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Abstract

This paper describes a Grid Computing application for the 3D dynamic analysis
of large dimension buildings. A previously developed software composed of parallel
implementations of eight direct integration methods has been integrated on this
application, in order to perform structural simulations on a Grid deployment. The
GMarte software abstraction layer has been employed to couple the parallel simu-
lator with the Grid infrastructure. Performing distributed executions has enabled
a considerable reduction in the global execution time of structural dynamic studies
composed of different design alternatives.
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1 Introduction

Three-dimensional dynamic analysis of large-scale buildings has been consid-
ered by engineers as a challenging problem, owing to its high computational
demand [1]. Nowadays, an analyst that uses a structural analysis program
can be waiting a considerable time before achieving the dynamic response of
a medium-sized building. Besides, most of the existing commercial codes are
composed of debatable simplifications, because the computation involved in a
realistic simulation can be too intensive for a traditional computer. Notwith-
standing, these simplifications, although appropriate for single structures, have
demonstrated to be completely inadequate for complex buildings.

Moreover, a structural designer usually works with different preliminary de-
signs of a building, and for each of them, a realistic 3D analysis is required. In
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addition, it is usual that a structure has to be simulated under the influence
of different dynamic loads. Thereby, for example, the Spanish Earthquake-
Resistant Construction Standards (NCSE-02) demands that a building is anal-
ysed at least with five different representative earthquakes. Obviously, this
number of simulations enlarges by several orders of magnitude the computa-
tional requirements of the problem.

Therefore, there is a pressing need to develop effective tools that allow us to
simulate accurately and efficiently the dynamic behaviour of high-rise build-
ings. With the development of effective and reliable computing platforms, the
application of High Performance Computing techniques allows tackling in a
realistic way large-scale structural problems. However, although cost-effective
clusters of PCs can simulate large dimension structures in reasonable times, in
practice, studios for engineering rarely own parallel platforms. They normally
employ overloaded standard PCs, that limits the size of the problems to be
treated, and they are not interested in investing in clusters, mainly because of
the physical space required and the associated maintenance problems, despite
their excellent ratio productivity/price.

In this paper, a Grid Computing application for the 3D dynamic analysis
of large dimension buildings is presented. The tool is based on the GMarte
framework and makes use of a parallel software tool, composed of parallel im-
plementations of eight well-known direct time integration methods, where all
nodes of the structure are taken into account and 6 degrees of freedom per
node are considered. Starting from one or more structural alternatives of a
building (maybe subject to different dynamic loads), stored in a repository,
and a set of available distributed computational resources, the Grid applica-
tion developed carries out all the needed work to simulate, by means of the
execution of this parallel software, the dynamic behaviour of the buildings on
the available machines.

Nowadays, there is few existing work concerning the application of Grid Com-
puting technologies to the structural dynamic analysis of buildings. The most
important effort in this area is being carried out by the NEES (Network for
Earthquake Engineering Simulation) Consortium 1 . It is devoted to reduce the
impact of earthquake and tsunami disasters in the man-human infrastructures,
such as roads, buildings, port facilities, and public utility systems, by linking
research laboratories around the U.S. to ease the collaboration on experiments
as well as for computational modelling.

The usage of a Grid-based infrastructure enables to maintain a central data
repository with the information required for the simulations as well as the ac-
cess to remote computational resources to perform the executions. NEESgrid 2

1 http://www.nees.org
2 http://it.nees.org
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represents the systems integration software of the NEES project. It links earth-
quake researchers with leading-edge computing resources and research equip-
ment. NEESgrid is composed of a set of software applications devoted to earth-
quake engineering. Among them, OpenSEES and FEDEASlab are related to
structural dynamic simulations. OpenSEES (Open System for Earthquake En-
gineering Simulation) is a software framework for developing applications to
simulate the performance of structural and geotechnical systems subjected to
earthquakes. The goal of OpenSEES is to improve the modelling and computa-
tional simulation in earthquake engineering through open-source development.
FEDEASlab is a Matlab toolbox for nonlinear structural simulations under
static or transient conditions for small structures or models.

On the other hand, InteliGrid 3 (Interoperability of Virtual Organisations on
Complex Semantic Grid) is a European research project [2] that aims to pro-
vide a Grid-based integration and interoperability infrastructure for industries
such as construction, automotive and aerospace. The main goal is to offer a
flexible, secure, robust, ambient accessible, interoperable, pay-per-demand ac-
cess to information, communication and processing infrastructure.

Finally, focusing on computational Grids, Alonso, et al. originally developed
a Grid-based prototype based on shell-scripts which enabled to perform 3D
linear static analysis of buildings on a Globus-based Grid deployment [3].
That work can be seen as a proof of concept about the applicability of Grid
Computing to structural analysis. In this paper, we go one step beyond by
using a much more comprehensive middleware for the execution of scientific
applications on a Grid.

The remainder of the paper is structured as follows. First, section 2 describes
the parallel structural simulator employed. Then, section 3 carries out a brief
introduction to Grid Computing. Next, section 4 presents the main features
of GMarte, the middleware that has made it possible the development of
the Grid-based structural application. Implementation details of this applica-
tion are shown in Section 5. Section 6 describes the case study executed, the
computational resources employed and the task allocation performed. Finally,
section 7 concludes the paper summarising the main achievements.

2 Parallel Structural Simulator

The parallel structural simulator employed carries out a 3D linear dynamic
analysis of buildings [4]. Direct time integration algorithms, modal analysis
and frequency domain analysis are different effective techniques widely em-

3 http://www.inteligrid.com
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ployed for the numerical solution of the high computational demanded equa-
tion that governs the motion of structural dynamic problems. Time integration
methods have been traditionally used by analysts because of their inherent ad-
vantages. Whereas modal and frequency analysis can just be applied to linear
problems, direct integration methods can be successfully applied to both of
them. Numerous direct time-step integration approaches have been developed
and they can be easily found in literature [5–7].

Among them, parallel implementations of the following eight integration meth-
ods compose the structural simulator employed in this Grid application: New-
mark [8], Wilson-θ [9], Central Difference [10], Single-step Houbolt [11], HHT-
α [12], WBZ-α [13], Generalized-α [14] and SDIRK [15]. Static condensation
of nodes has not been assumed and all the elements and nodes of the structure
are taken into account during the simulation process. Moreover, six degrees of
freedom per each node are considered.

This simulator is based on the MPI library [16] and it employs MPI-2 I/O
development of ROMIO [17] to provide good performance when accessing
to disk. Therefore, the application is highly portable and it can be easily
migrated to a wide variety of parallel architectures. Consistent mass matrix
alternative has been employed, that supposes a more realistic approach than
lumped mass matrix, although it requires a considerable increment in both
the computational effort and the memory requirements. On the other hand,
Rayleigh damping is employed, where the damping matrix is proportional to
a combination of the mass and the stiffness matrices. All the phases that
compose the dynamic simulation process have been parallelised: First, the
stiffness, mass, damping and effective stiffness matrices are generated. Then,
the joint displacements, velocities and accelerations are updated for each time
step by means of the integration method employed. Next, the member end
forces and reactions at the points attached to the rigid foundation, and the
stress and deformations at any point of the structure are computed for each
time step as well. Having in mind that implicit integration methods demand
to solve a set of simultaneous equations at each time step, the following public
domain parallel numerical libraries have been used: WSMP [18], MUMPS [19]
and PETSc [20]. The simulator software is very versatile, and any combination
of an integration method with any numerical library (and their corresponding
different methods involved for solving the systems of linear equations) can be
chosen.

3 Introduction to Grid Computing

Years ago, the computing environments were centralised, homogeneous, reli-
able and secure, as they had no kind of networking connectivity. With the
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advent of recent increases in the bandwidth of communication networks, the
idea of linking disparate machines across the world to provide a distributed
computing infrastructure has been leveraged. This way, scientists and research
groups fostered a collaborative work environment to address new challenges.

This collaboration started from the information sharing through the network,
forums, and so on. Later they realised that there was a huge computing power
distributed among the research groups and that it would be useful to coor-
dinate it in order to face bigger challenges. The computers were shared by
scientists, and a need to develop protocols and procedures arised to give place
to a common, transparent, secure and coordinate way of using the resources.
Therefore, the Grid Computing term was coined [21,22].

The Grid can be defined as a service for sharing not only the computational
power and data storage capacity of resources, but even software applications,
as much as the web is a service for sharing information over the Internet. The
aim of the Grid is to provide a coherent view of distant heterogeneous compu-
tational resources so that they act as a single, huge and powerful computer.

In the traditional distributed environments, software developers used to divide
their processes into independent and smaller tasks, trying to compute each of
them in distinct computers. This way, Grid technology appeared to allow
the resource sharing in research projects from distinct fields in which a great
computing power is needed (i.e. physics or engineering). Grid technology tried
to ease and coordinate the usage of the resources, owned by individuals or by
research groups for sharing them with other researchers.

The users are organised into Virtual Organisations (VOs), which allow a global
management for the usage of the resources. These VOs represent a virtuali-
sation of physical organisations which establish common rules for sharing the
resources (kind of resources, time intervals, etc.).

Using a Grid middleware, the user is provided with a huge and self-managed
computer made up of heterogeneous systems and their associated resources.
In this case, the need of computing power, storage, etc. is satisfied by the
aggregation of new shared resources. The main features that are expected
from a Grid middleware are:

• Local administrative control, because the resource provider maintains its
control and decides whether to share it or not.

• Security, which is one of the main concerns when sharing the resources.
Every user is authenticated an authorised (if proceeds) by means of the
usage of personal certificates.

• Dynamic resource management, as resources may be easily removed or in-
corporated to the Grid environment.

• Access control and accounting, to determine which users or members of an
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organisation can access the resources. Also, the accounting may be used for
introducing some business models such as pay-per-usage.

• Reliability and redundancy, similar to hardware but in this case applied to
software components which are distributed among the resources in the Grid.

• Load balancing and resource planning, which is provided by the introduction
of dispatchers which take care of the ratio of usage of the resources.

Thus, Grid technology provides a framework which allows the exploitation of
computational resources, resulting in an increase of their efficiency. In this
way, there are many expectations about the Grid, in order to cope with, for
example, computationally intensive applications.

4 GMarte: Simplifying the Grid for Remote Execution

Among all the available Grid middlewares, the Globus Toolkit [23,24] rep-
resents the de facto standard for deploying large-scale computational Grids.
Globus provides software services and libraries such as: the Monitoring and
Discovery Service (MDS) for resource discovery and monitoring; the Grid
Index Information Service (GIIS) for resource information aggregation; the
Globus Resource Allocation Manager (GRAM) for job execution; the GridFTP
for reliable data transfer; and the Grid Security Infrastructure (GSI) for se-
curity and privacy, among others. All these services allow the deployment of
large scale Grid infrastructures. This enables the users to access the remote
resources as if they were available locally, while preserving the local control
over who and when the resources can be accessed. By combining the usage of
the client tools provided by Globus, which interact with the mentioned ser-
vices, it is possible to achieve remote task execution, one of the main purposes
for computational Grids.

However, the complexity of the Globus Toolkit, which only provides the basic
services and capabilities to support Grid infrastructures, very often discour-
ages scientists from porting their applications to a Grid deployment. To cir-
cumvent this issue, we developed GMarte [26,27], a software abstraction layer,
on top of the Globus Toolkit and the Java CoG Kit 1.2 [25], which provides an
object-oriented view of the Grid in order to simplify the remote task execution
of scientific applications on Globus-based infrastructures.

Figure 1 summarises the principal layers that GMarte addresses in order to
abstract the process of multiple remote task execution. First of all, a com-
mon interface is provided to access the information systems found on different
versions of the Globus Toolkit (MDS2, MDS4) combined with several job man-
agers (Portable Batch System (PBS), Torque, Sun Grid Engine, etc). On top
of that layer, we introduce a new level that enables to perform the remote
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Fig. 1. Diagram of the three principal layers covered in GMarte and the Grid services
involved.

execution of a single task in a computational resource by combining the usage
of the underlying Grid services provided by the Globus Toolkit. Finally, above
both layers we abstract the process of multiple task allocation, enabling to
perform fault-tolerant metascheduling [28] combined with dynamic resource
discovery.

GMarte is a client-side middleware developed in Java that offers a high level
Application Programming Interface (API) to interact with remote compu-
tational resources in order to achieve remote task execution. This software
addresses the execution of batch tasks that require a set of dependent input
files, perform a computation, and generate a set of result data archives, which
is the common behaviour of most of the non interactive applications, specially
those devoted to the simulation of a physical phenomenon. These tasks are
assumed to be independent and thus, they can be simultaneously executed in
a Grid infrastructure. Currently, there is no support for tasks that depend on
the output of other ones. However, GMarte supports the execution of parallel
applications implemented with the MPI library, thus taking advantage of the
multiprocessor machines of a Grid deployment.

The middleware offers task allocation functionality over multiple administra-
tive domains. This enables the execution of a set of tasks in different compu-
tational resources of a Globus-based Grid infrastructure. The computational
resources that can be employed are those with the Globus Toolkit 2.4.X and
4.X as well as the Computing Elements with the LCG-2 middleware 4 . Fig-
ure 2 summarises the principal and most important classes involved in the
design of the object-oriented middleware. This class diagram (in UML nota-
tion) represents the core of the object-oriented high level API of GMarte. For
the sake of brevity, only the relevant methods are exposed in the diagram.

In the figure, a GridResource stands as the abstraction for a computational
resource, whereas a GridTask represents the object vision of a task that has to
be executed in the Grid. The diagram shows that a TestBed is considered a col-
lection of GridResources and a GridTaskStudy represents a set of GridTasks.

4 http://www.cern.ch/lcg
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Fig. 2. Diagram of the main classes in the middleware.

A RunnableGridTask is a GridTask that has been assigned to a GridResource
for execution. The Scheduler abstract class provides no implementation but a
contract of the interface to be implemented by the schedulers. For example,
the AdvancedScheduler supplies the implementation of the abstract methods
defined by the Scheduler class, thus offering task allocation capabilities. This
approach enables to implement different user-defined task allocation policies
within the GMarte framework.

Using the API exposed by GMarte, the user no longer interacts with the
Globus Toolkit services, but instead deals with instances (objects) of the
classes in Figure 2. As an example, a scientific out of the field of Grid Com-
puting may not know about the MDS or the GRAM services provided by the
Globus Toolkit, but sure he/she can rapidly understand that a GridResource
stands for a computational resource. In fact, introducing a user level interface
dramatically reduces the time to Grid, or time spent on migrating an applica-
tion to a Grid environment, because the user is provided with a natural high
level tool that can easily be employed for non experts in Grid computing.

Additionally, GMarte also offers an XML (eXtensible Markup Language) in-
terface so that the user does not have to develop a Java application to use
the metascheduling services provided by this software. Currently, the user
may specify, in XML language, the description of the computational tasks,
the Grid resources to be employed and the configuration of the metasched-
uler. This way, we have developed components that automatically provide the
bindings from the XML descriptions to GMarte objects. Thus, this approach
enables the users to focus on their applications without having to deal with
the development of a GMarte application.
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Fig. 3. Structural dynamic simulations in a Grid deployment.

In the field of abstracting the usage of Grid Computing technologies, we find
several projects. First of all, the European Union GridLab project 5 aims at
developing application tools and middlewares for Grid environments. Within
this project, the Grid Application Toolkit (GAT) [29] also provides an object-
oriented approach trying to provide a complete application oriented abstrac-
tion layer. From the GridLab documentation, it appears that the resource
management is only available for the Globus Toolkit 2.4, thus being restricted
to work with the Pre-Web Services components of Globus. Among others,
we can also find Condor [30], a software system that effectively utilises the
computing power of a set of resources. However, although Condor provides
a gateway to interface with Globus (Condor-G) [31], it only offers a set of
command-line applications without an API. Notwithstanding, developments
are being made towards an API accessible via SOAP (Simple Object Access
Protocol). In addition, the resource selection policy implemented in Condor-G
does not consider the dynamic state of the computational resources, what im-
poses a serious limitation considering the highly dynamic behaviour of a Grid
infrastructure.

5 Grid-based Structural Simulator

The Grid-based application developed aims at using a computational infras-
tructure in order to accelerate the simulation of case studies which are com-
posed of one or more different structural solutions where one or more dynamic
loads are applied to them. Figure 3 overviews the context of the problem. Con-
sider a structural studio which intends to analyse the response of a building
under the influence of different earthquakes. This problem requires the execu-
tion of multiple simulations (denoted by SSi) which, depending on the mag-
nitude of the building, may be time-consuming as well as memory-intensive
for a traditional PC.

5 http://www.gridlab.org
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Fig. 4. Principal steps involved the execution on a Grid infrastructure.

If the studio could gain access to a distributed computing infrastructure, then
it would have available distinct candidate computational machines to execute
the different simulations. Thus, performing multiple concurrent executions on
the computational resources of a Grid deployment could be an ideal situation
to accelerate the execution of whole resource-starved structural studies. Any-
way, this would potentially allow, at least, to tackle new structural problems
with a dimension that overcomes the physical limitations of a traditional PC.
Therefore, in order to harness the power that a Grid infrastructure aims to de-
liver, we have developed a software application that enables to easily perform
3D structural dynamic simulations on the computational nodes of a Globus-
based Grid infrastructure. This application employs the API provided by the
GMarte middleware.

5.1 Principal Steps Involved in the Execution of Case Studies

Figure 4 summarises the principal steps implemented in the Grid-based struc-
tural application in order to achieve remote task simulations. All these stages
take place thanks to the corresponding methods belonging to the GMarte API
and it is important to point out that the application works seamlessly for Win-
dows and Linux platforms. First of all, a resource discovery phase is in charge
of obtaining a list of potential execution machines, from a Grid infrastruc-
ture, where the different structural solutions will be dynamically simulated.
Resource discovery is implemented by accessing the Grid Index Information
Service (GIIS), a service included in the Globus Toolkit which provides ag-
gregate information about the resources within a site.

Once a preliminary list of machines has been obtained, the resource filtering
phase enables to discard those resources that do not fulfill some basic capabil-
ities, such as those computational requirements specified by the application.
This step also includes to apply an authorisation filter to the original list of
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resources discovered, discarding those that can not be accessed with the cre-
dentials supplied by the user, as well as those physically unavailable at this
moment. This procedure results in a list of candidate machines for execution
of simulations. It should be noticed that these two phases described are per-
formed before the scheduling process starts and thus, they are executed only
once for a structural case study. The following steps are performed for each
structural solution to be dynamically analysed.

From this subset of computational resources, the resource selection phase is
in charge of choosing one remote machine on which to schedule the task to be
simulated. Resource selection is still considered an open research topic because
the problem of organising as well as ranking resources having in mind the
application requirements is difficult [32]. This procedure involves some rank
function that attempts to quantify how good is a machine for the execution of
a given task. In our case, the rank function makes use of a performance model
that takes into account the cost of the data transfer, from the submission
machine to the candidate resources, as well as a load distribution component
that prevents from assigning all the simulations to a single machine. The
number of processors involved in the parallel execution are selected according
to the available computing nodes of the remote machine.

Once the resource on which the task being scheduled has been selected, several
phases are performed in order to achieve remote task execution:

(1) File Stage In: The parallel structural simulator as well as all the input
files describing the building and the external loads applied, which are
obtained from the structural repository, are transferred to the remote
machine.

(2) Execution: The application is started on the remote machine and period-
ically monitored to take into account failures as well as detecting when
the execution finishes.

(3) File Stage Out : This phase is in charge of retrieving all the output files
generated on the remote machine to the local computer and erasing all
of them. This way, all these simulation results can be later and offline
analysed by a structural specialist in the local machine.

The implementation makes use of three different threads, each one performing
a distinct phase. This enables to concurrently handle an expensive stage in
phase for a task, while performing the execution or the stage out phase for an-
other simulation, what reduces the overhead introduced by the task allocation
process.

The Grid-based software implements fault-tolerance at different levels. Failures
occurred during the data movement phases are detected by the data transfer
components and retried several times (three by default) until notifying the
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failure and re-scheduling the task to another computational machine. Also,
failures occurred during the execution of the application in the remote machine
cause the re-scheduling of the task, which will be executed on a different
resource.

5.2 Describing a Case Study via Object-Oriented Abstractions

It is very straightforward to modify the Grid-based application and define a
new structural case study to be executed in a Grid Computing infrastructure.
Of course, the description of any case study will be done using the API pro-
vided by GMarte. First of all, we have to create (recall Figure 2) a class which
describes all the GridTasks (in our case the different structural simulations)
that must be executed. Therefore, we create the StructuralCaseStudy class
which inherits from the GridTaskStudy class and includes all the GridTasks
that compose the case study. For each GridTask, we must specify:

(1) The GridExecutableFile, corresponding to the executable file of the par-
allel structural simulator that it will be run on the remote machines.

(2) The GridInputFileSet, which indicates the input data files that the appli-
cation requires. This set of archives describes the geometry of the build-
ing, its properties and the external loads applied. They will be transferred
to the remote resource before execution.

(3) The GridOutputFileSet, indicating the output data files that the appli-
cation generates. They will be transferred to the local machine when the
execution finishes. The parallel simulator employed can be configured to
save periodically, according to a certain time step decided by the user,
joint displacements, velocities and accelerations; member end forces; and
stresses and deformations at any point of the structure.

(4) The GridTaskLoR object, that is, the list of computational requirements
of the parallel application, in terms of the minimum number of processors
employed (if required by the user) as well as the minimum required RAM
for execution.

The following extract of Java code, belonging to the StructuralCaseStudy
class within the Grid-based application, shows how a user would provide the
definition of a GridTask:

GridTask gt = new GridTask();

GridExecutableFile gef =

new GridExecutableFile("/home/user/hiperbuild");

gt.setGridExecutableFile(gef);

gt.setArguments(commandLineArguments);

GridInputFileSet gifs = new GridInputFileSet();
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gifs.addGridFilesByPreffix("/home/user","ss1");

gt.setGridInputFileSet(gifs);

GridOutputFileSet gofs = new GridOutputFileSet();

gofs.addGridFilesBySuffix(".bin");

gt.setGridOutputFileSet(gofs);

GridTaskLoR gtl = new GridTaskLoR();

gtl.addRequirement(AVAILABLE_RAM, 512);

gt.addGridTaskLoR(gtl);

addGridTask(gt);

In the example, the executable file called hiperbuild as well as the input data
files (a set of files starting with ss1 ) are assumed to reside in the /home/user
directory. The variable commandLineArguments must previously contain the
command-line arguments that are required to invoke the parallel structural
simulator, such as the direct integration algorithm employed, with its appro-
priate parameters, and the method selected to solve the appearing systems
of linear equations. The output data files that the simulator will generate are
specified as a set of files ending in .bin. All of them will be sent back to the
local machine. Besides, resources with at least 512 MBytes of available RAM
memory will be selected. Finally, the GridTasks are assigned to the case study
via the addGridTask method of the GridTaskStudy class. Notice that only one
GridTask has been defined. To generate the other instances, we can duplicate
an already created GridTask and only modify the command-line parameters,
together with the instruction line where the input data files are specified. This
is an easy way to create a full structural case study.

For the sake of completeness, we also provide the XML description of the case
study containing one task:

<GridTaskStudy>

<GridTask>

<GridExecutableFile directory="/home/user"> hiperbuild

</GridExecutableFile>

<Arguments> commandLineArguments </Arguments>

<GridInputFileSet directory="/home/user">

<Preffix> ss1 </Preffix>

</GridInputFileSet>

<GridOutputFileSet>

<Suffix> .bin </Suffix>

</GridOutputFileSet>

<GridTaskLoR>

<Requirement type="AVAILABLE_RAM" value="512"/>

</GridTaskLoR>

</GridTask>

</GridTaskStudy>
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To specify the computational resources involved in the execution of a case
study, we can either use the resource discovery functionality provided by
GMarte or explicitly enumerate the machines to be employed. The latter is
implemented, for example, by creating an instance of the TestBed class and
adding the GridResource objects that correspond to each machine, with this
simple manner:

TestBed testBed = new TestBed();

GridResource gr = new GridResource("machine.domain.com");

testBed.addGridResource(gr);

The corresponding XML syntax for the definition of the TesBed is:

<TestBed>

<GridResource hostName="machine.domain.com"/>

</TestBed>

Once the case study has been created and described (the GridTaskStudy),
as well as the computational resources to be employed (the TestBed), we
invoke the scheduling capabilities of GMarte. For that, several steps must be
accomplished:

(1) To instantiate the GridTaskStudy, that is, to create a new instance of the
StructuralCaseStudy.

(2) To create the TestBed, that is, the set of computational machines that
are going to provide the execution services.

(3) To create an instance of the Scheduler, which will perform the task allo-
cation of the GridTaskStudy to the TestBed.

(4) To initiate the scheduling procedure. The procedure finishes when all the
tasks have been successfully executed.

The following extract of Java code will perform all the mentioned steps:

GridTaskStudy scs = new StructuralCaseStudy();

TestBed testBed = new TestBed();

testBed.addGridResource(new GridResource("machine.domain.com"));

Scheduler scheduler = new AdvancedScheduler(scs, testBed);

scheduler.start();

scheduler.waitUntilFinished();

In this example, we have assumed that the TestBed class includes all the
computational resources that are going to be employed. Alternatively, we could
have employed the resource discovery functionality provided by GMarte that
queries a GIIS server to obtain a list of candidate machines for execution. In
this particular study, we have determined which computational resources are
going to be used for execution. This is why we decided to enumerate the list
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of machines involved. Also, notice that in this example the XML description
that corresponds to the scheduler configuration has not been included. Given
that the default configuration has been applied, the XML definition is not
required.

6 Case Study

In order to assess the benefits of using a distributed computing infrastructure
in the structural dynamic analysis domain, we have performed the execution
of a realistic structural case study on a Globus-based Grid deployment.

6.1 Description

An apartment building was proposed to test the performance of the Grid
application. It is composed of two basements, one ground floor and thirty-
three stories. The basements are dedicated to garages, the ground floor to a
commercial establishment and the upper stories to apartments.

The building is composed of reinforced concrete, and eight combinations of
different structural member dimensions were considered for its design. Each
structural alternative was composed of about 40,000 structural elements and
22,000 nodes, i.e. 132,000 degrees of freedom. Taking into account the cur-
rent Spanish-Resistant Construction Standards, each of the eight different
preliminary solutions was linearly simulated under the influence of five differ-
ent representative earthquakes, according to the geographical location of the
building.

Therefore, this case study resulted in 40 independent structural dynamic sim-
ulations. The varying parameters for the definition of the case study were
the input files which described the distinct structural alternatives. The ac-
celerograms employed presented values of ground acceleration equally spaced
at every 0.01 seconds and they had a duration between 5 and 10 seconds.
However, simulation time was fixed to 5 seconds in all the analyses, with inte-
gration time steps equals to 0.01 seconds. Generalized-α method was chosen to
carry out the simulations, because of its versatility. In this case study, the par-
allel simulator was configured to employed MPI-based PETSc and MUMPS
numerical libraries. PETSc was used to matrix assembly and matrix-vector
operations in parallel. Taking advantage of the interface to external numerical
libraries provided by PETSc, the MUMPS package was employed for solving
the resultant systems of linear equations by means of a parallel direct method
based on Multifrontal techniques.
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Table 1
Detailed machine characteristics of the Grid infrastructure.

Machine Processors Memory

Kefren 20 dual Intel Pentium Xeon @ 2.0 Ghz 1 GByte

Ramses 12 dual Intel Pentium III @ 866 Mhz 512 MBytes

Odin 55 dual Intel Pentium Xeon @ 2.8 Ghz 2 GBytes

Each execution required a total amount of 417 MBytes of RAM and generated
82.73 MBytes of raw binary data. The output data contains information about
the stresses and deformations at multiple predefined intermediate points of
all the structural elements that compose the building, saved on disk every 1
second. This resulted in a total output data set of 3.2 GBytes.

6.2 Computational Grid Deployment

For the execution of this case study, we have employed a Grid infrastructure
composed of computational resources which belong to our research group.
It consists of 3 clusters of PCs whose principal characteristics are detailed in
Table 1. These machines are interconnected via a local area network delivering
100 Mbits/sec. The Globus Toolkit version 2.4.3 [23] was previously installed
on each machine of the Grid deployment.

In order to assess the effectiveness of Grid Computing we decided to rely on
our local resources without depending on machines from other organisations.
Although employing a distributed testbed with resources from multiple organ-
isations is at first glance more attractive, the only important difference would
reside on the amount of time involved in the data transfers.

6.3 Execution Results of the Case Study

Executions were submitted from a machine belonging to the same local area
network than the clusters. Table 2 summarises the task allocation process.
It indicates the initial number of available computing nodes at each cluster
during the case study execution, as well as the number of tasks allocated to
each machine. It may be surprising that although Odin is the most power-
ful machine, it did not receive all the simulations, as it could be expected.
However, the scheduling policy implemented in the Grid application tries to
distribute the executions on different machines, implementing a two-fold strat-
egy: First, it eliminates the dependence on a single resource thus reducing the
impact caused if the machine fails. Second, this is a polite strategy that avoids
overloading a single machine, possibly belonging to another organisation.
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Table 2
Distribution of the simulations in the testbed, for each machine.

Machine Initial Available Nodes Tasks Allocated

Kefren 19 17

Ramses 10 10

Odin 53 13

On average, each execution required 11.37 seconds to perform the file stage in
phase, 530.96 seconds to carry out execution and 88.36 seconds to accomplish
the stage out phase. The simulation process of all the structural solutions re-
quired 34 minutes from the beginning of the scheduling until the data transfer
for the last task finished.

A sequential execution of the whole case study on one node of cluster Odin
lasted a total of 354 minutes (almost 6 hours). This represents a reduction
factor of 10.41, that is, the Grid computing approach was more than 10 times
faster than using a traditional sequential execution.

Consider an average 8-processor cluster of PCs, which may be suitable for
a typical research centre. The execution of the case study performing two
concurrent 4-processor executions on cluster Odin required a total of 63.73
minutes. Thus, the Grid Computing approach was almost 2 times faster than
this High Performance Computing approach.

Caution should be taken when performing executions on distributed remote
machines with such an amount of output data. It is clear that the generated
output results should be reduced to the minimum in order to minimise the
time invested in the data transfers. Obviously, we are aware that the time
spent of these data movements supposes the main drawback of the application
implemented. However, we have preferred for this case study to generate a
large amount of data, considering the fact that we are working on a local area
network.

7 Conclusions and Future Work

As a conclusion, this paper presents a Grid Computing application that allows
members of a scientific Virtual Organisation and SMEs to carry out multiple
and concurrent 3D dynamic simulations of singular buildings. This applica-
tion has been developed on top of the GMarte middleware, which enables
to perform fault-tolerant task allocation on Globus-based machines, and it
makes use of a parallel simulator where different time integration methods
have been implemented. The Grid application developed takes advantage of
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different resources available in the network without the need of investing in
High Performance Computing machines.

To assess the benefits of Grid Computing technology, we have executed a struc-
tural case study on a Grid infrastructure obtaining an important reduction in
the global simulation time. It is clear that Grid Computing is a promising
new technology which will have an important impact in many engineering
fields. Therefore, the development of software applications that demonstrate
the advantages of using these technology is of paramount importance for its
adoption.

The future works involve the usage of a Grid service-oriented architecture
on which the clients would connect to a machine offering the service of dy-
namically analysing a large dimension structure. This would require a re-
engineering of the application developed to move into an approach based on
Grid services. However, it would provide important advantages for the po-
tential users, since they could employ a High Performance Computing-based
dynamic simulator without the need of purchasing this software and being
worried about licences and new updates. Besides, different post-processing
procedures can be carried out by means of the Grid service in order to re-
duce the time spent on the result file transfers. For example, the calculation
results can be compressed before sending them to the local machine. On the
other hand, stresses and deformations obtained when different earthquakes
are applied to a same structural solution can be combined, adopting as result
the average characteristic values generated by each of them, thus reducing
considerable the amount of data to be recovered.
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