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Abstract. The development of parallel applications requires adequate
tools to help the programmer to create applications that can efficiently
execute on a wide range of computing platforms. This paper describes
a joint effort to build a programming framework that can transpar-
ently execute parallel applications on multiprocessor systems, clusters
and computational Grids. This environment integrates a Java skeleton-
based framework, JaSkel, and a Java-based Grid middleware, GMarte, to
transparently execute skeletons across cluster boundaries. The resulting
framework allows JaSkel applications to seamlessly use computational
Grids. This joint software leverages both previous independent efforts to
provide easier access to computational resources.

1 Introduction

The development tools for parallel computing must address a variety of com-
puting architectures, from multi-core to Grid systems, and must take advantage
of the multi-level nature of computational Grids such as a federation of clusters
with multi-core and shared-memory computing nodes. Programmers do not want
to be aware of these details and prefer to focus on the computational side of their
(domain-specific) codes. Programming frameworks should enable a more seam-
less access to computational resources, providing efficient execution of parallel
codes on a wide range of computing platforms. Current frameworks for parallel
computing address either cluster or Grid environments, but not both.

JaSkel [8] is a skeleton framework, developed in Portugal, which helps the
programmer to build well structured parallel applications, by providing a set
of common parallelisation patterns as Java skeletons. In JaSkel a programmer
builds a parallel application by selecting (and composing) parallel patterns that
implement its structure and fills the skeleton with domain specific code. With
the current JaSkel system, programmers can write code that efficiently runs on
shared-memory systems and clusters.

The GMarte [5] framework, developed in Spain, is a Java-based Grid middle-
ware that simplifies the process of remote task execution on computational Grids,
exposing an object-oriented application programmer interface. Using GMarte the
programmer can develop Grid enabled applications without being aware of the
details of the underlying Grid middleware, such as the Globus Toolkit [9].

This paper presents these separate software tools and describes preliminary
efforts to develop an integrated parallel computing framework that addresses



both the execution of parallel applications on clusters and Grid environments.
It describes how JaSkel skeletons can be transparently run on Grid platforms
using the GMarte middleware. This integrated environment allows a transparent
migration of current JaSkel applications to Grid infrastructures.

This paper is organised as follows. Section 2 and 3 present the GMarte mid-
dleware and the JaSkel framework, respectively. Section 4 describes the inte-
gration of these two frameworks into a single environment. Section 5 gives an
overview of the state of the art in this area and Section 6 concludes the paper.

2 The GMarte Framework
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Fig. 1. Layered diagram with the abstraction framework provided by GMarte.

GMarte [4, 5] is a software framework, which aims to simplify the process of
executing scientific applications on computational Grids based on the standard
Globus Toolkit [9, 10].

This software has been developed as a Java library, exposing a high level API
(Application Programming Interface) to interact with a computational Grid. The
choice of Java responds to a two-fold strategy. First of all, its portability enables
to seamlessly use the GMarte functionality from virtually any platform. In ad-
dition, its object-oriented approach eases extensibility, for program developers,
and exposes high-level object abstractions for the integration of its functionality
in other scientific or engineering applications.

Figure 1 shows the principal abstraction layers available in the GMarte frame-
work. On the bottom, it first provides an homogeneous interface to access the
Information Systems of the heterogeneous computational resources. Over this
common API, a layer which enables remote task execution on Globus-based re-
sources was implemented. Later, the capabilities of GMarte were extended by



introducing metascheduling functionality for the allocation of multiple tasks on
computational Grids.

Figure 2 summarises the principal high-level object abstractions available in
GMarte to interact with computational Grids. The GridTask and GridResource
objects enable to define a task and a computational machine, respectively. A
Scheduler object provides meta-scheduling functionality for the allocation of a
GridTaskStudy (a set of independent tasks) to a TestBed (a set of machines).
The following sections summarise the principal functionality of GMarte.

Fig. 2. UML diagram of the principal abstraction framework provided by GMarte.

2.1 Homogeneous Access to the Information System of The
Computational Resources

The Monitoring and Discovery (MDS) service publishes the computational infor-
mation of resources. However, this information is exposed via different protocols
and data formats, depending on the Grid middleware. To hide these differences,
GMarte provides an abstraction layer to access these data. For that, a high
level object, called GridResource, offers a common API with user-level meth-
ods (getAvailableProcessors, getAvailableRAM, etc.) that gather the requested
information, in a transparent way for the user. This is achieved by using the ap-
propriate protocols depending on the Grid middleware of the remote machine.



At the moment, these features in GMarte are available for resources with
the Globus Toolkit 2.X and 4.X, as well as the Computing Elements in LCG-23

deployments. The supported LRMS is PBS/Torque (Portable Batch System).

2.2 Abstracting the Process of Remote Task Execution

GMarte abstracts the process of remote task execution by performing fault-
tolerant executions with coordinated data staging, even for parallel applications
based on the MPI (Message-Passing Interface) library.

The GridTask object provides the abstraction to define the computational
task to be executed on the Grid. It allows specifying the dependent input files
as well as the output ones that generates. In addition, special execution require-
ments for the task can be set, such as the minimum available RAM of a resource
to execute it. This information will be considered by the metascheduler to filter
out machines that do not satisfy these requirements.

First of all, the application and its dependent input files are transferred
via GridFTP from the client to the remote machine (a process called stage-
in). Then, the application is started in the remote machine via the GRAM (or
WS-GRAM) service and it is periodically monitored to detect possible failures.
When the execution finishes, the output files generated are transferred to the
client machine via GridFTP (a phase called stage-out).

In this layer, GMarte implements a multi-level fault tolerance scheme which
allows to recover itself from failures both during the data transfers (which are
retried a certain amount of times before giving up), as well as during task execu-
tion, where failed tasks will be marked so that the metascheduler can re-schedule
them. Failures in remote computational resources also cause a re-scheduling of
the tasks on other available machines.

2.3 Metascheduling Approach

The metascheduling procedure available in GMarte involves several phases, as
shown in Figure 3. First of all, the Resource Discovery phase involves the dis-
covery of a set of candidate execution machines from either a GIIS (Grid Index
Information Service) or a BDII (Berkeley Database Information Index). These
components aggregate resource information and are queried to provide a list of
machines.

Once a list of potential execution machines have been obtained, the Resource
Filtering phase is in charge of discarding those resources that either are not
accessible with the user credentials or do not satisfy the computational require-
ments of the task to be executed.

When both previous phases finish, a set of computational resources on which
to perform the execution of the tasks is available. In order to decide which re-
source is going to run each task, a Resource Selection stage must take place
for each of them, which chooses the current best machine according to some
3 LCG - LHC Computing Grid : htp://www.cern.ch/lcg
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Fig. 3. Overview of the principal phases involved in the GMarte framework.

criteria. GMarte implements different resource selection policies and, being an
abstraction framework, the user can easily create new policies by providing dif-
ferent score functions for computational resources. As no resource selection can
be considered the best for all kind of applications, this allows to extend the
functionality via additional user-programmed modules.

GMarte implements a multi-threaded metascheduler that enables to con-
currently perform the distinct phases involved in the remote task execution of
different tasks (resource selection, stage-in, execution and stage-out). For exam-
ple, the user can specify the number of threads involved in the stage-in phase. If
3 threads are specified, then up to 3 tasks will be simultaneously handled, thus
enabling to reduce the overhead introduced by the metascheduler.

Finally, it should be mentioned that the functionality described can be used
via a GMarte API-based Java application as well as through XML (eXtensible
Markup Language) documents, which are automatically mapped to the corre-
sponding abstraction objects.

Currently the GMarte framework has been successfully applied for the exe-
cution of a biomedical application that simulates the cardiac electrical activity
both on local and large-scale Grid infrastructures [2]. Its functionality has also
been introduced as part of a Grid service that performs the structural analysis
of buildings [3]. This has enabled to perform executions of scientific applications
in a transparent manner for the user.

3 The JaSkel Framework

Skeleton-based frameworks provide a set of pre-defined structures (called skele-
tons) to develop parallel applications. The programmer selects the skeletons that
best suit his/her concrete application, provides application specific code and the
framework takes care of concurrency and distribution issues. By using skeletons
the programmer can focus on the computational side of their algorithms rather
than on parallelisation issues.

Current JaSkel framework [8] provides several skeletons, including pipeline,
farm and heartbeat. Each of these skeletons implements a frequently occurring
structure of parallel applications. To write an application in JaSkel the program-
mer must go through three steps:



1. Select the skeleton(s) that better fits the application parallelisation.
2. Refine the skeleton abstract class, providing the domain specific code, by

filling skeleton hooks (i.e., abstract methods).
3. Write code to instantiate the skeletons and start the skeleton activity.

A JaSkel skeleton is a Java class that extends the Compute class (Figure 4).
The skeleton method eval starts the skeleton activity.

+compute(in  : Object) : Object

Compute

+split(in  : Object) : Collection
+join(in  : Collection) : Object
+getResult() : Object
+eval() : void
+compute(in  : Object) : Object

Farm Skeleton

«uses»

Fig. 4. The Farm Skeleton.

Compute objects perform domain-specific computation. The programmer
must create a subclass of class Compute, implementing the abstract method
Object compute(Object input) to provide domain-specific computations.

To create a parallel application based on a farm parallel structure, the pro-
grammer must follow these steps:

1. Create the worker Compute class;
2. Create the farmer class, extending Farm, and implementing the split and

join methods.
3. Create instances of worker and farmer class to achieve the intended farm

structure;
4. Start the skeleton activity, by calling the eval and grab the results with the

getResult method.

When the eval method is called, it performs the following steps:

1. Split the initial data using the farmer split method.
2. Call the compute method from workers with the pieces of data returned by

the split method.
3. Merge the partial results using the farmer join method.

JaSkel skeletons are also subclasses of Compute and implement the compute
method, as shown in Figure 4, to support skeleton nestings.

The following code presents a simple pseudo-code for a farm. Lines 01-06
define the Worker class, implementing the compute method. Lines 07-15 imple-
ment a Farm class that creates its own set of Worker and provides specific split
and join methods. Lines 17-21 instantiate the Farm, start the skeleton activity
and get the computed task.



01 public class Worker extends Compute {
02
03 public Object compute(Object input) {
04 return /* processed input */;
05 }
06 }
07 public class MyFarm extends Farm {
08
09 public MyFarm() {
10 for(int i=0; i<numberWorkers; i++)
11 /* ... */ = new Worker();
12 }
13 Collection split(Object initialTask) { ... }
14 Object join(Collection partialResults) { ... }
15 }
16
17 // main function
18 Task task = ... // task to compute
19 MyFarm farmer = new MyFarm(task);
20 farmer.eval(); // starts the farming process
21 Object result = farmer.getResult(); // get results

4 Jaskel-GMarte Binding

JaSkel has built-in support for concurrency, through several concurrent skeletons.
For instance, the ConcurrentFarm skeleton provides concurrent execution of
the Compute instances. These skeletons with built-in concurrency support can
take advantage of shared memory systems, as they rely on a thread model with
embedded support for data sharing among threads. However, these skeletons can
not take advantage of distributed memory systems.

Support for skeleton execution on distributed memory systems is provided by
external tools. These tools transform concurrent skeletons into other ones that
can be executed in remote nodes. This section describes the developed distribu-
tion tool that can transparently execute JaSkel Farm skeletons on computational
Grids through GMarte. It starts to show how Java applications can be executed
using GMarte, describes the JaSkel-GMarte binding and presents preliminary
performance results.

4.1 GMarte Java API

To support the execution of Java-based applications, enhancements have been
introduced in GMarte. These executions rely on a JVM (Java Virtual Machine)
in the remote computing node, which requires a remote search for a JVM prior to
task execution, since the Java location is not commonly published in the MDS.



The easiest way to remotely execute a Java application is to pack its contents
into a JAR (Java Archive) file. This ensures that all the application dependences
will be available when the execution starts. The following example shows how
to use the GMarte functionality to execute a Java-based application packed into
the myapp.jar file. This toy application takes as input the file schema.xsd and
generates a set of *.java files. The command-line executed to run the application
is java -jar myapp.jar schema.xsd.

GridTask gt = new GridTask("My Java Task");
gt.setGridExecutableFile(new JavaGridExecutableFile());
gt.setLocalDataContainer("/home/user/outputData");
gt.setArguments("-jar myapp.jar schema.xsd");
GridInputFileSet gifs = new GridInputFileSet();
gifs.addGridFile("/home/user/schema.xsd");
gt.setGridInputFileSet(gifs);
GridOutputFileSet gofs = new GridOutputFileSet();
gofs.addWildCard("*.java");
gt.setGridOutputFileSet(gofs);
GridTaskStudy gts = new GridTaskStudy();
gts.addGridTask(gt);
GridResource gr = new GridResource("amachine.lab.com");
TestBed tb = new TestBed();
tb.addGridResource(gr);
Scheduler scheduler = new OrchestratorScheduler(tb, gts);
scheduler.start();
scheduler.waitUntilFinished();

The programmer uses high-level object abstractions to define the computa-
tional task. Notice that the definition of the computational resources is provided
via the TestBed object. Alternatively, the user may have relied on a resource
discovery process. Also notice that the GridTask is enclosed in a GridTaskStudy
object. This enables the submition of a group of independent tasks. With this
abstraction framework, the user no longer interacts with the lower level details
of the Grid but instead focuses on the scientific side without detailing how the
executions will be performed.

4.2 GMarte-based Distributed JaSkel Farm Skeletons

The JaSkel distribution tools are based on aspect-oriented techniques [13] to
transparently replace user-provided skeletons with new implementations. The
idea is to generate a new type-compatible class that transparently replaces the
original skeleton. This new type-compatible skeleton encapsulates the access to
remote skeleton instances. Moreover, it is possible to plug and unplug this new
implementation [16] at compile or load-time, providing an easy way to plug or
unplug this behaviour from the original JaSkel code. For instance, in the example



of section 3, the tool would generate a new Worker class (i.e., worker proxy) that
instantiates the worker on a remote resource and overrides the compute method
to redirect the execution to the remote resource. Figure 5 illustrates this process.

Remote resource

Farm

Local compute  call

Worker proxy Remote Worker
Remote compute  call

Fig. 5. Remote skeleton.

The distribution tool identifies classes that extend the Compute class and
generates two modules for each class: the client side and the server side code.
The client-side module replaces source code references to Compute skeletons by
the corresponding proxy skeleton. The server side code transforms a Compute
instance into a stand-alone task that can be executed on a remote resource and
that accepts remote requests for method execution. Remote requests are identical
to the Remote Procedure Call SOAP message pattern. However, the generated
code uses a proprietary, more efficient, wire protocol, since interoperability is not
a concern in this case, as both client and server are generated by the distribution
tool. The next two sub-sections describe in more detail each of these modules.

Client Side Code. The client side code is in charge of redirecting the execution
of compute methods to remote resources. The client-side worker proxy overrides
the compute method to produce a request to a remote skeleton. It writes the
request to a file that is staged-in to the remote resource. The GMarte framework
is responsible to stage-in this file and it is also responsible to copy the code of
the remote worker (e.g., a jar file), to start the remote worker and to stage-out
the resulting file. The following code illustrates the code generated for the proxy.

public class GridWorker extends Worker { // worker proxy
public Object compute(Object obj) {
... // generate RPC request (plain text file)
GridTask gt = new GridTask("JaSkel worker);
GridInputFileSet gifs = new GridInputFileSet();
gifs.addGridFile("jaskel.jar"); // remote skeleton jar file
gifs.addGridFile(/* RPC request file name */);
gt.setGridInputFileSet(gifs);
GridOutputFileSet gofs = new GridOutputFileSet();
gofs.addGridFile(/* result file name */);
gt.setGridOutputFileSet(gofs);



... // request task execution to GMarte (see section 4.1)

... // read result from staged-out file
return(/*result*/);

}
}

Note that the remote execution was completely abstracted by the GMarte
Java API, making the generated code independent of the Grid middleware.

Server Side Code. The code of the remote worker creates a stand-alone skele-
ton (e.g., Worker instance) that reads the file containing the RPC request, exe-
cutes the requested method and writes a file with the result of the compute call.
The GMarte framework is responsible to copy the required input and output
files to the resource where the skeleton is executed. However, the code of the
remote worker does not depend of the GMarte framework. The following code
illustrates the code of the remote worker.

public static void main(String args[]) { // remote task to execute
Worker myWorker = new Worker();
Object myData = ... // read data from file staged in by GMarte
Object result = myWorker.compute(myData);
... // save result into output file to be staged out by GMarte

}

4.3 Performance Results

Table 1 shows execution times of the Raytracer from [8] (4000x4000 image) on a
computational Grid made of two clusters. The table also presents running times
of the original JaSkel application on a 4-CPU, MacPro Xeon 5130 system. This
version provides the lowest execution time for 1 to 4-CPUs, however it cannot
take advantage of computational Grids. The integrated framework provides lower
running times by using more CPUs, but it does not scale beyond 16 CPUs due
to the remote task execution overheads (e.g., job stage-in and stage-out).

Table 1. Raytracer Execution Times (in seconds)

CPUs 1 2 4 8 16 32 50

Grid 931 497 285 187 143 156 167

MacPro 730 363 202



5 Related Work

Software tools that aim to simplify the process of task execution of Java applica-
tions in a Grid infrastructure include: the Grid Application Framework for Java
(GAF4J) [12] abstracts the interaction with a Grid platform based on Globus
2.0, while ProActive [6] is a Java library for concurrent, parallel and distributed
computations, which creates distributed active objects. However, GMarte can
also be employed for applications developed in other programming languages.

Metascheduling on computational Grids based on the Globus Toolkit are
addressed by GridWay [14], an open source metascheduler that provides reliable
unattended execution of jobs on computational resources. However, it runs on
Unix-based systems, while GMarte can be run on other platforms.

Several skeleton based approaches are described in the literature [15, 7].
Lithium [1] and CO2P3S [17] are two Java-based skeleton environments for par-
allel programming. HOCs [11] were specifically designed for Grid environments
by supporting independent deployment of skeleton and application specific code.

JaSkel differs from these skeleton systems by relying on tools to adapt skele-
tons to specific distributed environments. This approach enables skeletons to
scale to a wide range of computing platforms, from multi-core systems to com-
putational grids and allow JaSkel skeletons to combine multiple communication
middleware into a single application, taking advantage of the layered composi-
tion of clusters and Grids.

6 Conclusions

This paper explored the binding between a skeleton-based framework and a Grid
middleware. The integrated environment helps developers to run applications on
a wide range of computing platforms, without changing a single line of code. This
novel programming framework supports the development of HPC applications
that can efficiently run on multi-core systems, clusters and Grids.

JaSkel framework aims to support multiple middleware by relying on external
tools to generate distribution code, while GMarte provides a Java based API to
simplify the task execution on computational Grids. The following goals have
been achieved:

– JaSkel framework was able to accommodate a new distribution middleware:
the JaSkel-GMarte binding did not required any change to the internal struc-
ture of JaSkel skeletons, it just required a new distribution tool.

– GMarte simplified the code required to execute skeletons on computational
Grids: JaSkel execution on top of GMarte is supported by its Java API.
The code required for this task is small when compared to de facto Grid
middleware and is loosely dependent on Grid related issues.

Current work includes a tighter integration of JaSkel skeletons and the meta-
scheduling facility of GMarte, for instance, to compute the ideal number of
skeletons to deploy or to schedule parallel tasks on remote nodes (e.g., sets of
Compute instances), reducing the stage-in and stage-out time.



Acknowledgments

This work was supported by PPC-VM project (Portable Parallel Computing
Based on Virtual Machines, POSI/CHS/47158/2002) and by SeARCH (Services
& Advanced Computing with HTC/HPC, CONC-REEQ/443/EEI/2005) both
funded by Portuguese FCT (POSI) and European funds (FEDER).

References

1. Aldinucci, M., Danelutto, M., Teti, P.: An advanced environment supporting struc-
tured parallel programming. Java, FGCS. 19, (2003).

2. Alonso, J.M., Ferrero (Jr.), J.M., Hernández, V., Moltó, G., Monserrat, M., Saiz, J.:
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