
A Service-Oriented WSRF-based Architecture for Metascheduling on

Computational Grids ?

G. Moltó ∗, V. Hernández, J.M. Alonso
Departamento de Sistemas Informáticos y Computación. Universidad Politécnica de Valencia. Camino de Vera S/N, 46022 Valencia, Spain

Abstract

This paper describes a Grid service developed over the Globus Toolkit 4, which provides multi-user resource brokering on compu-

tational Grids. Both the architecture and implementation details are covered, emphasizing the usage of the WSRF specifications

and GSI-based security to create a generic, secure and interoperable metascheduler. In addition, we also describe the development

of a graphical client-side application that provides an ubiquitous access to the metascheduler service. This work is currently being

employed in production for the execution of a biomedical application that simulates the electrical activity of cardiac tissues.

Key words: Grid computing, Metascheduling, Globus Toolkit, WSRF, Service-Oriented Architectures

1. Introduction

Grid Computing technologies [1] have emerged as a solu-
tion for the computational problems of Virtual Organisa-
tions (VOs), enabling the collaborative usage of remote re-
sources to satisfy the computational requirements of time-
consuming tasks.

Among all the available Grid middlewares, the Globus
Toolkit (GT) [2,3] is broadly accepted to be the current
de facto standard for deploying computational Grids. How-
ever, GT only provides the basic services and capabilities to
deploy and use Grid infrastructures. Performing remote ex-
ecutions of scientific applications on a computational Grid
typically requires the usage of metascheduling technologies
[5], that provide all the functionality required for task man-
agement.

Metascheduling is the process that efficiently allocates a
set of tasks on the available computational resources of the
different organisations that compose a Grid infrastructure.
We envisage Grid metascheduling technologies as a set of
interoperable components which abstract all the underlying
complexity of the Grid middleware, which offers the execu-

? The authors wish to thank the financial support received from the
Spanish Ministry of Science and Technology to develop the project
GRID-IT (TIC2003-01318). This work has been partially supported
by the Structural Funds of the European Regional Development
Fund (ERDF).
∗ Corresponding author: Tel. +34963877356. Fax.: +3496877359

Email address: gmolto@dsic.upv.es (G. Moltó).

tion support. Only if these Grid technologies get closer to
the end user, they will be adopted in many scientific fields.

In this paper, we go one step beyond the traditional usage
of metascheduling and we propose a metascheduler Grid
service that can be accessed throughout the network by
users interested in task allocation on computational Grids.
It has been developed by exposing a Grid service interface
to GMarte [6,7], a previously developed metascheduler.

With the proposed approach, the user just focuses on
defining the computational tasks to be executed, and del-
egates to this Grid service their efficient execution on the
available Grid infrastructure. As opposed to traditional
metaschedulers, which typically require an installation
and configuration on the client machine, and are typically
bounded to a given platform (usually Unix-based), we pro-
pose a Service-Oriented Architecture (SOA) that can be
used from different architectures and operating systems.
This approach enables to dramatically simplify the usage
of computational Grids for job executions, even accessible
for Windows-based desktop PCs, thus paving the way for
the widespread adoption of Grid technologies by the least
experienced users.

In addition, creating a generic and interoperable com-
ponent based on standard technologies contributes to the
ecosystem of tools employed to interact with computational
Grids.

The remainder of the paper is structured as follows. First,
section 2 introduces the metascheduling framework and the
abstraction environment provided by GMarte, which is the

Preprint submitted to Elsevier 29 May 2007

Access to the Information System

Remote Execution of a Single Task

MetaScheduling of Multiple Tasks

MDS2 MDS4 GLUE

GRAM WS-GRAM CE

POLICIES FAULT
TOLERANCE

GRIDFTP

PBS,
TORQUE SGE

RESOURCE
DISCOVERY

Fig. 1. Layered diagram with the abstraction framework provided
by GMarte.

starting point of this work. Then, section 3 explains the ar-
chitecture and functionality of the GMarte Grid Service as
well as the development of a graphical client to provide an
easy interaction. Later, section 4 describes the utilization
of the Grid service to offer transparent execution services
to a biomedical research group that simulates the cardiac
electrical activity. Section 5 compares the approach sug-
gested in this paper with others found in the literature and
finally, section 6 summarises the paper.

2. The GMarte Framework

GMarte [6,7] is a software framework, developed by our
research group, aimed at simplifying the process of execut-
ing scientific applications on computational Grids based on
the standard Globus Toolkit [2,3]. Behind this simple de-
scription, there is a tremendous effort to enable the users
to rapidly deploy their applications for execution on a com-
putational Grid. GMarte has been developed as a Java li-
brary which exposes a high level API (Application Pro-
gramming Interface) to the user. The GMarte framework
is a layered software (see Figure 1) that first introduces
an homogeneous interface to access the Information Sys-
tems of the heterogeneous computational resources. Over
this common API, a layer which enables remote task exe-
cution on Globus-based resources was implemented. Later,
we extended the capabilities of GMarte by to introduce
metascheduling functionality for the allocation of multiple
tasks on computational Grids.

Therefore, the GMarte framework is not only a
metascheduler but an abstraction environment that en-
ables to interact with computational Grids at several levels.
In the following subsections, we overview the fundamental
aspects of GMarte concerning each layer mentioned.

2.1. Information System Management for Computational

Resources

The computational resources belonging to a Globus-
based deployment expose very valuable information com-
monly employed for activities related with the metaschedul-
ing process. For example, in order to decide the most suit-
able machine for the execution of a given task, a resource

selection must be performed. This procedure obtains the
dynamic information of each machine, gathering the avail-
able number of processors, the available amount of RAM,
etc.

However, this information is exposed in a different man-
ner, depending both on the Globus Toolkit version and
the LRMS (Local Resource Management System), that is,
the job manager, if any, on the remote machine. For ex-
ample, in the Globus Toolkit 2.4.3, the MDS2 (Monitoring
and Discovery Service) offers the computational informa-
tion through a server typically listening in the port 2135,
accessible via LDAP (Lightweight Directory Access Pro-
tocol) interfaces. However, the Globus Toolkit 4 exposes
the computational information via the DefaultIndexService

(MDS4), which is just one of the multiple services deployed
in the Grid services container. In this case, the informa-
tion is published in XML (eXtensible Markup Language)
format and typically accessed via XPath (XML Path Lan-
guage) queries.

In order to hide all this complexity of protocols and data
formats from the end user, GMarte provides an abstraction
layer to access the computational information. For that, we
introduced a high level object, called GridResource, which
offers a common API with user-level methods (getAvail-
ableProcessors, getAvailableRAM, etc.) that gather the re-
quested information, in a transparent way for the user. This
is achieved by using the appropriate protocols depending
on the underlying Grid middleware of the remote machine.

This feature is of paramount importance for the end
user, which no longer has to deal with the low-level im-
plementation details and data formats to access the com-
putational information. Additionally, GMarte implements
a transparent caching component that distinguishes be-
tween static information, which it is assumed to remain un-
changed (i.e., operating system name, CPU architecture,
etc.) and dynamic information (i.e, available number of
processors, available RAM, CPU load, etc.). The queries to
static information are automatically cached so that subse-
quent ones do not produce access to the remote information
system.

At the moment, the features described within GMarte are
available for resources with the Globus Toolkit 2.X and 4.X,
as well as the Computing Elements in LCG-2 [4] deploy-
ments. The supported LRMS are PBS/Torque (Portable
Batch Systems), and SGE (Sun Grid Engine).

2

2.2. Abstracting the Process of Remote Task Execution

GMarte enables to abstract the process of remote task
execution by performing fault-tolerant executions with co-
ordinated data staging, even for parallel applications using
the MPI libraries.

First of all, the application dependent input files are
transferred via GridFTP from the client to the remote ma-
chine (a process called stage-in). Then, the application is
started in the remote machine via the GRAM (or WS-
GRAM) service provided by the Globus Toolkit and peri-
odically monitored to detect failures. When the execution
finishes, the output files generated are transferred to the
client machine via GridFTP (a phase called stage-out).

In this layer, GMarte implements a multi-level fault tol-
erance scheme which allows to recover itself from failures
both during the data transfers (which are retried a cer-
tain amount of times before giving up), as well as dur-
ing task execution, where failed tasks are marked so that
the metascheduler decides the appropriate action to be
taken. Failures in remote computational resources cause a
re-scheduling of the tasks on other available machines.

In addition, GMarte supports the definition of application-
dependent checkpoint files which are periodically trans-
ferred to the metascheduler machine so that failures in the
tasks or resources are handled to retake the execution from
the latest checkpoint. For long-lasting execution this can
save a considerable amount of time.

2.3. Metascheduling Approach

In brief, the metascheduling procedure typically involves
several phases [5] in order to efficiently solve the problem
of executing a set of tasks on the available remote resources
(see Figure 2). In GMarte, these phases are handled as
follows:

First of all, the Resource Discovery phase involves the
discovery of a set of candidate execution machines from
either a GIIS (Grid Index Information Service) or a BDII
(Berkeley Database Information Index). These components
aggregate resource information and are queried to provide
a list of machines that satisfy some computational features
specified by the user.

Once a list of potential execution machines have been
obtained, the Resource Filtering phase is in charge of dis-
carding those resources that either are not accessible with
the user credentials or do not satisfy the computational re-
quirements of the task to be executed.

When both previous phases finish, a set of computational
resources on which to perform the execution of the tasks
is available. In order to decide which resource is going to
run each task, a Resource Selection stage must take place
for each one, which chooses the current best machine on
which to execute it, according to some criteria. GMarte
implements different resource selection policies. The most
commonly used involves a performance model that tries to

minimise the execution time of the application, consider-
ing both the number of available processors (for parallel
executions) and the data transfer cost between the sub-
mission machine and the computational resource, which is
dynamically updated upon each data transfer. In addition,
being an abstraction framework, the user can easily create
new policies by providing different score functions for com-
putational resources. As no resource selection can be con-
sidered the best for all kind of applications, this allows to
extend the functionality via additional, user-programmed
modules. This procedure involves creating a new Java class
which ranks the resources according to the new criteria. By
using the high level API to access the computational infor-
mation of resources, this can be a simple task.

GMarte implements a multi-threaded metascheduler
that enables to concurrently perform the distinct phases
involved in the remote task execution of different tasks
(resource selection, stage-in, execution and stage-out). For
example, the user can specify the number of threads in-
volved in the stage-in phase. If 3 threads are for example
specified, then up to 3 tasks will be simultaneously handled.

This approach enables to introduce a considerable speed-
up in the whole task allocation process, but specially in the
start-up time, where the resource selection phase typically
requires a time linear with the number of computational
resources. If a large testbed is used, this selection phase
may become a time-consuming process due to the retrieval
of dynamic information of each machine. Using multiple
threads for resource selection, combined with a client-side
processor reservation stage to avoid selecting the same re-
source more than once, offers important improvements in
speed compared with a single-threaded approach.

Finally, it should be mentioned that the functionality de-
scribed can be used via a GMarte Java application as well as
through XML documents, which are automatically mapped
to the corresponding abstraction objects. Being based on
Java, GMarte can be seamlessly run both on Windows and
Unix machines.

Currently the GMarte framework has been successfully
applied for the execution of a biomedical application that
simulates cardiac electrical activity both on local and large-
scale Grid infrastructures [8]. Its functionality has also been
introduced as part of a Grid service that performs the struc-
tural analysis of buildings [9]. This has enabled to perform
executions of scientific applications in a transparent man-
ner for the user.

3. GMarteGS: A Grid Service for Metascheduling

In order to create an interoperable metascheduler, we
decided to migrate the GMarte framework to a SOA based
on standard technologies provided by Grid services.

3

Stage Out

Grid
Application

Target
Application

Resource
Discovery

Resource
Filtering

Resource
Selection

Selects

Remote Machine

Stage In
Execution

Client Machine

GMarte
Abstraction

Layer

Refers Uses

Performs

XML
Definition

Develops

Writes

User

Generates

XML
Adapter

Fig. 2. Overview of the principal phases involved in the GMarte framework.

3.1. Grid Services, OGSA and WSRF: Globus Toolkit 4

The evolution of the Grid Computing field indicates
that there is an unquestionable trend in producing loosely-
coupled, interoperable and generic components.

The Globus Toolkit (GT) has been developed since the
late 1990s to support service-oriented distributed com-
puting applications and infrastructures [2]. Initially, the
early versions of GT were based on services that interacted
among them using proprietary interfaces, although com-
monly implemented using standard protocols like LDAP
or FTP (File Transfer Protocol). With the release of the
GT version 3 (GT3), a step towards Web services was per-
formed, trying to expose common and standard interfaces
for the interaction with the different services. GT version
4 (GT4) represented an important advance in terms of
functionality, conformance to standards and usability [3].

GT4 provides the implementation of a set of Grid ser-
vices which conform to OGSA (Open Grid services Ar-
chitecture) [10]. OGSA represents an evolution towards a
Grid system architecture based on the concepts and tech-
nologies provided by Web services. Being developed by the
Open Grid Forum (OGF), OGSA defines a common, stan-
dard and open architecture for all the services that can be
found in a Grid system (job management, resource man-
agement, security, etc) [11], so that tools of different ven-
dors can cooperate together using standard interfaces. As
a result, OGSA defines its underlying architecture to be
based on special Web services, which maintain their state
from one invocation to another, something that traditional
Web services are not able to. This is where WSRF (Web
Services Resource Framework) [12] comes into play, speci-
fying how Web services can be stateful. This is achieved by
coupling a data container (WS-Resource), which stores the
stateful data, to a web service. OGSA uses this new concept
to specify the underlying architecture of the Grid services.
Therefore, GT4 includes an implementation of WSRF as
well as a set of Grid services developed on top of WSRF,
which are compliant with OGSA requirements.

Migrating GMarte to a SOA means moving the resource
brokering functionality from the client machine to a spe-
cialised machine which now performs the task allocation
functionality for multiple clients by means of a Grid service.

This represents a two-fold strategy. On the one hand,
lighter clients can be developed since they no longer carry

hp w or ks t at io n

xw 4 0 0 0

GMarte Grid
Service

Local
Organizational

Resources

h p w o rk st a tio n

x w 50 0 0

Organization

(a) Enterprise Grid

h p
w or k st a

ti on

xw 4 0 0 0

h p

w or k st a
ti on

xw 4 0 0 0

GMarte Grid
Service

h p w o rk st a tio n
x w 50 0 0

Organization 2 Organization 3

Organization 1

(b) Global Grid

Fig. 3. Different scenarios on which the GMarte Grid Service ap-
proach can be applied.

out the metascheduling process. This implies decoupling
the task allocation (run in the Grid service) with the state
visualisation (done in the client), thus conforming to a
loosely-coupled architecture.

On the other hand, this scenario opens new possibilities
such as those depicted in Figure 3. The GMarte Grid Ser-
vice (GMarteGS) can be deployed within an organisation
as an entry point to its local computational resources, thus
creating an Enterprise Grid (Figure 3.a). This enables an
organisation to provide secure and trusted computational
access to multiple clients willing to execute their tasks in
the organisation resources. Alternatively, GMarteGS can
be deployed within an organisation to enable performing
remote task executions on computational resources from
other institutions (Figure 3.b). This way, the Grid service
would represent a gateway among different machines and
the clients that want to access distributed computational
infrastructure.

4

(1) Create
Metascheduling

Session

Client
Machine

h p w o rk s ta tio n x w 4 00 0h p w o rk s ta tio n x w 4 00 0

GT4 Java
WS Core

Computational
Grid

(2) File Transfer

(3) Execution of the
Metascheduling

Session via GMarte

(5) Output Data
Retrieval via

GMarte

(6) Output Data
Retrieval

(7) Destroy
Metascheduling

Session

GridFTP

GMarte Grid Service

(4) Task State
Notifications

Fig. 4. General functionality provided by the metascheduling Grid service.

3.2. Main Functionality and Interaction

The aim of GMarteGS is to provide multi-user trans-
parent metascheduling functionality to perform executions
on computational Grids. Therefore, we introduce the con-
cept of a metascheduling session and the service provides
different operations to manage them. A metascheduling
session is defined by the computational tasks to be exe-
cuted. Additionally, the user can also specify the compu-
tational resources to be employed and the configuration of
the metascheduler. This way the user can select the Grid
infrastructure or let the Grid service decide.

All the information exchanged between the client and the
service is performed in XML language. The main reason
is that XML enables to structure information in a manner
that is both easily understood by humans and machines. In
addition, being a text-based information can be obtained
as the result of a method invocation, thus easing commu-
nication between the client and the service.

The principal interface of the Grid service covers a set of
methods that allow the client to:

(i) Create a Session. Creates a new metascheduling ses-
sion.

(ii) Initialise the Session. This operation enables to spec-
ify the XML documents (in the shape of a String as
method arguments) that describe the tasks and, op-
tionally, the computational resources and the config-
uration of the metascheduler. The user may also de-
cide to rely on the resource discovery functionality to
gather a list of computational resources from an Index
Service. In addition, user credentials are delegated to
the service so that authentication against computa-
tional resources is performed by the Grid service on
behalf of the user. Notice that it would also be possi-
ble to let the Grid service use some generic credentials
to interact with the computational Grid, regardless of
those provided by the user. This can provide a com-
putational gateway between different Grids accessed
with different credentials.

(iii) Gather Session Information. Retrieves information
about the session, such as its name, the data folder
in the Grid service machine that will host the client

data, the time spent on the execution of the session,
etc.

(iv) Gather Session State. This method obtains the cur-
rent state of the metascheduling session. This docu-
ment specifies, for each task, the machine hosting the
execution, the number of processors employed in case
of a parallel execution, and its state according to the
life cycle of tasks.

(v) Gather Testbed State. This method obtains the cur-
rent state of the testbed. It basically details some
computational information about the machines being
employed, such as the number of available processors.
This allows the user to have an overview of the state
of the Grid infrastructure.

(vi) Destroy the Metascheduling Session. It instructs the
Grid service to stop the task allocation process, thus
cancelling all the on-going simulations, as well as eras-
ing any data related to the metascheduling session.

Figure 4 summarises the main interaction between a
client and the Grid service. First of all, the client creates
a new metascheduling session and specifies the XML defi-
nition of tasks. Then, all the data required for the execu-
tion of the tasks is transferred via GridFTP to the Grid
service machine. Next, GMarteGS performs the execution
of the session delegating on the functionality implemented
by GMarte. At the same time, the user is notified about
changes in the state of the tasks. Once the session has fin-
ished, the user can retrieve the output data to the client
machine. Notice that it is also possible to retrieve the out-
put results of individual tasks as long as they have finished.

3.3. GMarteGS Architecture and Implementation

The principal architecture of the Grid service developed
is shown in Figure 5. The Grid service has been split into a
Factory Service (FactoryGMarteGS) and an Instance Ser-

vice (GMarteGS), following recommendations of [11]. On
the one hand, the Factory service is in charge of creating
new WS-Resources, which store the stateful data, that is,
a MetaschedulingSession object. Notice that this creation
is actually performed by the ResourceHome, which stores
and manages WS-Resources. On the other hand, the In-

5

stance service (GMarteGS) represents the core of the Grid
service, and it implements the operations that affect a given
metascheduling session. Although it is not necessary to split
the functionality in two different services, this approach en-
ables to introduce new scenarios (not covered in this paper)
such as having a distributed federation of metascheduling
Grid services, where the Factory service diverts the client
requests of creating new sessions to the most appropriate
metascheduler Grid service, based on availability, priority
or any other parameter.

The interaction between the client machine and the
metascheduler Grid service is also covered in Figure 5.
First of all, the client needs to know the URI (Uniform Re-
source Identifier) of the FactoryGMarteGS Grid service,
which represents a unique address to identify this service.

Next, a new metascheduling session is requested to be
created (step 1). This causes (step 2) the ResourceHome
to create a new WS-Resource (step 3), which contains the
MetaschedulingSession object that hosts the session infor-
mation, returning a unique identifier (Resource Key) of the
newly created WS-Resource (step 4). Using this Resource
Key plus the URI of the GMarteGS service, an endpoint
reference (EPR) is created and returned to the client (step
5, 6). An EPR, in this context, unambiguously identifies
both the GMarteGS service and the metascheduling ses-
sion (WS-Resource) that will be affected by the operations
invoked.

Later, the client invokes any of the methods published
by GMarteGS (step 7). Then, using the ResourceHome
this service can automatically locate the WS-Resource the
method will work with, from the EPR (step 8) and the
operation is performed (step 10), only affecting the corre-
spondent MetaschedulingSession object. Finally, the result
of the method invocation is returned to the client (step 11).

3.4. WSRF-based Specifications

GMarteGS uses several WSRF specifications given that
the adoption of standards enables to create interoperable
components.

First of all, the WS-Resource specification describes the
relation between a service and a resource as well as the ac-
cess mechanisms to resources through interfaces based on
Web services. In GMarteGS, each metascheduling session
corresponds to a WS-Resource. This enables to isolate ses-
sions of different users. The fact that each WS-Resource has
a unique identifier enables to automatically know the ses-
sion on which a certain operation has to be invoked, given
an EPR.

Secondly, the WS-ResourceProperties specification stan-
dardizes the mechanism to define the properties of a re-
source, which represent their state and how they can be de-
clared as part of the service interface. In GMarteGS, each
WS-Resource has a resource property represented by the
XML summary of the state of the metascheduling session,
thus capturing the state of the WS-Resource.

The WS-ResourceLifeTime specification defines mecha-
nisms to destroy a WS-Resource. Basically, it specifies two
different strategies: immediate and lease-based destruction.
GMarteGS enables to destroy a metascheduling session at
any moment cancelling the execution of its tasks. In addi-
tion, it implements an automatic mechanism, based on this
specification, to destroy finished sessions that have been
idle (no operation has been performed with the session) af-
ter 15 days. This enables clients to use the Grid service ma-
chine also as a temporary data repository for the generated
output data from executions.

Finally, we have used some WS-Notifications specifica-
tions, particularly WS-Topics and WS-BaseNotification,
although they are not part of WSRF but available in GT4.
They allow part of a system to be notified when an event
occurs in another point of it. Thus, a publish-subscription
method based on topics is introduced where a client sub-
scribes to a topic in order to receive notifications related
to it. This feature has been incorporated to GMarteGS so
that changes in the state of the tasks are automatically no-
tified to the client by means of XML data describing the
current state of the tasks. As initial and final phases of
metascheduling cause many task state changes we have im-
plemented basic contention mechanisms to aggregate mul-
tiple notifications that occur within the same time interval
in order to reduce the communication overhead.

The usage of a notification mechanism reduces the work-
load in the service as the multiple users no longer require a
periodical query to track the state of the tasks. Only when
changes are detected a communication is performed. How-
ever, the usage of notifications relies on the installation of
at least the Java WS Core of GT4, in the client machine,
to be able to receive the notifications. This is a handicap
when creating lightweight components to interact with the
Grid service.

3.5. Security Infrastructure

Security in a multi-user environment accessible from the
Internet is a crucial aspect. Therefore, it is important that
the service guarantees the principal features of a secure
communication: privacy, integrity, authentication and au-
thorization [13]. To address this problems we have used
standard mechanisms based on GSI (Grid Security Infras-
tructure) provided by the Globus Toolkit 4.

Figure 6 shows the interaction diagram between the
client and the service detailing the security aspects in-
volved. The client must have available a user certifi-
cate signed by a Certification Authority (CA) on which
GMarteGS trusts. Otherwise, it is impossible to perform a
communication.

The FactoryGMarteGS service has been configured to
require GSI Secure Conversation to establish a dialog. This
mechanism forces to automatically perform a mutual au-
thentication so that both the client and the service ensure
that they are talking to the expected partner. In addition,

6

(7) Invoke a GMarteGS Method
(on the WS-Resource)

(1) Create New
 Metascheduling

Session
FactoryGMarteGS

GMarteGS

ResourceHome

Metascheduling
Session

(WS-Resource)

Metascheduling
Session

(WS-Resource)

...

GMarte Grid Service
(GMarteGS)

(2) Create New WS-Resource

(3) Create

(4) ResourceKey(6) Obtained
EPR

(8) Get WS-Resource
from EPR

(9) Obtained MetaschedulingSession

(10) Invoke
MetaschedulingSession

Method

(11) Get the Result of
the Invocation

(5) EPR = GMarteGS URI
+ ResourceKey

Client
 Machine

Fig. 5. Architecture of the metascheduler Grid service as well as client-service information flow.

Client Machine

User

/C=ES/O=UPV/OU=GRyCAP/
CN=John Doe FactoryGMarteGS

GMarteGS

Metascheduling
Session

WS-Resource,
Owner = Other

User)

Metascheduling
Session

WS-Resource,
Owner = John Doe

ResourceHome

Authorized
Users

Check
Authorization G

SI Secure Conversation

Authentication
 GSI Secure Conversation

Authentication

(2) Create New WS-
Resource

(Using Credential
Delegation)

(3) Create

(1) Create New
Metascheduling

Session

(4) Invoke a GMarteGS
Method

(on the WS-Resource)

(5) Get WS-Resource
from EPR

(6) Obtained
MetaschedulingSession

(7) Invoke the Method on the
MetaschedulingSession

(Authorization Error if the Client is
not the WS-Resource Owner)

GMarte Grid Service
(GMarteGS)

Fig. 6. Diagram of the client-service interaction with the security mechanisms employed.

the channel is configured to support privacy and data in-
tegrity. Once the connection has been established, the Fac-
toryGMarteGS service queries a database of users, thus
granting access only to authorized ones.

The current security scheme forces the client to use a
credential delegation mechanism that enables the service
to create a new WS-Resource (metascheduling session) set-
ting its owner to the user credentials. This feature is of fun-
damental importance as all the accesses to a WS-Resource
can only be performed by the creator of the session. This
security approach is more secure than a simple access con-
trol to authorized users, as access policies to WS-Resources
are controlled by themselves.

The security mechanisms implemented achieve the fol-
lowing goals:

(i) All the communications between the client and the
service are private and can not be altered by a third
party without the receiver to notice it.

(ii) An user which has not been registered as an au-
thorized user of the Grid service can not create
metascheduling sessions.

(iii) Only the creator and owner of a session can invoke
an operation on it. Any other user authorized by the
system has no access to this session.

3.6. The GMarteGS Client GUI

GMarteGS uses standard protocols like SOAP (Simple
Object Access Protocol) and XML for data exchange, and
WSDL (Web Services Definition Language) for the inter-
face specification. Therefore, a client using such protocols
could programmatically interact the service, no matter the
programming language employed. Additionally, a client li-
brary implemented in Java has been developed for that pur-
pose. First of all, this library implements methods for data
management between the client and the service. It enables
to automatically perform data transfers from the XML de-
scription of tasks provided by the user. In addition, it ex-
poses high level methods to interact with GMarteGS. The
development of this client library enables to incorporate
the service functionality within applications that, using the
API provided, can delegate the execution of tasks to the
Grid service.

Alternatively, we have developed a commodity graphical
client that provides easy-to-use interaction with the service
for those users that just want to perform remote task exe-
cution but do not require a full API (see Figure. 7). This
application allows to:

(i) Perform data transfers between the client and the
service, both for the input and output data of the

7

tasks.
(ii) Specify the different XML documents that are re-

quired to create a new metascheduling session. It is
mandatory to provide at least the definition of tasks.

(iii) Show the current state of the metascheduling proce-
dure by means of populating tables that summarise
the process.

(iv) Know the current state of the testbed, describing
the main features of the computational resources in-
volved.

To enable an easy access to GMarteGS, we have relied
on the Java Web Start technology (JWS) to create a self-
contained client that can be accessed by only means of a
Java-enabled web browser. This feature provides ubiqui-
tous access functionality to our client, which can be ac-
cessed from every platform that supports Java.

JWS enables to deploy a full Java application to a web
server. This technology provides all the support to au-
tomatically retrieve the latest version of the application
and starts the application in a sandbox in the client ma-
chine.The usage of a cache mechanism enables to save band-
width from the client-side, while ensuring that the latest
version of the application will always be deployed to the
client machine.

Before working with the application, the user must have
available in the client machine all the components required
for security based on GSI. This information typically in-
volves:

(i) An user certificate signed by a CA, which certifies
that the public key included in the certificate belongs
to the user. This way, the user can be recognised as
such by the computational resources in the Grid that
trust this CA.

(ii) A private key, only readable by the user, which en-
ables to decipher messages addressed to the user
which were ciphered with his/her public key. In GSI
security, the private key is also protected by a pass-
word to introduce an additional level of security.

(iii) A certificate of the CA that signed the host certificate
of the Grid service machine.

The security configuration on the client machine is a one-
time process, provided that any certificate involved does
not expire. In order to ease this procedure, we have also
deployed under JWS the configuration setup of the Java
Commodity Grid Kit [14], a step-by-step GUI that enables
to configure the client machine for GSI security. In addi-
tion, proper CA certificates, which signed the computa-
tional resources certificates, must reside in the Grid service
machine to access the machines during the task allocation
procedure.

Once the GSI configuration has been performed, the
client will always interact with the computational resources
through the Grid service, via an user proxy, which imple-
ments a single sign-on strategy that prevents the user from
typing the password each time the private key is accessed.
The proxy is just a small file that holds the user credential
for a limited amount of time.

After the security configuration procedure, the user can
now access the Web site that hosts the GMarteGS Client
GUI component. This process automatically starts in the
client machine the JWS support to download the requested
component. This involves retrieving the GMarteGS Client
GUI software itself and all its dependent libraries (a set of
JAR files), which broadly cover the following areas:

(i) GMarte libraries employed for reliable data transfers,
accessing XML documents, etc.

(ii) Cryptographic libraries required for the GSI-enabled
security infrastructure.

(iii) Logging components that trace the execution of
GMarte and other Java modules.

(iv) Support libraries to access the WSRF-based Grid ser-
vices, which includes components such as AXIS mod-
ules for handling Web services and WSDL modules
for the description of the service interface.

All this information represents a total 8 MBytes to be
downloaded to the client machine. Considering the cache
that implements JWS, a lightweight access to the client
GUI is provided.

Before the application is started in the client machine,
the user is notified that the software demands full access
to his/her machine (in order to read certificates, perform
GridFTP data transfers, create directories, etc.). In addi-
tion, the certificate information that signed the application
is shown. Upon acceptance, the GUI component is launched
for the user to interact with the Grid service.

To ensure client multiplatform, successful tests have been
performed in several architectures (Pentium IV, Intel Xeon,
AMD Opteron and UltraSPARC-III) and operating sys-
tems (Linux Fedora Core, Windows XP and Solaris 10).

3.7. Fault-Tolerance

Using a service-oriented approach where client and server
reside in different machines introduces new problems which
must be managed.

First of all, failures in the client should not affect the ex-
ecutions being carried out in the remote computational re-
sources. The strategy implemented in GMarteGS relies on
the fact that an EPR uniquely identifies both the Grid ser-
vice and the WS-Resource that represents the metaschedul-
ing session.

Therefore, when a new metascheduling session is created,
its EPR is automatically stored. Therefore, a failure in the
client can be managed by using a new one that, using the
stored EPR, accesses the session. This functionality enables
to decouple the client and the service so that a user can
create a session, submit the executions and switch off the
computer. Later, the client will be able to reconnect to the
session to track the state of the metascheduling procedure.

Failures occurred in both the computational resources
or the tasks are managed by the GMarte metascheduler,
which already provided this functionality. Therefore, the
service is only aware of changes in the state of the tasks.

8

(a) (b)

Fig. 7. Snapshots of the graphical client developed to interact with GMarteGS.

In order to handle failures in the service itself, we
have implemented a persistent approach. By default, WS-
Resources reside in the main memory, so a failure in GT4
container or in the service causes those resources to disap-
pear. Therefore, we have employed the Java serialization
mechanism to store a copy of the metascheduling session
in secondary storage. In the case of failure, it is possible to
restart the GT4 container and any operation performed in
a session stored in disk will cause its automatic loading to
principal memory. This enables to retake the metaschedul-
ing session for those tasks that still had not finished.

4. An Application of the GMarte Grid Service:

Computational Gateway

Nowadays, GMarteGS is being used to provide computa-
tional access to the Grid resources located at our research
group for the study of cardiac pathologies. The understand-
ing of cardiac electrical activity is fundamental for the de-
velopment of new therapies to address diseases such as ven-
tricular fibrillation, the most mortal of arrhythmias. For
several years now our research group has a collaboration
with the Center for Research and Innovation on Bioengi-
neering (Ci2B), at the Universidad Politécnica de Valen-
cia. We have developed a High Performance Computing-
based cardiac simulator which enables to reduce the exe-
cution time of cardiac simulations in a cluster of PCs [15].
This is an MPI-based application which solves the reaction-
diffusion problem of action potential propagation on car-
diac tissues. The simulator employs computationally inten-
sive cardiac cellular models and requires the resolution of a
large sparse linear equation system in each simulation time
step. The usage of MPI-2 I/O enables to collaboratively

store on disk the large volume of biomedical data by the
different processors in a parallel execution.

However, there are many cardiac studies that require to
perform multiple simulations. For example, studies of vul-
nerable window in ischemia need to vary the time inter-
val between two consecutive electrical stimulus in order to
detect the range of values which provoke a reentry, a phe-
nomenon that can derive into heart fibrillation. Besides, to
evaluate the influence of certain medicines, it is necessary
to modify the concentration of drugs to study how they af-
fect the electrical activity of the tissue. These cardiac case
studies are composed of multiple independent simulations
which are ideal for their execution on a Grid infrastructure.

As part of this collaboration, GMarteGS has been de-
ployed as the entry point to a Grid infrastructure com-
posed by several clusters of PCs within our research group.
The Client GUI application enables the experts to focus on
the definition of the cardiac case studies, while GMarteGS
provides a transparent support for the parallel execution
of the different simulations on the machines that compose
the Grid infrastructure. As a result, biomedical experts can
easily enlarge their computational power, using a Grid in-
frastructure.

Figure 8 summarises the interaction with the Grid ser-
vice by the biomedical experts. Notice that many clients
can concurrently work with the service. In this particular
situation, the Client GUI application has been restricted
so that users need only specify the tasks to be executed.

9

(4) The
MetaScheduling

Simulation is Started

(2) The Client GUI is
Automatically Deployed

(1) The User Accesses
the Graphical Client

Biomedical
Expert

Client
Machine

Web Server

Computational
Grid

(3) The User
Specifies
the Tasks

XML Definition of Tasks

(5) The Execution
is Performed

Through GMarte

(6) The Output Results
are Retrieved

(7) The User Retrieves the
Output Data

and Destroys the Session

h p w o r ks ta ti on xw 4 0 00

Grid Service
Machine
(GMarte)

GMarteGS
Client GUI

Fig. 8. Usage of GMarteGS to provide biomedical experts with trans-
parent access to a computing infrastructure.

4.1. A Computational Case Study: Analysis of Ischemia

on the EGEE Testbed

The implemented Grid service supports the capability to
delegate executions on the EGEE testbed [17], the largest
production Grid infrastructure all over the world. This
functionality enables to transparently access hundreds of
computers, via the high level interfaces in GMarte, for the
execution of computationally intensive applications.

In order to assess the benefits of using a large Grid infras-
tructure, we have instrumented the execution of a typical
cardiac case study on the EGEE testbed, via the SOA de-
veloped. The case study analyses the effects of myocardial
ischemia, a condition of the tissue caused by oxygen depri-
vation to the heart muscle, in the electrical propagation.
The generation of ventricular tachycardia and fibrillation
can be studied using a model of a regionally ischemic tissue
[16]. This study introduces the conditions that appear dur-
ing the first 10 minutes of myocardial ischemia, on a central
zone of 50x50 cells in a 250x250 cells bidimensional virtual
tissue. Using a time increment of 0.5 minutes, 21 indepen-
dent parametric executions are required. Each simulation
reflects the conditions of the tissue on the specified min-
utes after the onset of ischemia. Each execution simulates
80 ms and stores a snapshot of the membrane potential of
all the cells of the tissue every 0.2 ms in the interval [60,80]
ms, generating a total amount of data of 47 MBytes per
simulation.

For the execution, we have relied on the resources of
the Biomed Virtual Organisation (VO), within the EGEE
testbed. As MPI executions are currently not supported
by LCG-2, we have disabled parallel executions on this in-
frastructure. The involved LCG-2 services are the Storage
Element (SE), for storing both the input and output data

of a simulation, the Resource Broker (RB), for submitting
the execution, the Computing Element (CE) and its corre-
sponding Worker Nodes (WN), where the executions take
place, the Logging & Bookkeeping (LB), for monitoring
the state of the tasks, and the LFC (LHC File Catalog),
to manage file replicas on the Grid. All these services are
transparently orchestrated, in GMarte, in order to achieve
the data management, the delegation of execution and the
monitoring of tasks. This VO has currently more than 1800
queues available for execution.

Concerning the execution results, the metascheduling
session lasted for 1.71 hours, since the task allocation
started until the output data of the last task were retrieved.
The resource selection policy of the RB was to choose
the machine with the largest number of free CPUs. As a
consequence, all the executions were allocated to the same
machine, which had 160 available CPUs out of a total 190
WNs. A sequential execution of the whole case study on a
Pentium Xeon at 2.8 GHz with 2 GByte of RAM, required
29.4 hours. Therefore, the Grid approach was 17.19 times
faster than the sequential approach, enabling to produce
more results per time unit. All the executions were concur-
rently executed in the Grid infrastructure. Therefore, the
delays in the Grid approach included the data transfers re-
quired between GMarteGS and the SE as well as between
the WNs and the SE. It should be mentioned that LCG-2
introduces a substantial delay since a job request is sent
until the application gets running on a remote resource.
In order to alleviate this problem, a multi-threaded ap-
proach is employed, in GMarte, to perform concurrent job
submission of different tasks.

Currently, we are planning to use the developed system
as a computational gateway to a two-layer Grid infrastruc-
ture. The first one would be composed by clusters of PCs
from our research group and the second one would be the
EGEE testbed. This would enable firstly to use our lo-
cal resources, which produce shorter execution times (due
to the overhead of LCG-2), until they become exhausted.
Then, executions would be transparently delegated to an
EGEE-based production Grid. This approach would offer a
sustained quality of service to the biomedical users. Other
examples of execution results on local and regional Grid in-
frastructures based on the Globus Toolkit, using GMarte,
can be found in [8].

Decoupling the scientific activities from the computa-
tional infrastructure has allowed biomedical experts to con-
centrate on the scientific side, while the executions are
transparently performed by GMarteGS. Scientists are now
able to access a Grid infrastructure with easy-to-use tools
that hide the complexity of the Grid. By enabling biomed-
ical experts to enlarge their computational infrastructure,
research productivity is easily increased, as more simula-
tions per time unit can now carried out.

10

5. Related Work

This work addresses the topic of multiplatform metasche-
duling combined with a WSRF-based approach to create a
multi-user metascheduler accessible through standard in-
terfaces and an easy-to-use graphical client.

In the field of resource brokering we find GridWay [18]
which is one of the principal metaschedulers available for
Globus platforms. GridWay is an open source metasched-
uler that performs unattended, reliable and efficient exe-
cution of jobs on computational resources based both on
GT2 and GT4. However, GridWay only runs on UNIX-like
operating systems. Moving to a SOA, we find the eNanos
Grid Resource Broker [19], a metascheduler implemented
in GT3 to manage remote application executions.

To the best of our knowledge, there is little work focus-
ing on metaschedulers exposed via WSRF-based Grid ser-
vices. In [20], a WSRF-based metascheduler is designed,
along with a client application, which performs task allo-
cation to resources. Its Grid service receives single task re-
quests, which cause a resource discovery to occur prior to
execution. In GMarteGS, we generalise this approach by
introducing the concept of a metascheduling session, en-
abling whole case studies to be submitted for execution,
which only involves one resource discovery per study. In ad-
dition, we provide a security infrastructure and emphasize
on the usage of high level client-side interfaces which ease
the process for the end users.

As another Grid service metascheduler, we can also find
the Community Scheduler Framework (CSF) [21], which
was originally developed in GT3 and later adapted to GT4.
While GMarteGS is able to manage different metaschedu-
ling sessions, which can involve different resources, CSF4
receives individual jobs specified in RSL (Resource Speci-
fication Language). In addition, CSF4 does not coordinate
data staging for the application data. Also, GMarteGS uses
standard security mechanism between sessions while no re-
lated documentation is found about CSF4. This is the case
of the the Gridbus Broker [22], which features a WSRF-
based service interface but no security approach appears to
have introduced.

6. Conclusions

In this paper, the GMarte metascheduler has been in-
tegrated into a Service-Oriented Architecture based on
WSRF Grid services, implemented via the Globus Toolkit
4. Using standard functionalities provided by WSRF
specifications have enabled to implement a multi-user
metascheduler which is generic and interoperable with
other services in the Grid ecosystem. In addition, standard
security mechanisms based on GSI have been implemented
to ensure data privacy and integrity.

The usage of GMarteGS has been described as a com-
putational gateway for the study of the electrical activity
of the heart, enabling biomedical experts to transparently

use a Grid infrastructure via high-level graphical tools. We
have also provided bindings to access the EGEE infrastruc-
ture, within the same interfaces, thus enlarging the compu-
tational capabilities accessible. This way, a case study that
analysis different ischemic conditions has been executed on
the resources of the Biomed VO, using GMarteGS, obtain-
ing a considerable speedup.

The widespread adoption of Grid Computing technolo-
gies require high level components that reduce the gap
from the complexity of the underlying Grid middleware
to the user. The development of a system, such as the
one described in the paper, paves the way to interoperable
metaschedulers which may cooperate via standard inter-
faces to provide resource brokering functionality on com-
putational Grids.

References

[1] I. Foster, C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 2004.

[2] The Globus project: a status report, Future Generation
Computer Systems, 15 (5-6), 607-621.

[3] I. Foster, Globus Toolkit version 4: Software for service-oriented
systems., in: LNCS (Ed.), IFIP International Conference on
Network and Parallel Computing, 3779, 2005, 2-13.

[4] LCG - LHC Computing Grid, URL: htp://www.cern.ch/lcg
[5] J. M. Schopf, Ten Actions When Superscheduling, SchedWD

8.5, Scheduling Working Group (2001).
[6] J. M. Alonso, V. Hernández, G. Moltó, An object-oriented

view of Grid computing technologies to abstract remote task
execution, in: Proceedings of the Euromicro 2005 International
Conference, 2005, 235-242.

[7] J. M. Alonso, V. Hernández, G. Moltó, GMarte: Grid
middleware to abstract remote task execution, Concurrency and
Computation: Practice and Experience 18 (15) (2006) 2021-2036.

[8] J. M. Alonso, J. M. Ferrero (Jr.), V. Hernández, G. Moltó, M.
Monserrat, J. Saiz, Three-dimensional cardiac clectrical activity
simulation on cluster and Grid platforms, Lecture Notes in
Computer Science 3402 (2005) 219-232.

[9] J. M. Alonso, V. Hernández, R. López, G. Moltó, A service
oriented system for on demand dynamic structural analysis over
computational Grids, Lecture Notes in Computer Science 4395
(2007) 13-26.

[10] I. Foster, et al., The Open Grid Services Architecture, version
1.5 (March 2006).

[11] B. Sotomayor, L. Childer, Globus Toolkit 4: Programming Java
Services, Morgan Kaufmann, 2005.

[12] WSRF - The WS-Resource Framework, URL:
http://www.globus.org/wsrf.

[13] N. Ferguson, B. Schneier, Practical Cryptography, John Wiley
& Sons, 2003.

[14] G. von Laszewski, I. Foster, J. Gawor, P. Lane, A Java
commodity Grid kit, Concurrency and Computation: Practice
& Experience 13 (8-9) (2001) 645-662.

[15] J. M. Alonso, J. M. Ferrero (Jr.), V. Hernández, G. Moltó,
M. Monserrat, J. Saiz, Computer simulation of action potential
propagation on cardiac tissues: An efficient and scalable
parallel approach, Parallel Computing: Software Technology,
Algorithms, Architectures and Applications, included in series:
Advances in Parallel Computing 13 (2004) 339-346.

[16] B. Rodriguez, N. Trayanova, and D. Noble, Modeling cardiac
ischemia, Ann. N.Y. Acad. Sci., vol. 1080 (2006) 395-414.

[17] EGEE - Enabling Grids for E-sciencE, URL: http://public.eu-
egee.org.

11

[18] E. Huedo, R. S. Montero, I. M. Llorente, A modular meta-
scheduling architecture for interfacing with pre-WS and WS Grid
resource management services. Future Generation Computer
Systems 23 (2) 252-261

[19] I. Rodero, J. Corbalan, R. Badia, J. Labarta, eNANOS Grid
resource broker, Advances in Grid Computing - Egc 2005 3470

(2005) 111-121.
[20] E. Elmroth, J. Tordsson, An interoperable standards-based Grid

resource broker and job submission service, in: e-Science 2005.
First IEEE Conference on e-Science and Grid Computing, 2005,
212-220.

[21] W. Xiaohui, D. Zhaohui, Y. Shutao, H. Chang, L. Huizhen,
CSF4: A WSRF compliant meta-scheduler, The 2006 World
Congress in Computer Science, Computer Engineering, and
Applied Computing (GCA’06), 2006, pp. 61-67.

[22] S. Venugopal, R. Buyya, L. Winton, A grid service broker
for scheduling e-science applications on global data grids,
Concurrency and Computation: Practice & Experience 18 (6)
(2006) 685-699.

12

