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Abstract

The advent of service-oriented architectures in Grid environments has fostered
the development of applications in distributed deployments. The Globus Toolkit
4 (GT4) and its implementation of stateful Web services, via the WS-Resource
Framework (WSRF), is a suitable platform to develop these Grid services. This
way, its increased usage in many scientific areas reveals new scenarios where fault-
tolerance and high availability should be considered. This paper describes a library
that manages the automatic replication of WSRF-based Grid services. This func-
tionality can be plugged to existing Grid services, by means of minimal changes
in its source code, to achieve state replication through WS-Resources. The archi-
tecture of the library and its performance evaluation are described. In particular,
two different replica topologies are addressed: ring-based and leaf-to-root complete
binary tree, in order to achieve resource state update in logarithmic time with re-
spect to the number of replicas. Finally, the paper describes the integration of the
replication library into a service-oriented metascheduler to enhance fault-tolerance
and to guarantee service availability.
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1 Introduction

During the last years, Grid Computing has proved to be a suitable technol-
ogy to support the execution of computationally intensive applications in dis-
tributed deployments. The Globus Toolkit (GT) version 2 [1] was considered
to be the de facto standard in Grid middlewares. It provided a set of services
and protocols to ease sharing both computational power and storage capacity
within the context of virtual organizations. With the release of GT version 4
(GT4) [2], the move towards service-oriented architectures enlightened a new
computing paradigm. Machines in a Grid were no longer dedicated exclusively
to computing but they could also implement and offer a whole new catalog of
services through standard web-based interfaces. These functionality required
stateful Web services and the Grid service term was thus coined.

Since then, the development of Grid services has been growing in order to
enrich the functionality of Grid deployments. As Grid services become a key
factor in distributed infrastructures, topics such as fault-tolerance and high
availability turn into requirements in order to maintain service availability
regardless of software and hardware failures. This way, replication allows to
improve reliability, fault-tolerance and accessibility by providing the user with
different replicas of the same Grid service, all of them with a coherent state.

The fault-tolerance topic in Grid computing has been extensively addressed in
the literature, where it typically focuses on reliable job management and ex-
ecution on distributed deployments [3,4]. Achieving high availability through
replication has also been studied, but mainly related to data Grids [5,6]. How-
ever, the area of building reliable replicated Grid services is still very new.
In [7], the problem of fault-tolerant management of a set of Grid services is
addressed. For that, a hierarchical system comprised of statically configured
bootstrap services is proposed. These are responsible of reinstantiating the
failed components. There also exist service managers attached to the repli-
cated services responsible for managing their state. It is a generic approach
for the scalable management of Grid services, but loosely related to WSRF-
based Grid services.

In [8], the problem of building highly available Grid services is addressed by
using primary-backup replication implemented in GT3. With this approach,
a single replica processes all the requests and keeps the backup services con-
sistent in case the primary fails. Therefore, the main bottleneck resides at the
primary replica. In [9], fault tolerant concepts for stateful Web services are
applied to a specific Grid middleware designed for monitoring and migrating
high-performance applications. Implemented in GT4, the authors developed
a ring replication protocol to provide total message ordering and group mem-
bership.



This paper describes a library for the replication of GT4-based Grid services
through WS-Resource state management. This functionality can be plugged
to already existing Grid services by using the operation providers function-
ality of GT4. The library manages the update of the replicas to guarantee
their consistent state. In addition, different topologies are explored to achieve
efficient Grid service reliability and sustained service availability.

The remainder of the paper is structured as follows. First, section 2 briefly
describes the underlying technologies employed. Next, section 3 introduces
the main goals of the replication library detailing its architecture and the
proposed topologies. Later, section 4 details the inclusion of replication in a
service-oriented metascheduler and evaluates the performance of the library
under different conditions. Finally, section 5 summarizes the paper and points
to future work.

2 Grid Services, WSRF and GT4

GT4 provides the implementation of a set of Grid services which conform to
OGSA (Open Grid Services Architecture) [10]. OGSA represents an evolution
towards a Grid system architecture based on the concepts and technologies
provided by Web services. Being developed by the Open Grid Forum (OGF),
OGSA defines a common, standard and open architecture for all the services
that can be found in a Grid system (job management, resource management,
security, etc.) [11]. This way, different vendor tools can cooperate together by
means of standard interfaces. Therefore, OGSA defines its underlying archi-
tecture to be based on special Web services, which maintain their state from
one invocation to another.

This is where WSRF (Web Services Resource Framework) [12] comes into play,
specifying how Web services can be stateful. This is achieved by coupling a
data container, which stores the stateful data, to a Web service, thus obtain-
ing a WS-Resource. OGSA uses this new concept to specify the underlying
architecture of the Grid services. Therefore, GT4 includes an implementation
of WSRF as well as a set of Grid services developed on top of WSRF, which
are compliant with OGSA requirements.

Figure 1 describes the architecture of a typical WSRF-based Grid service im-
plemented under GT4, as described in [11]. Notice that the Grid service is
composed by a Factory service, which creates the WS-Resources through the
Resource Home, and the Instance service, which actually implements the oper-
ations of the service and modifies the state of the WS-Resource. Grid services
expose their operations via the Web Services Definition Language (WSDL).
They are typically implemented using the Java language and deployed in the
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Fig. 1. Architecture of a WSRF-based Grid Service implemented under GT4.

GT4 container. The GT4 container includes a Java Web services application
server, providing the Grid services with an appropriate runtime environment.

One of the important features provided by GT4 is the Grid Security Infras-
tructure (GSI) to provide authentication and authorization mechanisms based
on public-key cryptography. This allows controlled access to the service func-
tionality (methods) as well as privacy and data integrity.

Following the diagram in Figure 1, first of all, the client contacts the Factory
service to create a new WS-Resource (step 1). At this point, the client-side
credentials are checked for authentication and authorization through GSI-
based mechanisms. Then, the WS-Resource is created by the Resource Home
(steps 2,3) and it receives, as a unique identifier, the WS-Resource key (step
4). This identifier is combined with the Uniform Resource Identifier (URI) of
the Instance service to produce an Endpoint reference (EPR) (step 5). The
EPR uniquely identifies the location of both the Instance service and the
corresponding WS-Resource which holds the state. At a later stage, the client
can invoke a method (step 6) on the Instance service using the EPR. This
may modify the WS-Resource state (steps 7,8) to produce some results that
are returned to the client (step 9).

If we consider a stateless Grid service (i.e., a traditional Web service), then
replication becomes a trivial task that can be solved with multiple deploy-
ments of the service on different GT4 containers. As no shared data among
replicas exist, no coordination is ever required. However, replicating Grid ser-
vices requires, at least, managing these problems:

e Group membership: The Grid services that share the same state through
replication form a group of replicas, where all of its members agree on a
common topology. As this group could possibly be dynamic, there must



exist mechanisms to enter and leave the group at any time.
e Consistency: There must be a coordination protocol to maintain a coherent
state of the replicas (i.e. the same WS-Resource state).

So, a Grid service per se is a passive entity. Replicating a Grid service means
replicating its state, that is, its WS-Resources. Therefore, multiple WS-Resources
will exist with the same state on the different Grid services deployed in a dis-
tributed infrastructure.

3 The Grid Service Replication Library

The main aim of the library is to provide an existing WSRF-based Grid service
with automatic replication of WS-Resources in a transparent manner to the
users and integrated with its GSI-based security mechanisms. It can operate
both in a primary-backup approach, where a master replica is responsible for
processing all the requests, and in a multi-primary scheme, where any replica
can process a request.

The library uses passive replication, where a request is processed on a sin-
gle replica and then the new state of the WS-Resource is transferred to the
other replicas. To ensure sequential consistency, that is, all the replicas tra-
verse the same state changes in the same total order, we have implemented
a semaphore or lock-based approach based on Grid services. This guarantees
mutual exclusion to a common resource (the state of the WS-Resource).

One important aspect of this library is that it does not introduce any central
software component to manage replication. This avoids both introducing a
bottleneck in the system and a Single Point of Failure which could bring the
whole system to a halt. Instead, all the replicas have the same functionality
implemented and distributed algorithms running on all the replica nodes have
been employed. As the proposed library mainly relies on distributed algorithms
with no central agents, its scalability is not limited by any software component.

Figure 2 describes the main functionality of the replication library. The sce-
nario starts with the deployment of the same Grid service, modified to in-
clude the functionality of the replication library, in different GT4 container
instances. This is commonly done among different machines to cope with the
hardware failures. However, the replication library also operates on multiple
instances of the Grid service within the same container, each one attached to
a different port. This enables the Grid administrator to save hardware but
still introducing high availability facing possible container and Grid service
failures.
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Fig. 2. Principal functionality of the replication library.

First of all, the user chooses any of the replica Grid services and registers the
other replicas by specifying their Endpoints (step 1). Next, the user requests
this replica to create a WS-Resource (step 2), which stores the state. This WS-
Resource is then created on the other replicas with exactly the same identifier
(key) and the same ownership (step 3). This requires credential delegation
among the different replicas and appropriate configuration of stubs to comply
with the GSI-based security already existing in the Grid service. Sharing the
same identifier simplifies the client-side access to the different replicas, which
can be achieved with a simple modification of the Instance service URI in the
EPR. In addition, all the replicas agree on a common topology so that they
have a full and shared view of the group. At the end of this process, the same
WS-Resource exists on the different container instances. The library is able to
replicate multiple WS-Resources using the same approach.

If the methods on the Grid service only read the state of the WS-Resource then
synchronization and updating protocols are not required among the replicas.
However, consider the case depicted in Figure 2, where the user invokes a
method that results in a state modification (step 4). To ensure coordinated
access to the WS-Resource state we have implemented a lock-based approach,
via Grid services, called GS-Lock. Initially, all the replicas agree on the one
with the largest index to be the GS-Lock controller. Before a Grid service
executes an operation that modifies the WS-Resource, it must acquire the
GS-Lock. This is a blocking operation that returns immediately if the GS-
Lock is available but it hangs the caller until it becomes available and access
is granted to it (step 5). This may result in a small client-side delay, but the
client is completely unaware of the synchronization and replication process.

Once the GS-Lock has been acquired, it is time to perform the operation that



modifies the state of the WS-Resource. When a modification of this state is
detected, the replication library is in charge of propagating the state update
to the other replicas using a coordinated distributed algorithm that depends
on the topology (step 7). Once all the replicas have been successfully updated,
the GS-Lock is released (step 8) and the result of the method is returned to the
user (step 9). This allows another operation to gain access to the GS-Lock and
proceed with the WS-Resource state modification. The GS-Lock is acquired
only for a specified amount of time, large enough to perform the whole state
update among the replicas. This timeout allows the GS-Lock controller to
release it in case the replica that acquired it fails. If the GS-Lock controller
replica fails, the other ones will notice it when they try to acquire the GS-Lock
and, therefore, will choose the new replica with the largest index acting as a
controller.

3.1 Efficient state update: Considering replica topologies

Updating the state among all the replicas is the most time-consuming opera-
tion of the replication process. These depends mainly on three factors: Firstly,
the amount of data involved in each state update operation, which exclusively
depends on the replicated Grid service. For comprehensive states, this could
result in large messages being exchanged among the replicas. Secondly, the
network capacity (i.e., bandwidth and latency) largely determines the state
update speed. Finally, the state update time is also influenced by the number
of replicas.

We have implemented two different replica topologies and evaluated its bene-
fits and caveats.

3.1.1 Ring-based Topology

The ring topology has already been depicted in Figure 2. All the replicas
have a complete view of the topology, implemented by means of a replicated
array with information about all of them (Factory and Instance service URISs).
Their location in the array determines their topology identifier. This allows to
efficiently build distributed algorithms for different topologies.

The distributed algorithm only requires that each replica node has the afore-
mentioned array with as many entries as the size of the group. Each replica
knows its corresponding location in the array and, therefore, it is trivial to find
out the information about its neighbor node. The ith replica is considered to
be adjacent to the (i — 1)th replica. The array is considered a circular struc-
ture where the Oth replica is adjacent to the (n — 1)th replica, for a group of
n nodes. The logic of the distributed algorithm is confined to a single method



that is called whenever a replica node receives a state update request. There-
fore, all the replicas share the same replication code which implements the
following behavior.

The Grid service replica on which the state changes, named the source replica
(replica 0 in Figure 2), sends the state update to its neighbor replica, according
to the ring topology and its topology identifier. This one applies the new state
and forwards it to its neighbor replica. The notifications of state update among
the replicas are delivered via method invocations which include the content of
the new state and additional information such as the identifier of the source
replica. This process iterates until the state update reaches the source replica
again (omitted in Figure 2). At this point the source replica knows that all
of them are in a consistent state. Therefore, the GS-Lock can be released
for other operations to proceed. Notice that the state update is a distributed
algorithm running on the Grid service replicas.

Handling the failure of a replica during the state update process is also achieved
via a distributed algorithm. When a replica tries to update the state of an-
other one and it detects that it has failed, even if it is because of network
errors, it is responsible for notifying the other replicas about the failed one.
All of them discard the failed replica in the topology array, and rearrange the
ring so that the state update bypasses the failed replica. If the source replica
fails, then the replica that detects the failure is also in charge of releasing the
GS-Lock to avoid waiting until the timeout of the GS-Lock expires.

Joining the ring topology can be achieved by registering a new replica to be
part of the ring. This operation can be performed by either the user or a Grid
administrator. Being a distributed algorithm, this operation can be executed
on any of the existing replicas. This causes a topology rearrangement and the
new replica receives the latest state of the WS-Resource, from the replica that
executes the operation, so that they all keep consistent.

Notice that a ring modification is not an expensive operation. It only requires
a lightweight method invocation, specifying the failed replica or the new one,
in every node of the ring and then each replica locally updates its own ar-
ray of replicas to represent the new ring topology. The usage of distributed
algorithms and the lack of a master replica simplifies the operations.

The ring-based topology results in a replication time that is linear with the
number of replicas. In order to reduce the time required for the state update,
we have also implemented a hierarchical topology based on modified Complete
Binary Trees [13].
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Fig. 3. A Leaf-to-Root Complete Binary Tree (CBT) topology of Grid service repli-
cas. The implicit array-based representation represents a level-order traversal of the
tree.

3.1.2  Leaf-to-Root Complete Binary Tree Topology

As the number of replicas grows, the amount of time dedicated to state prop-
agation increases linearly. This may impose a serious limitation for replicated
Grid services with a large number of replicas and/or a huge amount of data
to be transferred during each state update.

In order to reduce this time, a linear relation among the replicas must be
abandoned in favor to a hierarchical approach. This way, we have employed
a Leaf-to-Root Complete Binary Tree (CBT) topology. In a CBT (see Figure
3) all the levels, except perhaps the last, are filled (i.e., full of nodes). In the
last level, all the nodes must be located at the leftmost side of the tree. These
special trees can be implemented using an implicit array-based representation.
These allows one to compute several properties using simple formulae, such as
obtaining the right and the left child of the i-th node (27 + 1, 2 %4+ 2) or
computing the number of leaves of a tree with N nodes ([41]). This allows to
implement efficient distributed algorithms, running on the different replicas,
based on simple array-based operations.

Therefore, each replica has an array representing the tree-based topology (see
Figure 3). This array represents the level-order (a.k.a. breadth-first order)
traversal of the complete binary tree. In our implementation, the leaves are
conceptually linked to the root replica to implement the state update process.
Consider how this protocol works under a typical operation:

(1) The user modifies the WS-Resource state located at Grid service replica
B in Figure 3. The GS-Lock must be acquired so that no other operation
can proceed before the state update propagation finishes.

(2) The source replica (the one which originates the resource update (B))
notifies the root replica (A) about the state update.

(3) The state update proceeds downwards from the root replica until it
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Fig. 4. Structural changes in a Complete Binary Tree after erasing a replica with 0,
1 and 2 children.

reaches the leaf nodes. This is done with parallel update streams which
proceed simultaneously for the different branches of the tree. Therefore,
replica A notifies the WS-Resource state update to replicas B and C while
replica B informs replicas D and E. The exchanged message among repli-
cas includes information about the source replica. This allows the source
replica to skip its own state update.

(4) As replicas C'; D and E are leaf nodes, they notify the root replica that
they have been updated. As the root replica can easily compute the num-
ber of leaf nodes, it certainly knows when the whole tree has been up-
dated.

(5) Once the whole tree of replicas share the same WS-Resource state, the
GS-Lock can be released by the root replica and another operation can
be executed.

The root replica may seem a partial bottleneck as the leaf nodes must no-
tify their update. However, these notifications do not include resource state
information so this turns out into a lightweight method invocation.

The state update process in a complete binary tree with N replicas requires
a time in the order of 6(loga(N)), which is the upper bound of the height of
the tree. This results in a significantly faster approach than using a ring-based
topology for a moderate number of replicas.

Handling either replica or network errors has again be treated using a dis-
tributed algorithm. When one replica invokes the state update method of
another one and the operation fails, then it is responsible of notifying the oth-
ers about the failed node. This is achieved via a lightweight method invocation
on each replica, which locally modifies the array of replicas stored at every
node to create the new topology. Being a distributed algorithm, where all the
replica nodes execute the same code, the resulting topology is shared by all
replica nodes. Next, the state update process starts again from the (possibly
new) root replica. Removing a replica from this topology requires the struc-
tural integrity of the CBT to be preserved. Then, this reduces to a problem
of removing a node in a CBT, depicted in Figure 4:
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e If the failed replica is a leaf node (D in the original tree), then the last node
in the implicit array representation (F in the original tree) takes its place,
thus obtaining Tree 1. If the failed replica is actually the last node, then it
simply disappears from the topology.

e If the failed replica has only one child (C' in the original tree), its child is
adopted by its parent node (A in the original tree), thus obtaining Tree 2.
Notice that due to the CBT properties, the only node with a single children
is always the parent of the last node.

o If the failed replica has two children (B in the original tree), its place is
occupied by the last node, thus resulting in Tree 3.

Therefore, to satisfy the structural integrity of the CBT, the last replica node
should take the place of the failed one. As such, using the properties of the
CBT, an efficient distributed algorithm can be developed to handle the failure
of replicas by altering the topology at runtime.

Joining the group can be achieved by registering a new replica at any other
one. This one contacts the root replica and the topology update proceeds
downwards in the tree until it reaches the leaf nodes which again notify the
root replica. Every replica updates their topology using the same rules so
that, in the end, they all share a common topology. The new replica will
always appear as a new leaf in the CBT topology.

4 Application to a Service-Oriented Metascheduler

In order to test the functionality of the replication library in a real Grid
service, we have included replication capabilities into GMarteGS [14]. This is a
service-oriented metascheduler which uses the resource brokering functionality
of GMarte [15] to achieve efficient task allocation on computational Grids.
This section first briefly describes GMarteGS, then explains how to plug the
replication library into a WSRF-based Grid service and, finally, details the
specific adaptations performed to suit this application.

Notice that that replication library can be applied to generic WSRF-based
Grid services and, therefore, this is just an application example. The results
obtained can be easily extrapolated to other Grid services.

4.1 A brief introduction to GMarteGS

GMarteGS is implemented using GT4 and WSRF to enable internet-based,
multi-user support to achieve successful execution of high performance com-
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puting applications in computational Grids based on the Globus Toolkit. It
uses GSI-based security to offer user authentication and authorization, privacy
among different users and data integrity in client-service communications. It
also handles the data transfers performed between the client machine and the
remote computational resources where the executions actually take place.

In GMarteGS, each WS-Resource hosts information about a different meta-
scheduling session. This information includes the description of a set of com-
putational tasks (i.e. their executable files, the arguments, the requirements
for execution, etc.), a computational infrastructure represented by a set of
computing elements to be employed for the execution of the tasks, and a spe-
cific configuration of the metascheduler (i.e. task allocation policy, number of
threads, etc.).

This service-oriented metascheduler is being employed for the execution sup-
port of high performance applications in the area of cardiac electrical activity
simulation [16]. These applications require large computing requirements and
long execution times, in the order of days. Therefore, fault-tolerant mecha-
nisms need to be employed to guarantee successful execution. The usage of
a service-oriented metascheduler enables the users to submit executions via
graphical applications and monitor their evolution while they are being exe-
cuted on a Grid infrastructure.

Fault-tolerance should be faced at multiple levels. At a higher level, GMarteGS
is isolated from task execution problems, which are handled by the GMarte
metascheduler. This component manages task and computational resource
failures by means of rescheduling and also retries the failed data transfers
a certain number of times (see [15] for details). GMarteGS also implements
fault-tolerant techniques. The client and the Grid service are largely decou-
pled so that failures in the client do not affect the service. In addition, the
service uses WS-Resource persistence so that, in the case of container failure,

its state can be automatically recovered after booting a new container (see
[14] for details).

However, high availability and sustained service availability can only be achieved
through replication. This allows a client to connect to a different replica, should
the one he is using fails, finding a consistent state, and without requiring the
intervention of the Grid administrator.

4.2 Plugging the replication library into a Grid service

Introducing the replication capabilities into an existing WSRF-based Grid ser-
vice should have minimal impact in its coding. To achieve this feature, we have
relied on two features. Firstly, object-oriented programming allows to confine
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the replication code in the developed library and inherit that functionality
in the current service. Secondly, the usage of the Operation Providers [11]
functionality of the GT allows to easily use the replication capabilities of the
library from an existing service. This development approach allows the pro-
grammer to implement some generic functionality which can then be plugged
into other Grid services with minimal developer intervention.

These are the main modifications required in the Grid service to have available
the replication functionality:

(1) The WSDL of the Factory and the Instance service must extend (via
wsdlpp:extends) those provided by the replication library. This enables
both services to automatically publish the required methods for replica-
tion (resource state update, topology update, group joining, etc.).

(2) The deployment descriptor of the Grid service (deploy-server.wsdd) has
to specify the operation providers available in the replication library,
for the Instance and the Factory services. This enables both services to
automatically receive the implementation of the replication methods.

(3) The Factory service, the Instance service, the ResourceHome and the Re-
source main Java classes should inherit from the counterparts provided
by the replication library. This enables both services to automatically
receive the implementation of other support methods required for repli-
cation. The developer may also choose the replication topology to be
employed, but this can also be specified at runtime.

(4) After the state of the WS-Resource changes, the developer must invoke
the method that starts the distributed state update process according to
the specified topology. The state of the WS-Resource exclusively depends
on the Grid service and it is currently represented in the shape of a String.

4.2.1 Actions performed in GMarteGS

GMarteGS is aware of the metascheduling process by means of a callback
method that uses GMarte to indicate the changes in the state of tasks as
they are being processed (i.e. unassigned, allocated, staged in, active, staged
out, completed, failed, etc.). A change in the state of a task means a change
in the metascheduling session and, as a consequence, a change in the WS-
Resource state which requires to be reconciled with the other replicas. During
the first moments of a metascheduling session the tasks change very often
their state until they are actually running. Therefore, we have implemented
basic contention mechanisms to reduce the replication overhead. For example,
it is possible to use a replication period to wait a minimum amount of time
between two replica state updates. Of course, this approach depends on the
Grid service, but it results in a trade-off. As this time increases so it does the
chance of accessing an inconsistent replica by different users.
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The state of the WS-Resource can be represented by an XML document that
captures the state of the metascheduling session, that is, the state of the tasks,
the computational resources employed and the metascheduling configuration.
The description of a task includes, among other attributes, the location of the
executable file, its command-line arguments, the input files that it requires for
execution and its computational requirements. This is dynamically generated
whenever a state change is detected by GMarteGS and it represents the current
state of the WS-Resource. This state is exchanged with the other replicas in
the shape of a String and later unmarshalled to recreate an appropriate Java
object on which to execute the user operations regarding the metascheduling
session. Although XML Data Binding tools exist to simplify the actions, this
approach typically requires fine-tuning the XML documents whenever changes
are introduced in the representation of tasks or computational resources.

To solve this problem, we have alternatively used a different approach. When-
ever a state change is detected, a binary duplicate of the metascheduling ses-
sion is in-memory generated via the serialization mechanisms provided by
Java. This information is then encoded in Base 64 so that it allows a String
representation that later is compressed using the standard Zip utilities pro-
vided by Java. We have measured that this compression step allows reducing
the information up to a factor of 3. This procedure allows to have a binary du-
plicated object in another Grid service replica that is shielded against changes
in the representation of tasks and resources.

Concerning the data files required by the metascheduling process, mainly the
executable files and dependent input archives, these can also be replicated
using the Data Replication Service [17] provided by GT. This service uses
the Reliable File Transfer service to coordinate data transfer among different
GridFTP servers. These servers could be available in the machines where the
replicas exist or reside in a specialized Data Grid. Its usage is out of the scope
of this paper.

4.2.2  Performance evaluation

To evaluate the performance of the library, we have considered a scenario
composed of five machines with computing capabilities enough (at least Xeon
2.0 GHz with 1 GByte of RAM), linked to a Gigabit Ethernet network. Each
machine has the GT version 4.0.8 deployed with the GMarteGS metasched-
uler linked with the replication library. Another machine acts as the client
submitting a certain number of jobs to one of the replicas. We have disabled
the usage of GSI Secure Conversation to reduce the overhead during the state
update process among the replicas.

As the metascheduling session progresses, changes in the state of the session
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Fig. 5. Comparison of the average replication time among five replicas with two
different topologies.

(i.e., the state of its tasks) are updated at the other replicas. The time since
the source replica detects a new state until all of them are in coherent state
is considered to be the replication time. For these executions we have not
used a contention mechanism for the state update. Therefore, changes in the
state of the jobs from the session trigger a state update process. However, as
a precautionary measure, only the latest state of the session is exchanged if
several update requests are received while an update is still on course. This
mainly causes to stress test the replication library by performing almost one
replication after another during the metascheduling process.

Figure 5 compares the average time required to update the state of five replicas
when using a ring topology compared to a Leaf-to-Root CBT topology during
a metascheduling session of computational tasks. The message size represents
the amount of information exchanged among the replicas which represents the
state of the WS-Resource, that is, the metascheduling session. In particular,
the figure depicts the amount of information corresponding to 1 task (53.16
Kbytes), 10 tasks (102.14 Kbytes), 50 tasks (227.32 Kbytes) and 100 tasks
(393.10 Kbytes). As this information uses a Base-64 representation and is
compressed there is no longer a linear relation between the number of tasks
and the message size.

It can be seen that the CBT topology is able to reduce the replication time
among the five replicas up to a 32%. In fact, this topology allows for concur-
rent update streams through the tree of replicas which no longer require all
updates to be performed sequentially, as in the case of the ring topology. It
is important to point out that CBT topology is expected to even increase its
advantages over the ring topology as the number of replicas grows. However,
for the particular case of the GMarteGS metascheduler, it not necessary to
have a large number of replicas to gain high availability.
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Fig. 6. Comparison of the average replication time among different replicas with
two different topologies using a message size of 102.14 KBytes (10 tasks).

The CBT topology can achieve global state update in logarithmic time with
respect to the number of replicas while the ring topology can only achieve
it in linear time. Finally, note that GMarteGS uses GSI security for data
protection, but the replication library has been specially configured in this
tests to disable GSI security. This reduces the performance penalties involved
in each method invocation of the replication library due to the establishments
of the security contexts.

Figure 6.a compares the average replication time for a different number of
replicas using the two topologies. The nodes exchange state messages corre-
sponding to 10 computational tasks. With only two replicas, the amount of
time for replication is very similar, as no performance can be gained by taking
advantage of the topology. These slight changes are due to the implemented
distributed protocols. However, as the number of replicas grow, so it does the
difference in the replication time between the CBT and the ring topology.

To investigate the effects of a Wide Area Network (WAN) in the performance
of the replication library we have simulated a high latency environment among
the replicas. A delay in each state update message between two replicas has
been introduced with a pseudorandom uniformly distributed value between 0
and 300 milliseconds. The results are shown in Figure 6.b. It can be noticed
that the CBT topology outperforms the Ring topology. As the CBT topology
is able to use parallel state update streams, the influence of the high latency
environment has a much lower impact than with the ring topology.

The use case employed does not affect the ability of the replication library.
It has only a direct influence in the amount of replications performed and
the size of each state update message. Therefore, this functionality can be
included into other kind of Grid Services. According to the results, the Leaf-
to-Root Complete Binary Tree topology stands out as a candidate topology
to be employed for the efficient replication of WSRF-based Grid services.
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5 Conclusion

This paper has described a library that replicates WSRF-based Grid services
in order to achieve service availability by means of fault-tolerance and high
availability. The library allows to seamlessly replicate WS-Resources among
different GT4 containers and maintain a coherent and shared state. This is
achieved by an implementation of Grid-based locks, to avoid concurrent access
to the shared WS-Resource state, and the usage of topologies to allow efficient
state update propagation. In particular, the ring-based and the Leaf-to-Root
Complete Binary Tree topologies have been studied. The latter accomplishes
the global state update in logarithmic time with respect to the number of
replicas.

The future works involve incorporating and evaluating SOAP with Attach-
ments (SwA) as a transport mechanism to exchange replica state. As the
amount of state data increases, this could certainly enable to reduce the size
of the messages exchanged [18]. Also, we plan to focus on automatic deploy-
ment of Grid services. These would enable the system to automatically deploy
new replicas on demand to better cope with failures without any user or Grid
administrator intervention.
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