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Abstract. This paper describes the developments made towards the op-
timization of photonic crystal fibers using automated procedures based on
Genetic Algorithms. The large amount of computations involved during
the optimization process demand the usage of Grid technologies that are
able to cope with these computational requirements. This paper describes
the integration of a service-oriented Grid metascheduler and a Genetic Al-
gorithm in order to create an automated tool which is able to optimize this
kind of fibers. This work also provides an evaluation of these computa-
tional techniques for the optimization of the output supercontinuum (SC)
spectrum generated in an optical fiber of a fixed length and fixed disper-
sion properties. The developed tool provides an scalable solution to this
computationally intensive problem, and enable the optimization of other
more complex designs.

1 Introduction

The generation of optical homogeneous spectra covering a range from the near
infrared (IR) to the ultra violet (UV) is known as Supercontinuum (SC) genera-
tion. This phenomenon is usually observed in photonic crystal fibers and it has
been a subject of intense study in the field of temporal nonlinear optics for the
last decade. Nowadays there is a deep understanding of the underlying physics as-
sociated to this process [1, 2], opening a scope for engineering problem proposals.



Since its discovery lots of applications have been found in optical metrology, pulse
compression and white light sources generation, among many others. Our inter-
est here focuses on nonlinear microscopy of biological samples. To excite certain
transition of a given protein or any other biological molecule, this technique needs
very specific wavelengths which, in general, can’t be efficiently provided by any
standard source. Hence, the possibility of maximizing the spectral output in an
arbitrarily chosen spectral window is extremely useful.

This kind of applications can be mathematically stated as an optimization
problem that consists of determining the set of configuration parameters which
yields the best results. Unfortunately, the evaluation of each combination of pa-
rameters is computationally expensive and the exploration of the entire space is
an unfeasible option. In this context, the use of meta-heuristics such as genetic
algorithms are an alternative to approximate a global optimum.

Current Grid computing technologies [3] use standard protocols for sharing
both computational power and data storage capacity among geographically distant
resources. Therefore, they are an ideal infrastructure for the execution of the high
throughput problem that lies beneath the optimization via Genetic Algorithms.

The remainder of the paper is structured as follows: First, section 2 describes
the process of designing a crystal fiber. Next, section 3 focuses on the Genetic Al-
gorithm and the underlying strategy for the optimization procedure. Later, section
4 describes the service-oriented metascheduler and its integration with the Genetic
Algorithm. Then, section 5 applies the optimization strategy to an specific case
study in order to assess its effectiveness, showing the main results achieved. Finally,
section 6 concludes the paper pointing out some future research work.

2 The Optimization of Supercontinuum Spectrum

When an optical pulse propagates down an optical fiber with sufficiently high
power, the material becomes nonlinear and many different such effects start play-
ing a critical role in the dynamics. In particular, if a single pulse is launched
in the anomalous dispersion regime of the fiber (where higher frequencies travel
faster) above certain power threshold, it breaks up into several stable pulses which
propagate with a well defined shape. These pulses are called fundamental solitons
(solitary waves) and the breaking up process is referred to as soliton fission. The
number of ejected fundamental solitons (N) is given by the initial pulse parameters

and is computed asN = T0

√
γP0
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at half maximum (FWHM) of the pulse intensity by FWHM = 2 ln(1 +
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2)T0,
γ is the nonlinear coefficient of the material, P0 is the initial peak power and
β2 defines the group velocity dispersion (GVD) of the fiber (β2 > 0 for normal
GVD and β2 < 0 for anomalous GVD). Each one of these pulses, resulting from
the fission process, travels with a different carrier frequency and radiates at lower
wavelengths (dispersive waves) propagated in the normal GVD regime of the fiber.
These effects all together result in SC generation [1, 2]. The SC can be modeled
by solving the following equation for the complex electric field A(z, t):
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0 |β2| and R(t) is an empirical function for the material response.
In this work we have optimized the spectral output of a 1 cm long fiber in the range
of [1780, 1820] THz ([1035, 1060] nm in vacuum). The nonlinear coefficient used
in the simulations is given by γ = 0.11(Wm)−1 and the dispersion parameters are
β2(λ = 780nm) = −11.83ps2/Km and β3(λ = 780nm) = 0.08ps3/Km. The initial
peak power is expressed in terms of these quantities, P0 = (1 + 63α) |β2|

γT 2
0

and the
initial conditions (T0), initial wavelength (λ0) and peak power tunability (α) are
the parameters to vary in order to optimize the simulation results.

The evolution program is a matlab code that solves Eq. (1) using the fourth
order Runge-Kutta method for the z-derivative and the fast Fourier transform
(FFT) and its inverse (IFFT) for the rest of the operations.

3 The Genetic Algorithm

Let d : Rm×nxRm×n → R be a function which determines the distance between
two spectra and let s0 (defined in Rm×n) be the reference (target) spectrum. Under
this setting, the problem can be formulated as an optimization problem in which
the aim is to find the vector x which minimizes the value of an objective function
f : R3 → R, defined as f(x) = d(s(x), s0). Besides, the three parameters are
limited to the intervals [0.01, 0.05], [700, 900] and [0, 1] respectively. In summary,
the problem can be expressed as shown in Eq. 2.

argminx:T0∈[0.01,0.05],λ0∈[700,900],α∈[0,1]d(s(x), s0) (2)

Although minimization problems can be solved by using deterministic and
metaheuristic algorithms, the latter are required when exhaustive enumeration of
the search space is not possible. For that, a shorter runtime is achieved by accepting
solutions which approximate a global optima, but may not exactly match it.

Genetic Algorithms (GA) are a class of evolutionary algorithms, which place
a special emphasis on the application of genetic operators, such as mutation and
crossover. A GA uses an encoding method to represent potential solutions to the
problem, and a measure that allows a quantitative evaluation of each candidate,
called a fitness function.

Starting from an initial population, a GA uses the fitness function to evaluate
each candidate. The most promising individuals are allowed to reproduce and de-
termine the next generation of individuals, according to a series of pre-established
evolution rules. The evolution rules refer to the parent selection method, and the
definition of the mutation and cross-over operations to obtain the offspring for the
next generation. Most parent selection methods are stochastic in order to keep the
diversity of the population, preventing premature convergence to a sub-optimal
solution.



3.1 Computational issues

In this particular case, no prior knowledge about the search space is available, and a
rugged landscape is expected. Indeed, there exist efficient evolutionary algorithms
for general purpose applications. As an example, CMA-ES (Covariance Matrix
Adaptation Evolutionary Strategy) [4, 5] is an evolutionary algorithm for difficult
non-linear non-convex optimization problems in rugged search spaces.

However, we face a problem in which the fitness function has a high and varying
computational cost (ranging from minutes to several hours). Under these circum-
stances, the parallelization of generational algorithms in a Grid may not be an
efficient approach. Instead, a steady state genetic algorithm has been used, chang-
ing one member of the population at a time. This allows that several fitness values
are computed in parallel (after an initial population has been built), and pro-
cessed once they are available. To this end, a “replace the worst” strategy has
been adopted. In this context, the use of a steady state algorithm fully exploits
the processing power of the Grid, keeping it constantly computing solutions until
a maximum number of evaluations is reached. In its current state, the algorithm
uses a number of general parameters, namely:

– The approximate number of computing elements in the Grid (n). This is used
to determine how many individual evaluations are processed in parallel.

– The population size (p).
– The maximum number of evaluations to perform (MAX). Once MAX evalua-

tions have been performed, the result with the highest fitness value is returned.
– The number of individuals which are generated before any genetic operator is

applied (c). The algorithm is initiated with c random seeds before any genetic
operator (selection, crossover and mutation) is applied.

Figure 1 provides a flowchart of the algorithm. Every time a potential solution
is completed, this is added to population (if the current population size contains
less than p elements), replaces another individual (if its fitness is better than that
of the worst individual) or is simply discarded (otherwise). Then a new offspring
is generated and sent to the Grid for evaluation. Although steady state algorithms
do not explore the search space as well as other generational GAs, its effectiveness
has shown sufficient for our specific purposes.

The steady state GA has been implemented combining the service-oriented
GMarteGS metacheduler [6] and the JMetal library [7]. GMarteGS provides meta-
scheduling functionality for the concurrent execution of parallel applications on
resources based on the Globus Toolkit, the standard software in computational
Grids. JMetal is an object-oriented framework (also written in Java) aimed at the
development, experimentation, and study of metaheuristics for solving optimiza-
tion problems.

A Graphical User Interface (GUI) has also been built to allow the user to ma-
nipulate some of the parameters provided by JMetal. This interface constitutes a
first step towards the standardization of the approach, providing a general mech-
anism to run the algorithm to solve other problems which may benefit from the



Fig. 1. Steady state event driven approach used.

use of heuristic approaches in a Grid. As both the interface and the GA have been
developed in Java, we can use the Java Web Start technology to automatically de-
ploy the application to the client with minimal requirements (a web browser with
Java support). This allows the application to be easily accessible from practically
any platform.

4 Computational Support for the Genetic Algorithm: A
Grid Computing Approach

The GA requires that candidates solutions (individuals) are evaluated. Each eval-
uation typically requires an execution time that may be in the order of minutes or
even hours, depending on the parameter values. The amount of combinations of
parameters evaluated has an important impact on the ability of the GA to find an
optimum solution. Typically, it is required to evaluate thousands of individuals.
Clearly, this cost exceeds the computational capabilities of a single machine.

If a steady state genetic algorithm is used, each individual can be evaluated
independently of the others. Therefore, this turns out into a high throughput
problem which can be easily addressed in parallel, for example using clusters of
PCs. In particular, we have used an integrated computational approach, using
clusters of PCs within a Grid infrastructure. The usage of Grid protocols to support
these executions makes it possible to provide the GA with an scalable solution to its



demanding computational requirements. If additional computational resources are
required, the Grid infrastructure can be enlarged and the applications employed
to submit the executions remain unchanged, thus reducing development efforts.

The following subsections briefly describe the GMarteGS service-oriented meta-
scheduler employed to support the evaluation of individuals.

4.1 GMarteGS: A Service-Oriented Metascheduler

GMarteGS [6] is a service-oriented façade to the GMarte [8] metascheduler. GMarte
enables the reliable execution of high performance computing applications on Grid
infrastructures based on the Globus Toolkit (GT) [3]. It manages the execution
of the tasks by providing fault-tolerant data transfer services between the client
machines and the remote computational resources. It also monitors the application
during its lifetime to detect failures, which are silently handled by re-scheduling
the tasks on other available resources.

GMarteGS represents the evolution of GMarte into a service-oriented archi-
tecture. It is a Grid service entirely developed in Java using the Globus Toolkit 4
and common standards like the Web Services Definition Language (WSDL) and
the Web Service Resource Framework (WSRF). It introduces secure multi-user
resource brokering on computational Grids for the execution of computationally
intensive applications. Its architecture allows different users to simultaneously use
its functionality to submit the execution of tasks. In addition, the Grid service
uses the Grid Security Infrastructure (GSI) provided by GT to achieve privacy
between the client and the service, as the principal communications are ciphered,
as well as data integrity.

Thus, GMarteGS acts as a mediator between the users and the Grid infras-
tructure. As such, it provides a high level Application Programming Interface
(API), both in WSDL and in Java, which can be easily employed to incorporate
its functionality to existing programs requiring the execution of tasks in a Grid
infrastructure.

Figure 2 depicts the interaction between the genetic algorithm and the Grid
service. First of all, the GA creates a session and then it starts the optimization
strategy according to Fig. 1. When the GA requires an individual to be evalu-
ated, it uses the GMarteGS Client API to define a new execution task with the
appropriate parameters that describe the individual. This task is submitted to the
Grid infrastructure and its state can be easily monitored via high level methods
that describe the state of the task (i.e. scheduled, staged in, active, staged out,
completed or failed).

4.2 Interfacing the Genetic Algorithm with GMarteGS

GMarteGS exposes its functionality via WSDL. Therefore, it can be accessed from
virtually every possible application, regardless of the programming language used.
However, as the Genetic Algorithm has also been implemented in Java, we have
developed a lightweight client-side Java API to ease the usage of GMarteGS from
a client Java code. This includes methods and objets for defining tasks, creating
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Fig. 2. Interaction diagram between the genetic algorithm and GMarteGS.

sessions, gathering the state of the metascheduling sessions and their tasks, de-
stroying sessions and transferring data between the client machine (where the GA
runs) and the Grid service machine via the GridFTP protocol.

Gathering the state of the tasks is usually done actively (the client requests
this information from the Grid service). However, GMarteGS also supports the
standard notification mechanisms available in GT version 4 so that the client is
notified whenever the state of a session (i.e., the state of any of its tasks) has
changed. The main problem is that supporting notifications by the client requires
that it deploys a GT4 container (at least the Java WS Core) to receive the incom-
ing connections. This can be a drawback, as the client requires a special firewall
configuration and can no longer be considered a thin client.

The application that evaluates the individuals has been implemented in Mat-
lab. Although it is possible to create a redistributable application which only de-
pends on the Matlab runtime, this last piece of software is heavyweight and should
be transferred to the remote computational resource along with the application.
Therefore, to avoid this overhead we have relied on the installation of the required
Matlab libraries in the remote computational resources. Once we have assessed
the effectiveness of the optimization codes, we plan to develop a C-based version
which can certainly be statically-linked to minimize the runtime dependencies and
be able to seamlessly run on a wide variety of machines in a Grid infrastructure.



5 Case Study: Evaluating the Genetic Algorithm

In the experiments, we have used a population size of 50, and evaluated a total
of 200 candidate solutions to the problem. To achieve sufficient diversity amongst
the initial population, the first potential solutions were generated randomly (in the
intervals specified in Section 3). In particular, we have used SBX (Simulated Binary
Crossover) [9] and a mutation rate of one mutation per individual, a common
setting that has been reported to yield good results in a wide diversity of problems
[10].

We have used a small Grid infrastructure which uses the Globus Toolkit 4.0.8
and is composed of two clusters of PCs (20 and 55 nodes) running on Intel Xeon
2.8 Ghz with 2.0 GBytes of RAM. A total of 12 such nodes have been used in this
particular work.

(a) (b)

(c) (d)

Fig. 3. Spectra evolution along a 1 cm fiber. In the upper row examples of evolution
show two different possibilities in which the spectrum does not fall near the frequency
range established (between the dashed lines). Figures in lower row show two solutions
selected by the genetic algorithm, which maximizes the spectrum in the range specified
by νε[1780, 1820]THz.



Figure 3 shows the spectral evolution (distance vs optical frequency) inside
the 1 cm long fiber whose parameters where specified in section 2. The spectral
intensity is expressed in the colorbars in dB units (using a logarithmic scale)
and the black dashed vertical lines delimit the spectral zone where we want the
maximum possible light power at the output (distance = 0.01 m). To show the
diversity of solutions in the range of the parameters used in this paper, we have
included figures 3.a and 3.b. These two are not the result of the optimization
algorithm. Instead, they show the evolution with the selected parameters ((a)
[T0 = 0.01, λ0 = 700, α = 0.5], (b) [T0 = 0.03, λ0 = 800, α = 0.5) for which the
spectral output has no contribution in the specified frequency range. However, the
GA has found the set of parameters that correspond to Fig. 3.c [T0 = 0.0106, λ0 =
751.84, α = 0.95] and Fig. 3.d [T0 = 0.0105, λ0 = 860.34, α = 0.61] where an
important fraction of the final spectrum falls into the desired range.

t is worth noting that comparing both sets, two out of the three parameters
substantially differ from each other. Therefore the GA is always capable to detect
different regions of parameters that maximizes the spectrum after less than 200
runs. This feature permits to reduce the complexity of the problem by focusing
only on the interest regions. It is worth mentioning that some of these regions
contain suboptimal solutions and from the physical point of view they are also of
great interest. Once the local minima have been detected a more accurate search
around them combining GA strategies and other optimization techniques must be
performed in order to find the global minimum.

Therefore, the usage of a Grid-based approach enables to process more candi-
date individuals per time unit, and thus has a direct impact in the ability of the
GA to obtain an optimum solution. In particular, the execution of this case study
required 90 minutes in the Grid infrastructure considered. Running the same GA
in a single PC requires a total execution time of over 10 hours.

6 Conclusion

This paper has presented the development of an automatic tool to optimize pho-
tonic crystal fibers based on Genetic Algorithms and supported by the computa-
tional power of a Grid infrastructure.

In this case, we have used a simple genetic algorithm to find the best combi-
nation of parameters. We believe that combining global optimization techniques
with other local optimization strategies may considerably improve the results for
certain classes of problems. Although we have used the software to solve an spe-
cific problem, the intention is to build a library that allows the user to easily solve
other optimization problems using Grid computing. The extension of the soft-
ware to support a wide range of other optimization techniques is currently under
development.

The results presented in this paper are the simplest possible approach towards a
full optimization process not predictable, in principle, just on the basis of physical
grounds. The full problem involves new degrees of freedom that would include
other pulse parameters (e.g, chirp) and several fibers with different lengths and
fiber dispersion coefficients (β2 and β3). The results obtained in this case are



promising and we plan to use (and possibly extend) this architecture to face other
more complex and general optimization problems.
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