
Grid4Build: A High Performance Grid

Framework for the 3D Analysis and

Visualisation of Building Structures

José M. Alonso, Vicente Hernández, Roberto López, and Germán Moltó

Departamento de Sistemas Informáticos y Computación.
Universidad Politécnica de Valencia. Camino de Vera s/n, 46022, Valencia, Spain

{jmalonso,vhernand,rolopez,gmolto}@dsic.upv.es

Abstract. This paper describes Grid4Build, a high performance Grid
approach that enables to perform 3D linear analysis and visualisation of
building structures. The system involves three independent components:
a GUI Client, a Structural Analysis Grid Service and an HPC-based
structural simulator. The GUI Client is in charge to assist the user in the
pre-processing and post-processing stages. The HPC-based application
is a simulator that performs the 3D linear static and dynamic analysis
of building structures. Finally, the Grid Service is an on-line middle-
ware application that exposes the functionality of the Structural Simu-
lator through Internet. The user’s structural simulations are distributed
through the available computational resources of a Grid Computing-
based infrastructure thanks to GMarte metascheduler.

1 Introduction

Structural analysis of buildings is the process to determine the response of a
structure to different prescribed applied loads. This response is usually mea-
sured by establishing the forces and displacements at any point of the structural
elements.

When designing a building, security must be assured for persons and goods.
Thus, accuracy in structural simulations is a key factor, where 3D realistic struc-
tural models and accurate and numerically efficient methods of analysis must be
applied. In order to find the most appropriate structural design, according to
distinct criteria of safety, economic limitations or construction constraints, a
large amount of different configurations will have to be simulated, following a
trial-error process. Each of these alternatives is defined by the structural en-
gineer varying the size of the structural elements, the material that composes
them (concrete, steel, etc.), or the external loads applied, together with any
combination of them. Then, these structural alternatives will be analysed and
the results will be interpreted, maybe giving place to a new iteration in this
trial-error scheme.

Therefore, structural analysis can demand a huge computational power and
become one of the most time consuming phases in the design cycle of a building.



High Performance Computing (HPC) techniques provide powerful numerical and
programming tools in order to develop applications able to simulate, efficiently
and in a realistic way, large dimension structures, in very reasonable response
times. However, studios for architecture and engineering rarely own parallel plat-
forms to execute an HPC-based application.

Fortunately, Grid Computing technology, or supercomputing on demand,
emerged in the mid-90s as a solution for the computational requirements of
organisations, enabling the collaborative usage of non-owned remote resources
to satisfy the execution of computationally expensive tasks [1]. The aim of the
Grid is to provide a coherent view of geographically distributed heterogeneous
computational resources so that they act as a single, huge, powerful and self-
managed computer, in a transparent way for the user. Moreover, Grid technology
allows to share not only computing power, but also another kind of resources
such as storage space, specialised devices, data and even software packages. In
this way, users neither need to acquire nor maintain these resources in property
but only to establish usage agreements.

This paper describes Grid4Build, a novel approach for combining HPC tech-
niques, Grid Computing technology and a realistic graphical visualisation in or-
der to provide the structural engineers with a high performance Grid framework
for the 3D structural analysis of large dimension buildings. The remaining of the
paper is structured as follows: First, section 2 presents the parallel structural
simulator. Then, section 3 describes the Structural Analysis Grid Service. The
graphical client application that interacts with the Grid Service is introduced in
section 4. Finally section 5 summarises the paper.

2 The Parallel Structural Simulator

The component of Grid4Build framework in charge of carrying out the 3D struc-
tural linear analysis of buildings is a HPC-based application that takes into ac-
count all the nodes of the structure and six degrees of freedom per joint. Node
condensation techniques have not been assumed. The MPI library has been used
to perform the communications among the processors that participate in the dif-
ferent phases of the analysis. Thanks to this library and the different parallel
public domain numerical libraries employed, the application is highly portable,
and it can be easily migrated to a wide variety of parallel platforms.

Depending of the changing nature of the external load applied to the building,
a static or dynamic structural analysis will be needed. The Stiffness Method has
been parallelised to carry out the static analysis, in contrast dynamic analyses
are performed by means of parallel implementations of Direct Time Integration
methods and Modal Analysis techniques.

2.1 The Parallel Static Structural Analysis

In a static analysis, where the external loads (dead loads, snow load, etc.) do
not change along the time, the Stiffness Method [2] employs the stiffness prop-
erties of the structural elements to form the static equilibrium equation, that



represents the relationship between the nodal forces acting on the structure and
its displacements:

KD = F. (1)

In it, K ∈ <6Nx6N is the stiffness matrix derived from the assembly of the
individual member stiffness matrices of all the structural elements, being N the
total number of nodes in the structure, F ∈ <6NxL represents the force matrix,
and it is computed from all the different forces applied, where L stands for
the total number of load hypothesis combination. Finally D ∈ <6NxL are the
displacements at the joints of the structure for each load combination.

Each processor involved in the parallel static structural analysis implements
the following phases:

1. Obtain its group of nodes and its set of structural members assigned.
2. Generate the stiffness matrix K.
3. Generate the external load matrix F .
4. Impose the initial conditions.
5. Solve the system of linear equations for joint displacements KD = F .
6. Calculate the member end forces.
7. Compute the stresses and deformations at any point of the structure.

In the step 1, the data of the problem are divided into the processors following
two different distribution strategies. On one hand, a domain decomposition of
the whole building is carried out and each processor is assigned a group of N/p
consecutive nodes, where p stands for the number of processors (node-based
approach). On the other hand, the B structural members are divided into p
groups composed of B/p consecutive elements and each processor is assigned one
of them (element-based approach). The node-based distribution is thus employed
in the computation stages 2 to 5 and the element-based approach is used in the
phases 6 and 7.

The step 5, where the matrix K is sparse, symmetric and positive definite,
represents the most time-consuming phase in all the analysis process. In our
case, parallel direct and iterative methods can be used to solve these systems
of linear equations, respectively implemented in WSMP [3], MUMPS [4], and
PETSc [5] numerical libraries.

2.2 The Parallel Dynamic Structural Analysis

The second order differential equations in time that governs the motion of struc-
tural dynamic problems [6], where the applied external loads (earthquake, wind,
etc.) do change along the time, can be written as follows:

MA(t) + CV (t) + KD(t) = F (t), (2)

where M , C and K ∈ <6Nx6N are the mass, damping and stiffness matrices
respectively, F (t) ∈ <6NxL are the applied dynamic loads, and D(t), V (t) and



A(t) represent the unknown displacement, velocity and acceleration matrices,
for each external load combination, at the joints of the structure. The initial
conditions at t = 0 are given by D(0) = D0 and V (0) = V0.

Direct time integration algorithms and modal analysis are the basic tech-
niques usually applied for solving this computationally demanding equation.
Both of them provide the response of the structure along the time.

Direct Time Integration Methods. In direct time integration techniques,
the equation of motion (2) is integrated using a time step-by-step numerical
procedure. In general, they involve a solution of the complete set of equilibrium
equations at each time increment [7]. Although it can take a significant amount of
time, they have been widely employed. In our case, the following eight well-known
time integration methods have been parallelised: Newmark, Wilson-θ, Central
Difference, Single-step Houbolt, HHT-α, WBZ-α, Generalized-α and SDIRK.
Consistent-mass matrices have been considered, a more realistic alternative than
lumped (diagonal) mass matrix. On the other hand, Rayleigh damping has been
employed, what means that C = αM + βK.

Except from the intrinsic differences among the different parallelised integra-
tion methods, each processor involved in the linear dynamic analysis follows this
general procedure:

1. Obtain its group of nodes and its set of structural members assigned.

2. Generate the stiffness (K), mass (M) and damping (C) matrices.

3. Generate the effective stiffness matrix K̂.

4. Impose the initial conditions.

5. For each time step t=∆t, 2∆t, . . ., N∆t:

(a) Evaluate the effective dynamic load vector Fefect(t).

(b) Solve the system of linear equations for joint displacements K̂D(t) =
Fefect(t).

(c) Compute velocities and accelerations at joints.

(d) Calculate the member end forces.

(e) Compute the stresses and deformations at any point of the structure.

(f) Go to step 5, with t = t + ∆t.

In a similar way to the static analysis, the N nodes and the B beams are
assigned to the processors following distribution approaches based on nodes and
elements. The nodal distribution is applied in the steps 2 to 5.c, whereas the
element distribution is used in the steps 5.d and 5.e. Movements at the joints
are worked out by solving a system of linear equations where the K̂ coefficient
matrix is large, sparse, symmetric and positive definite. Fortunately, the K̂ coef-
ficient matrix does not change during the simulation process. Parallel direct and
iterative methods implemented in WSMP, MUMPS and PETSc libraries have
been used again for solving these linear systems.



The Modal Analysis or Superposition Method. This method represents
the most common and effective approach for analysis of linear structural systems.
Actually, Modal Analysis method is an appropriate superposition of the modal
deformational shapes of the structural model. Its starting point is the analysis
of the free vibration problem, in which there is no damping or external forcing
in Equation 2. For a linear analysis, free vibration will be simple harmonic, and
the equation governing free undamped vibration of multiple degree of freedom
systems can be mathematically described as:

KΦ = w2MΦ. (3)

Φ represents the natural modes of vibration (a particular pattern of vibra-
tion) and w are the natural circular frequencies of vibration. This system of n
algebraic equations, being n the number of degrees of freedom considered, can
be interpreted as a generalized eigenvalue problem, where up to n eigenvalues w2

i

and n eigenvectors φi must be determined to define the natural vibration char-
acteristics and avoid the resonance. In practice, the interest is focused on the
lowest modes and the solution of the problem can be obtained with a good accu-
racy just employing the smallest q eigenvalues, where q � n. However, even the
computation of just a few modes may be a very intense computational problem
in large dimension structures.

After that, this method reduces the large set of global equilibrium equations
to a q uncoupled second order differential equations, where displacements, ve-
locities and accelerations at joints can be computed by means of a superposition
of the response of each individual mode. More in detail, each processor involved
in the simulation carries out the following phases:

1. Obtain its group of nodes and structural members assigned.
2. Generate the stiffness (M) and mass (M) matrices.
3. Compute natural frequencies (w) and the natural mode shapes of vibration

(Φ) by solving the eigenvalue problem.
4. For each time step t=∆t, 2∆t, . . ., K∆t:

(a) Evaluate the effective dynamic load vector.
(b) Solve a set of independent equations of one degree of freedom.
(c) Compute displacement, velocity and acceleration vectors at joints.
(d) Calculate the member end forces.
(e) Compute the stresses and deformations at any point of the structure.
(f) Go to step 4, with t = t + ∆t.

Regarding the step 1, each processor is assigned a group of consecutive n/p
degrees of freedom, being n the total number of degrees of freedom without
movement constraints, and p the number of processors. This nodal partitioning
is employed in the phases 2 to 4.c. The SLEPc library [8] is employed to compute
the eigenvalue problem. Besides, the systems of linear equations appearing in
each step of the eigensolver process will be solved by means of MUMPS or
PETSc. On the other hand, routines involving Duhamel integral [6] and the eight
direct time integration methods previously mentioned have been developed for
solving the uncoupled equations.



3 The Structural Analysis Grid Service

Nowadays, Grid Computing has been established as the more extended frame-
work to share and employ non-owned remote resources. In this way, the inherent
computational requirements of large-scale problems, such as a dynamic analysis
of high-rise buildings, makes essential the use of the Grid Computing philosophy
to tackle them. The Globus Toolkit (GT), one of the most employed Grid mid-
dleware developed by the Globus Alliance, offers a set of high level services that
provides an homogeneous view of the different heterogeneous resources available
in the Grid infrastructure. In order to satisfy the OGSA (Open Grid Services
Architecture) standard [9], this high level services are in charge of task manage-
ment, data management, resource monitoring and discovering, etc. The classical
batch-oriented approach offered in the GT2 release [10], was enough to offer an
interactive distributed application to explode the available Grid infrastructure.
However, in its latest release (GT4) [11], a Service Oriented approach has been
adopted, employing Web Services as the base for defining its architecture and
interfaces. As a result, the so-called Grid Services have appeared, which are Web
Services used in the Grid domain, defining a standard for discovering as well as
accessing to the Grid resources distributed in the network.

In this work, we have developed and deployed under the GT4 middleware
a Structural Analysis Grid Service (SAGS) for the 3D static and dynamic sim-
ulation of large-scale buildings. Figure 1 exposes the Grid Service architecture
proposed. The diagram shows some of the principal parts involved, such as the
Graphical User Interface (GUI) Client, the SAGS itself and the Globus-based
computational infrastructure.

Gets the Simulation
Input Files

Client GUI

Calculates 
the Structure

Stores the Structural
 Simulation Data

Structural 
Repository

Creates the 
Simulation Task

Gets the 
Simulation

Results

Saves the
Result Files

Gets the
Simulation

Results

Notifies the Task 
State Changes

Deletes Data

Data 
Collector
Daemon

Cleans 
the Data

Computational Grid

Structural Analysis
Grid Service

S
er

vi
ce

 In
te

rfa
ce

Service 
Manager

Request

Scheduler

Executes the 
Simulation

Retrieves 
the Results

Parallel 
Structural 
Simulator

Employs
Response

Task
Notifier

Daemon
Gets the 

Task State

Sends the New
Task State

Fig. 1. The Structural Analysis Grid Service Architecture.

The Service Manager is the main component of the system. It receives and
processes the client requests, interacting with the rest of the components and



interconnecting them. The Task Notifier Daemon represents an interactive infor-
mation system that notifies each client about the state of their simulations, thus
enabling the users to permanently know the state of all of them. The Parallel

Structural Simulator is the MPI-based application explained in the section 2 in
charge of carrying out the static and dynamic analysis of large-scale buildings.

On the other hand, the structural simulation execution, in the available Grid
infrastructure, is managed by the Scheduler module. Firstly, this component
involves a resource discovery to obtain a list of candidate execution machines.
Then, a resource selection takes place in order to select the best computational
resource available for each structural simulation.

All the simulation data are temporarily stored in a Structural Repository,
implementing a data persistence schema and also enabling the use of the system
also as a Storage Service. However, the Data Collector Daemon component is
responsible of inspecting the Structural Repository and cleaning all the output
files that the user has not retrieved after a specified period of time.

3.1 The Structural Simulation Process in the SAGS

In order to explain the process carried out to perform the structural analysis of
a building, a step by step sequence is detailed in the following paragraphs.

First, the client submits a simulation request, sending the corresponding files
that define the structure, such as its structural and geometric properties and
the different external load hypotheses to be evaluated, together with the needed
parameters to specify the type of analysis. In our case, we have developed a GUI
Client to define these structural properties.

The client requests are received by the Service Manager, which processes all
the input data, storing them in the Structural Repository, and returns to the
client a simulation identifier, that will be used in later invocations to identify
it. The data are stored in the Structural Repository and formatted using the
appropriate requirements imposed by the parallel simulator. After that, the Ser-

vice Manager creates an execution task containing all the required properties to
execute it in the computational Grid. Next, this task is added to the Scheduler

module which, in a transparent way, performs the resource selection and the
simulation execution management. A resource selection policy has been defined
addressed to increase the throughput and reduce the execution time of the each
analysis. The simulation type, static or dynamic, the dimension of the struc-
ture and the user privileges will be parameters used to decide the number of
processors that carries out the execution.

For each simulation request, the SAGS creates and publishes a notification
item that is in charge of informing the owner client about its evolution. After
the Client is subscribed to this item, the Task Notifier Daemon notifies the
user any change that takes place during the analysis process. In this way, the
client is perfectly aware of the state of the simulations: waiting, in execution,
failed, finalised, etc. This approach dramatically reduces the overhead that would
appear in the system if the clients periodically queried the service about the state
of every simulation.



In a static analysis, the output results are automatically saved into the Struc-
tural Repository by the Scheduler when the task execution has finished, and the
user is informed about their availability thanks to the Task Notifier. However,
the process followed in a dynamic analysis is very different, because it implies an
iterative process that generates output data for each simulation time step. This
feature makes possible a notably reduction of the waiting time, since the results
are periodically sent from the remote resource to the SAGS machine and the
Task Notifier informs the clients when there are enough results to be retrieved.
In this way, the simulation and data retrieval phases are overlapped, what im-
plies a clear benefit for the user who can begin to process the results before the
analysis is completed.

The result retrieval procedure can be performed by the client by means of
two different approaches. The first one is based on SOAP protocol [12] in which
the Service Manager processes and analyses a set of output files, generating,
as a result, an XML file that is sent to the clients in a SOAP message, once
they have invoked the Get Results method. In order to reduce the message size
overhead related to this XML-based format, an hexadecimal codification scheme
for including binary data can also been employed, instead of inserting all of
them in a text-based format. The second retrieval procedure approach is based
on the GridFTP protocol [13] offered by GT4. In this alternative, the clients have
direct access to their simulation storage space inside the Structural Repository
and, in consequence, they can download directly the binary result files. For this
purpose, a user friendly GridFTP client, that performs the transport process in
a transparent way to the user, has been integrated in the GUI Client.

An erasing method that deletes all the simulation data is also available.
Notwithstanding, this method invocation is optional, due to the SAGS is also
offered as a Data Storage Service and a client could employ it as a particular
structural repository on-line available. Nevertheless, due to the fact that there
can be users with different privileges in the system, a component called Data

Collector Daemon will be in charge of periodically erasing the simulation results
of those lowest level clients.

3.2 SAGS Fault Tolerance and Security

Several fault tolerance levels have been included in the system, involving the
SAGS itself, the task scheduling and execution, and the GUI Client, guaranteeing
that all the simulations successfully submitted will be attended. On one hand,
the SAGS implements a persistence schema that stores a description of all the
tasks in course or waiting for execution, and those finalised simulations that still
have results to be recovered by the client. Therefore, in case of SAGS failure, all
the non-finished tasks would be launched later, and the identifiers of those ones
having pending results would be registered again. On the other hand, the fault
tolerance level included in the Scheduler ensures that a failed execution will be
transparently migrated to another Grid resource.

A robust security system has been integrated in the SAGS, including user
authorization and authentication, and privacy and integrity of results based



on the Globus GSI. On one hand, the user authorization and authentication
capabilities establish an control in the access to the published services, enabling
to register all the actions performed by the clients. The authorization system
employs a configuration file that contains all the users allowed to interact with
the SAGS. All the requests from users not registered will be directly rejected.
The authentication process is implemented by means of a X.509 certificate that
identifies the user. This certificate is sent to the service when the communication
begins. The data privacy and integrity have been achieved using a private-public
key approach. It employs the same certificate X.509 to perform the encryption
and signature of all the data exchanged between the Service and the Client.

3.3 Grid Task Execution

The SAGS executes the Parallel Structural Simulator over a computational Grid
by using the functionality of the GMarte middleware [14]. GMarte is a software
abstraction layer which offers an object-oriented API for the description of sim-
ulation tasks and computational resources. It provides all the required software
infrastructure to perform the fault-tolerant allocation of tasks to machines based
on the Globus Toolkit.

The Service Manager, in Figure 1, uses the GMarte API to provide the de-
scription of the computational tasks, which are assigned to the Scheduler daemon
that waits for new tasks to be allocated and executed.

The implemented GMarte-based Scheduler is in charge of performing a se-
quence of steps in order to achieve successful execution of the tasks. This pro-
cedure involves, when the SAGS starts, the Resource Discovery and the Re-

source Filtering phases to obtain a list of currently available machines to host
executions. Then, for each structural analysis request, the Resource Selection

phase selects the current best computational resource to execute it. Later, all
the needed input files are automatically transferred to the remote machine, be-
fore the remote parallel execution is launched. When the simulation has finished,
all the generated output files are moved to the machine hosting the SAGS.

The metascheduling policy implemented in GMarte considers the application
requirements specified by the SAGS, as well as the dynamic state of the compu-
tational resources to select the most appropriate remote machine. A multilevel
fault-tolerance scheme is enforced to cope with the errors arising both during
data transfers and remote execution. This ensures that executions will proceed
as long as there are living resources in the Grid Computing infrastructure.

3.4 Monitoring and Discovering the SAGS

In a dynamic environment like a Grid infrastructure, it is essential to offer publi-
cation and query mechanisms to inform about the state of the Grid resources as
well as their characteristics. This kind of information it is very important to per-
form a classical remote task execution, because it has a direct impact in the load
distribution. However, in a Service Oriented environment, the services them-
selves could be important information sources, mainly when they could be part



of a multi-service infrastructure. In this situation, the state of all the individual
services, that compose the global service infrastructure, it is needed to appro-
priately distribute the specific Service simulations. These simulations would be
directly submitted to the system by a client or, in an advanced infrastructure,
by a high-level service scheduler also offered.

Therefore, two different mechanisms have been included into the SAGS in
order to, on one hand, offer to the clients information about the SAGS state,
i.e. the number of active simulations or clients, etc., and on the other hand, to
enable the development of a high level global MSAGS (Multiple Structural Anal-
ysis Grid Services) infrastructure, where there could be multiple SAGS available.
These mechanisms included are the Globus Information Service MDS (Monitor-
ing and Discovery Services) [15] and the more advanced Information Service
R-GMA (Relational Grid Monitoring Architecture) [16].

The SAGS MDS publication mechanism is based on a log file system that
registers all the events produced in the Service, together with a MDS registered
provider, also implemented by us and included in the SAGS. The provider is
in charge of parsing these log files, generating an output text data containing
the information according with the format defined in the MDS scheme. As a
consequence, once the provider has been added and activated in MDS, the pub-
lication process is transparent to the SAGS, because it is indirectly registering
the information in the log files and publishing it.

Regarding R-GMA, the publication mechanism is very different compared
with the adopted in the MDS. In the MDS approach the information is pub-
lished by a provider on query demand. As a consequence the information is not
physically stored in any place. In contrast, the R-GMA approach works like a
database and there are a producer which goal is to insert the information in a R-
GMA server. This information is stored on server tables that would be directly
accessible by means of SQL queries. Therefore, it forces to directly insert the
information into de R-GMA server, changing considerably the philosophy of the
MDS approach. Taking into account these features, it has been developed a Java
producer agent over an available high level Java API. This way, the provider is
strongly integrated in the SAGS, due to the SAGS has to notify about all it
state changes in order to be published on the R-GMA server.

As a first approach, there are currently published four parameters, that are
the number of active users, their names, the number of simulations active and the
number of available nodes on the Grid infrastructure. Nowadays we are working
on the introduction of a security layer on the information publication, because
it is essential to difference the information that could be visible to a user in
contraposition of the administration information.

4 The Graphical Client Application

An advanced GUI, that assists the user in the pre-processing and post-processing
stages of the structural analysis, has been developed. On one hand, the pre-
processing phase involves the definition of the different structural properties,



such as the beam sections, the movement constraints, the external loads, and so
on. On the other hand, the post-processing shows the structural analysis results,
and its main goal is to check if the structure fulfils the construction standards.

Regarding the pre-processing stage, the GUI Client supports a high range
of beam sections that are taken from a catalogue. Using the Java 3D graphical
libraries, this application shows, in a user-friendly way, a 3D scene in which
the user can interact with the structure, make rotations, translations, select
elements, etc. The high level of interaction offered by the use of 3D graphics,
makes easier the pre-processing phase, turning it into an intuitive and fast task.

The Client application analyses the structures by means of the SAGS, ac-
cessing it via its public interface. In this way, a SOAP request is sent with all
the structural properties and the different analysis parameters. Next, the Client
is subscribed to the simulation notifications and begins to receive information
about the analysis process. Finally, when the Client is notified about the task
finalisation, or when there are enough data to be collected, they will be retrieved
in SOAP messages or via GridFTP, depending on the user requirements, and the
data will be erased from the Structural Repository. The received results enable
the post-processing stage, representing them on the graphical interface in order
to ease its interpretation and evaluation.

The fault tolerance mechanism implemented guarantees that a failed or dis-
connected Client during the analysis process will imply neither the cancellation
of the simulation nor the lost of the results. In fact, the results will be retrieved
in a later Client execution.

5 Conclusions

This paper describes a high performance Grid Computing framework to per-
form a structural analysis of high-rise buildings that includes a GUI Client, a
Structural Analysis Grid Service and a HPC-based structural simulator. The
whole application is weakly connected and different components could be easily
substituted or new ones could be incorporated.

The GUI Client, by means of the use of advanced 3D graphical libraries,
assist the structural engineers, in a user-friendly way, in the pre-processing and
post-processing stages. The HPC-based Structural Simulator, using the currently
state-of-the-art public domain numerical libraries, carries out the static and dy-
namic analysis of large-scale buildings. Regarding the Structural Analysis Grid

Service, it represents the middleware application that interconnects the GUI
Client with the Structural Simulator. This way, this service-oriented application
exposes its functionality over the network to the structural engineers community
and by means of XML-based Service-Oriented architecture standard protocols.
The simulations are distributed into a Grid-based infrastructure employing the
GMarte metascheduler.

Finally, it is important to remark, the high fault tolerance level achieved
in the Grid4Build framework, due to a robust multi-level scheme extensively
employed and integrated in all its components. Also, the security layer included



guarantees the required data privacy and integrity, with a special attention to
the data transported through the network.

References

1. Foster, I., Kesselman, C.: The Grid: Blue print for a new computing infrastructure.
Morgan Kaifmann (2004)

2. Livesley, R.K.: Matrix methods of structural analysis. Pergamon Press (1975)
3. Gupta, I.: WSMP: Watson Sparse Matrix Package part I - Direct solution of sym-

metric sparse system. Technical Report IBM Research Report RC 21886(98462),
IBM (2000)

4. Amestoy, P., Duff, I., L’Excellent, J.Y., Koster, J.: MUltifrontal Massively Parallel
Solver (MUMPS Version 4.3) users guide (2003)

5. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M., Curfman-
McInnes, L., Smith, B.F., Zhang, H.: PETSc users manual. Technical Report ANL-
95/11 - Revision 2.3.2. Argonne National Laboratory (2006)

6. Clough R.W., Penzien, J. Dynamics of structures. Computers and Structures, Inc.
(2004)

7. Fung, T.C.: Numerical dissipation in time-step integration algorithms for structural
dynamic analysis. Progress in Structural Engineering and Materials 5 (2003) 167–
180

8. Hernández V., Román, J.E., Tomas, A., Vidal, V.: SLEPc users manual. Scalable
Library for Eigenvalue Problem Computations. Technical Report DSIC-II/24/02,
Universidad Politécnica de Valencia (2006).

9. Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn, B.,
Maciel, F., Siebenlist, F., Subramaniam, R., Treadwell, J., Von Reich, J.: The Open
Grid Services Architecture. OGSA-WG (2005)

10. Foster I., Kesselman C.: Globus: a metacomputing infrastructure toolkit. Interna-
tional Journal of Supercomputer Applications 11(1997) 115–128

11. Foster,I.: Globus Toolkit Version 4. Software for service-oriented systems. IFIP
International Conference on Network and Parallel Computing, LNCS 3779 (2005)
2–13

12. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Or-
chard, D.: Web Services Architecture, W3C, Working Draft (2003)

13. Allcock, B., Bester, J., Bresnahan, J., Chervenak, A.L., Foster, I., Kesselman, C.,
Meder, S., Nefedova, V., Quesnel, D., Tuecke, S.: Data management and transfer in
High-Performance computational Grid environments. Parallel Computing Journal
28(5) (2002) 749–771

14. Alonso, J.M., Hernández, V., Moltó, G.: GMarte: Grid Middleware to abstract
remote task execution. Concurrency and Computation: Practice and Experience
18(15) (2006) 2021–2036

15. Zhang, X., Schopf, J.: Performance Analysis of the Globus Toolkit Monitoring
and Discovery Service, MDS2. Proceedings of the International Workshop on Mid-
dleware Performance (MP 2004). 23rd International Performance Computing and
Communications Workshop (IPCCC) (2004)

16. Coghlan, B., Cooke, et al.: R-GMA: A Grid Information and Monitoring System.
WP3. UK e-Science All Hands Conference, Sheffield (2002)


