job allocation begins at instant 0 (depicted with an offset

from the y-axis for the sake of clarity) and it is assumed

to involve no extra time. Under these ideal conditions, the

only action that consumes time is the execution of the jobs.

A group of jobs are initially allocated to the Grid until all the

execution slots are filled. Immediately, the Grid saturation

is detected and the virtual infrastructure is deployed in

negligible time (ideal conditions) and jobs are allocated to

the VMs. When the jobs finish the execution, other pending

jobs can be scheduled on the spare computational resources.

On the other hand, Figure 3.b includes all the overheads

discarded in the previous figure, thus depicting a realistic

498

situation. The meta-scheduling process starts at time 0,

where a certain time (A) is involved in the initial setup

of the scheduling of the jobs. This depends on the Grid

infrastructure and the meta-scheduler itself. Scheduling the

jobs into the Grid infrastructure requires querying the Grid

information systems (MDS, BDII, etc.) to get the most

up-to-date information about the current state of the Grid

infrastructure to better decide how to distribute the jobs

among the available computational resources. Then, jobs

have to be submitted for execution. This requires a certain

time (G3). The number of resources available to the user

might impose an upper limit to the degree of concurrency in

the execution of jobs, thus defining the maximum number of

jobs concurrently executed on the Grid (G1). The amount of

time involved in executing the jobs in the Grid is depicted

in the figure by G2 and it depends on the computational

load of the jobs and the capabilities of the Grid resources.

Notice that the differences of the computational capabilities

of the Grid resources might introduce a variability in the

execution time of the jobs. This would produce a staircase

effect in the slope of the job allocation to the Grid, since

jobs finished would create free execution slots for new jobs

to be allocated.

When the enactor module detects that the Grid is over-

loaded it must decide to provision and use Cloud resources.

This takes a C1 time. This involves provisioning the com-

putational resources from a Cloud provider (or a Virtual

Machine Manager). C2 represents the capacity of the allo-

cated Cloud infrastructure. This depends on the budget of the

user, which might define the maximum number of concurrent

Virtual Machines (allocated computational resources) to be

deployed. Once the virtual infrastructure is set up, it is time

to contextualize the VMs in order to support the execution

of the scientific application and to allocate the C2 jobs on

them. This step is performed by the Cloud scheduler, which

requires a C4 time.

The C3 interval corresponds to the time invested in the

execution of the jobs in the Cloud. This might be larger than

the time invested in executing the same number of jobs in a

Grid due to the overhead of virtualization and the fact that

Grid resources tend to be more computationally powerful

than VMs in a Cloud. C0 stands for the time since jobs

have been delegated to the Cloud infrastructure until new

execution slots are available in the Grid infrastructure. A

short C0 means that it does not pay off to outsource to

the Cloud since by the time the virtual infrastructure is

ready, the Grid resources would be free. The time interval

SAT indicates that both infrastructures are saturated and,

therefore, cannot execute new jobs. This is a desirable

situation from the point of view of resource usage.

Notice that Figure 3.a assumes that the Grid infrastructure

has a larger number of job execution slots than the Cloud,

whereas Figure 3.b assumes a Cloud able to provision a

larger number of VMs than execution slots available in

the Grid. This distinction enables to analyze the behavior

from two different point of views, depending on the budget

of the user to provision Cloud resources and the number

of Grid resources available to execute the jobs. The latter

typically depends on the availability to access the resources

at different VOs within a Grid. Considering that the default

policy of Amazon EC2 is to allow a maximum of 20

concurrent instances (VMs) per EC2 region, a large Grid

deployment might offer larger computational capacity to

increase the number of simultaneous jobs in execution.

IV. CASE STUDY

In order to assess the behavior theoretically studied in

the previous section, this section analyses the execution of

a case study on a hybrid Grid/Cloud environment. A com-

putationally intensive scientific application which performs

the optimization of protein with target properties on both

sequential and parallel platforms [12] has been employed.

The case study is composed of multi-parametric batch jobs

where, in this study, different random seeds are employed

to perform the optimization of the same protein. The case

study has been specially downsized to get job executions in

the order of minutes (instead of hours) to better focus on

job scheduling.

The application uses Monte Carlo Simulated Annealing

(MCSA) to explore the conformational space of rotamers

in a bi-objective optimization process that (1) attempts to

obtain a stable protein by minimizing its energy and (2)

pursues the functionality of adhering to a certain ligand.

A synthetic protein of 1000 positions is employed. The

optimization is an iterative procedure where each iteration

consists of evaluating the suitability of a certain rotamer

(the three-dimensional structure of an amino acid) in a

position, from the set of candidate rotamers that could be

in that same position. This stochastic procedure for protein

design typically converges to the most stable protein after

thousands of iterations. Therefore, its computational cost can

exceed the resources of a single organization. The usage

of hybrid Grid/Cloud infrastructures can greatly benefit this

application in order to access a larger pool of computing

resources. The application has been developed in the C

programming language and it requires a C compiler and the

MPICH Message Passing Interface (MPI) libraries.

Regarding the hybrid infrastructure, we have relied on

computational resources available within our research group

for the sake of experimentation with hybrid deployments.

The Grid infrastructure is composed of an HPC cluster of

PCs with the Globus Toolkit 4.2.1 installed with a total 50

nodes dual-processors Intel Xeon 2.80 Ghz with 2 GBytes

of RAM per node. The GMarte meta-scheduler [10] is

employed to execute on the Grid using a greedy approach

that selects the most appropriate resource for the execution

of each job. In scenarios on which jobs from multiple

users are randomly submitted to a single meta-scheduler,

499

a global scheduling of jobs is unfeasible. GMarte considers

the current load of computational resources together with

the dynamic state of the network to choose the most suitable

resource (trying to minimize the job makespan). The Cloud

infrastructure is based on a deployment of OpenNebula 2.2,

using the VMWare hypervisor, on a cluster of PCs with 20

dual-processor Pentium Xeon 2 GHz with 1 GByte of RAM.

Since the clusters are also employed for the execution

support of other research projects, this case study will

employ a dedicated subset of nodes. 10 nodes for the Grid

(G1) and 4 nodes for the Cloud (C2). Each job will run on a

single node. Therefore, the maximum number of concurrent

jobs corresponds to the number of available nodes in the

hybrid Grid/Cloud infrastructure (14). Other jobs will only

be processed as soon as the running jobs finish. In addition,

single-CPU identical VMs will be deployed. A round-robin

strategy will be employed to allocate the jobs on the VMs,

since the will be equally capable. The deployment of the

VMs that host the execution of the application will use a

VMI that already contains a pre-installation of MPICH2

and the application itself. The VMI will be cataloged in the

VMRC catalog. The number of VMs to deploy will be the

minimum between the capacity of the physical infrastructure

and the number of pending jobs. The VMs will be deployed

until the end of the executions in order to avoid repeating

the process of VM deployment and contextualization.

Starting and monitoring the jobs is made through GRAM

(Grid Resource Allocation Manager) in the case of the Grid.

For the Cloud, we use the Opal 2 Toolkit [13] a web services

wrapper that enables to start and monitor applications inside

the VM. This component will be deployed at runtime

through in-house developed contextualization software. The

case study involves 30 protein design jobs with different

random seeds. The jobs have a similar duration.

V. RESULTS & DISCUSSION

Figure 4 shows the distributions of the tasks between the

two infrastructures (Grid and Cloud) using the approach of

outsourcing the job executions to the Cloud when Grid re-

sources become exhausted. In order to assess the behavior of

the execution model, the results analysis has been performed

considering the time intervals mentioned in section III-C.

According to the results obtained, a single node of the

Grid delivers better performance than a VM deployed on the

Cloud infrastructure since a job in that Grid takes an average

6 minutes (G2) while in a VM in that Cloud takes an average

8 minutes (C3). Notice that G2 and C3 is the execution time

of the set of jobs submitted to a particular infrastructure.

However, since the jobs are concurrently executed, these

values also represent the execution time of a single job on

each infrastructure. This time difference together with the

fact that the Grid has more job execution slots, made the

Grid the preferred decision by the hybrid meta-scheduler. A

total of 22 jobs were executed on the Grid.

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200

A
llo

ca
te

d
Jo

bs

Time (seconds)

Distribution of Tasks using the First Model

Grid
Cloud

Figure 4. Distribution of tasks when outsourcing the job executions to the
Cloud when the Grid resources are exhausted.

Comparing the ideal and the real situations, the initial-

ization time of the hybrid meta-scheduling process A is

negligible. Focusing on the time intervals concerning the

Grid it can be seen that the real executions shows a very

similar behavior to the theoretical approach. The G3 interval,

devoted to the allocation of jobs to the Grid and transferring

the input files to the computational resources, is reduced

compared to the time dedicated to the execution of the jobs,

which is considerably larger (G2).

Concerning the intervals related to the execution of jobs

in the Cloud, the interval C1 involves the following steps:

• Detecting the exhaustion of the Grid infrastruc-
ture. It involves querying the Grid information system

(MDS) to find out that there are no spare computing

resources left, thus involving a negligible time.

• Deploying the VMs. This is the time since a request

to the VMM is sent until the VMs are up and running

and the system services (like SSH) ready. This involves

an average 150 seconds. The OpenNebula configuration

in the cluster must perform an SSH-based copy of the

VMI to the internal node before booting it up.

The time interval concerning the allocation of jobs to the

cloud C4 involves the following phases:

• File staging. This involves uploading the files required

to contextualize the VMI. Since the VMI has the appli-

cation pre-installed, minimal configuration components

must be uploaded. This involves a negligible time.

• Contextualization. This phase will be in charge of

deploying Apache Tomcat and Ant, together with Opal,

and later deploy the scientific application to be used by

Opal. This takes an average 80 seconds.

It is important to point out that the VMs are concurrently

deployed in order to simultaneously perform the contextu-

alization time of each VM. Besides, they are not shut down

until the end of the execution of the case study. This is

500

why when using the Cloud for the second time (at time

instant 780) the interval C1 no longer appears since the VMs

are already deployed. Also, the interval C4 is halved since

the VMs are already contextualized and ready to accept job

execution. The C0 value is large enough for the hybrid meta-

scheduler to consider scheduling jobs to the Cloud, since

the contextualization time of the VMs is relatively small

compared to the time invested in the execution of the jobs.

An important aspect is the time that both infrastructures

are at a peak load (SAT), since this is an evidence that

resources are being fully utilized and proper scheduling

with reduced overhead is being performed; in this case,

a 78.3% of the time. Outsourcing job executions to a

Cloud platform whenever the Grid infrastructure resources

become exhausted enables to deliver additional power to the

execution of computationally intensive HTC applications.

This reduces the total execution time of the case study.

The execution approach involved in this case study can be

seamlessly extrapolated to larger studies and infrastructures.

VI. CONCLUSIONS AND FUTURE WORK

This paper has studied the advantages of using a hybrid

infrastructure composed by Grid and Cloud resources. These

two technologies can work together providing the scientific

community with an environment in which the researchers

can execute computationally intensive scientific applications.

The proposed prototype is able to efficiently execute HTC

scientific applications on a hybrid infrastructure. A mixed

infrastructure composed of Globus Toolkit resources, for the

Grid, and Virtual Machines deployed through OpenNebula,

for the Cloud, has been evaluated. The scheduling approach

enables to outsource job executions to the Cloud when no

spare Grid resources are available. In addition, other models

of hybrid Grid/Cloud execution models have been covered,

pointing out the benefits of the Cloud in terms of elasticity

and configurability. The usage of hybrid infrastructures

enables to access a larger pool of computational resources

which reduces the execution time of HTC application when

compared to single infrastructures.

The future work involves improving the resource selec-

tion in Cloud platforms, together with studying new usage

models on hybrid infrastructures, specially with the advent

of sky computing where multiple Cloud providers can be

chosen. The studies will be extended to public Clouds such

as Amazon EC2 where network latencies and budget plays

a major role when scheduling jobs to the Cloud.

ACKNOWLEDGMENTS

The authors would like to thank the financial support

received from the Vicerrectorado de Investigación de la

Universidad Politècnica de València for the project PAID-

06-09-2810 and to the Ministerio de Ciencia e Innovación

for the project CodeCloud (TIN2010-17804).

REFERENCES

[1] I. Foster and C. Kesselman, The GRID 2: Blueprint for a new
computing infrastructure. Morgan Kaufmann, 2004.

[2] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” Tech. Rep., 2009. [Online]. Available: http:
//www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf

[3] H. Kim and Others, “An autonomic approach to integrated
hpc grid and cloud usage,” in 2009 Fifth IEEE International
Conference on e-Science. IEEE, 2009, pp. 366–373.

[4] H. Kloh, B. Schulze, A. Mury, and R. Pinto, “A scheduling
model for workflows on grids and clouds,” in Proceedings
of the 8th International Workshop on Middleware for Grids,
Clouds and e-Science, no. December. ACM, 2010, p. 3.

[5] E. Huedo, R. Moreno-Vozmediano, R. S. Montero, and I. M.
Llorente, “Architectures for Enhancing Grid Infrastructures
with Cloud Computing,” in GRIDS, CLOUDS AND VIRTU-
ALIZATION. Computer Communications and Networks, ser.
Computer Communications and Networks, M. Cafaro and
G. Aloisio, Eds. London: Springer London, 2011, pp. 55–69.

[6] C. V. Blanco, E. Huedo, R. S. Montero, and I. M. Llorente,
“Dynamic Provision of Computing Resources from Grid
Infrastructures and Cloud Providers,” in 2009 Workshops at
the Grid and Pervasive Computing Conference. IEEE, May
2009, pp. 113–120.

[7] B. Amedro, F. Baude, and F. Huet, “Combining Grid and
Cloud Resources by Use of Middleware for SPMD Applica-
tions,” Conference on Cloud, pp. 177–184, 2010.

[8] A. Merzky, K. Stamou, and S. Jha, “Application Level Inter-
operability between Clouds and Grids,” 2009 Workshops at
the Grid and Pervasive Computing Conference, pp. 143–150,
May 2009.

[9] S. Pallickara, M. Pierce, Q. Dong, and C. Kong, “Enabling
Large Scale Scientific Computations for Expressed Sequence
Tag Sequencing over Grid and Cloud Computing Clusters,”
in Eigth International Conference on Parallel Processing and
Applied Mathematics (PPAM 2009). Citeseer, 2009.

[10] J. M. Alonso, V. Hernández, and G. Moltó, “GMarte: Grid
middleware to abstract remote task execution,” Concurrency
and Computation: Practice and Experience, vol. 18, no. 15,
pp. 2021–2036, Dec. 2006.

[11] J. V. Carrión, G. Moltó, C. De Alfonso, M. Caballer, and
V. Hernández, “A Generic Catalog and Repository Service
for Virtual Machine Images,” in 2nd International ICST
Conference on Cloud Computing (CloudComp 2010), 2010.

[12] G. Moltó, M. Suárez, P. Tortosa, J. M. Alonso, V. Hernández,
and A. Jaramillo, “Protein design based on parallel dimen-
sional reduction.” Journal of chemical information and mod-
eling, vol. 49, no. 5, pp. 1261–71, May 2009.

[13] S. Krishnan, L. Clementi, J. Ren, P. Papadopoulos, and W. Li,
“Design and Evaluation of Opal2: A Toolkit for Scientific
Software as a Service,” in 2009 IEEE Congress on Services,
2009.

501

