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Abstract—Diesel engines are fuel efficient which benefits the re-
duction of CO2 released to the atmosphere compared with gaso-
line engines, but still result in negative environmental impact re-
lated to their emissions. As new degrees of freedom are created,
due to advances in technology, the complicated processes of emis-
sion formation are difficult to assess. This paper studies the feasi-
bility of using artificial neural networks (ANNs) in combination
with genetic algorithms (GAs) to optimize the diesel engine set-
tings. The objective of the optimization was to find settings that
complied with the increasingly stringent emission regulations while
also maintaining, or even reducing the fuel consumption. A large
database of stationary engine tests, covering a wide range of ex-
perimental conditions was used for this analysis. The ANNs were
used as a simulation tool, receiving as inputs the engine operating
parameters, and producing as outputs the resulting emission levels
and fuel consumption. The ANN outputs were then used to evaluate
the objective function of the optimization process, which was per-
formed with a GA approach. The combination of ANN and GA for
the optimization of two different engine operating conditions was
analyzed and important reductions in emissions and fuel consump-
tion were reached, while also keeping the computational times low.

Index Terms—Diesel engines, emission regulations, genetic algo-
rithms (GAs), neural networks.

I. INTRODUCTION

OVER THE LAST few decades, the industrial and eco-
nomic expansion of developed countries has involved a

sharp increase in vehicle production and transport volume. En-
vironmental concerns such as global warming, greenhouse ef-
fects, acid rain, and air pollution problems related to the emis-
sions of carbon dioxide (CO ), nitrogen oxides (NOx), partic-
ulate matter (PM), carbon monoxide (CO), and unburned hy-
drocarbons (HC), together with the consumption of fossil fuels,
combine to create serious problems at a global level [1].

In that sense, the exhaust emission regulatory bodies around
the world have been simultaneously reducing the admissible
limits on exhaust emissions over the last decades, while the
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market has also been striving to maintain or even reduce fuel
consumption [2].

In order to comply with these regulations, the diesel engine
industry has undergone a great technological development in
the last few years, creating a high number of new strategies
such as electronic control, new injection systems allowing
higher pressures, different injection events, etc., [3]–[6]. As
a result, the problem of optimizing the engine management
in order to simultaneously comply with emission regulations
and fuel economy requirements has become a difficult task,
especially due to the increased number of degrees of freedom
in the engine operating parameters. This optimization process
is carried out during the development of a new engine, and is
usually known in the mechanical engineering field as engine
calibration. Although calibrations were in the past based en-
tirely on empirical results, the development in technology has
incorporated new model-based techniques [7]–[12].

The formation of the different kinds of pollutants in diesel
engines as a result of combustion is a complex process that de-
pends on local variables, and is also highly dependent on the
engine settings, influences, and interconnections. Physical and
chemical models have been proposed but a general solution
has not yet been found [13]–[16]. Computational fluid dynamic
codes require detailed unknown local data and also imply large
calculation times [17].

Artificial neural networks (ANNs) are an emerging tool of
artificial intelligence, which have been shown to be effective in
solving a wide range of problems, including many applications
to engine modeling [18]. The structure of ANNs enables them
to model complex nonlinear multiple problems, which makes
them a well-suited method for pollutant modeling. In addition,
an ANN can produce fast prediction responses, which represent
an important advantage in comparison with alternative mod-
eling techniques, such as physical and chemical models.

As a first objective in this paper, ANN modeling was used
to predict diesel NOx, PM, CO, HC exhaust emissions, and
brake specific fuel consumption (BSFC) in terms of engine oper-
ating parameters. The working operation of the engine is defined
by the combination of the engine operating parameters values,
which in turn determine the engine exhaust emission levels and
fuel consumption. The number of operating parameters has in-
creased in the last few years due to the engine development,
making it difficult to directly combine them to comply with dif-
ferent constraints.

The second main objective of the study was to define an op-
timization process that, using the ANN predictions, could find
combinations of operating parameters that simultaneously mini-
mize fuel consumption, while also keeping the overall emissions
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under certain limits. The correct definition of the objective func-
tion, exactly reproducing the requirements, was considered an
important step in the optimization process.

Classical methods for optimization, based on numerical tech-
niques, have been applied to the optimization of diesel engines
in different publications. In [19] and [20], a simple gradient
method is used, where only one parameter is changed in each
iteration. In [9], [21], and [22], a steepest descent method is
followed, while [23] employs a sequential quadratic program-
ming approach. However, numerical methods for optimization
present some limitations, such as the difficulty to escape from
local minima, and therefore the dependence of the performance
on the initial value chosen. Moreover, these methods are only
applicable to continuous differentiable functions.

As an alternative to numerical optimization methods, genetic
algorithms (GAs) are less likely to get trapped in local minima,
and are not restricted by continuity or differentiability require-
ments on the objective function. As a drawback, the computa-
tional time may be larger than that of numerical methods. Taking
this into account, GAs were used as the optimization technique
in the work described in this paper.

The overall objective raised in this study integrates a problem
of complex modeling together with an optimization process
characterized by a high number of variables to be simul-
taneously modified and a high number of constraints to be
satisfied. The scope of this paper is to evaluate the suitability of
combining both ANN and GA techniques in this difficult and
important task.

II. EXPERIMENTAL SETUP

The engine used to conduct the experiments was a light duty
(LD) four-cylinder direct injection diesel engine (turbocharged
and aftercooled) that was equipped with a common rail system.
The engine was fully instrumented, and connected to a data ac-
quisition system, so that many different operating parameters
could be measured and precisely controlled.

The electronic control unit (ECU) controlled all the en-
gine electronic equipment. Its hardware (sensors, actuators,
and regulators) monitored different variables and its software
controlled the engine according to the registered signals and
the integrated cartographies. The cartographies are a set of
different lookup tables that, for each couple of measured engine
speed and fuel mass injected variables (that define an engine
condition), impose the values of each of the engine operating
parameters. Each engine includes its own original cartography,
which has been previously defined by the engine manufacturer
and that is considered as the nominal combination of operating
parameters for each engine condition. The communication
between the ECU and the test cell system made it possible
to modify the original cartographies and to fix the desired
operating conditions to be established.

The exhaust stream of the engine was diverted to a Horiba
7100 analyzer from which NOx, CO, HC emissions were
measured. Smoke emissions were evaluated with an Avl 415
Variable Sampling Smoke Meter, which estimates the opacity
of a filter through which the exhaust gases have been drawn.
These measurements are reported as filter smoke number
(FSN). The experimental FSN values can be transformed into

TABLE I
RANGE OF VARIATION COVERED BY THE DIFFERENT OPERATING PARAMETERS

WITHIN THE EXPERIMENTAL STUDY

dry soot mass emissions by means of the correlation proposed
by Christian et al. [24]. The emission regulations related to PM
require the interaction of the exhaust gases with the ambient
environment to be taken into account, as the dry soot mass will
adsorb hydrocarbon compounds and small amounts of sulfates,
metals and ash in this process, increasing the mass of the final
PM obtained [25]. Considering the large number of experi-
mental tests necessary for this study and that the application of
the prediction and optimization method presented in this work
remains valid, the direct FSN measurement was selected.

III. EXPERIMENTAL DATABASE

The selection of the experimental test cases to be measured
for an empirical model such as ANN is of great importance,
due to the fact that the database determines the applicability, the
range of valid predictions, and also the quality of the predictions.
In this sense, the experimental database must be broad, present
low noise levels, and also be representative of the problem to be
modeled.

The experimental database in this study was developed under
stationary conditions. A total number of 19 engine conditions
were selected in order to cover a wide range of situations in the
engine working area. These 19 engine conditions were selected
from different areas: full load, conditions covering the European
transient cycle [26], and other areas where the emissions are less
restricted. This classification has been also important in the def-
inition of the allowed limits for emissions and fuel consumption
in the optimization procedure.

As mentioned in the previous section, each engine condition
is defined by the values of two operating parameters, namely, en-
gine speed (n) and fuel mass injected (Mf). There are seven addi-
tional operating parameters, the values of which are determined,
for each engine condition by the engine cartography. These ad-
ditional operating parameters are: air mass (Ma), exhaust gas
recirculation (EGR), injection pressure (IP), start of pilot injec-
tion (SOIp), start of main injection (SOIm), intake temperature
(Tint), and water temperature (Tw). Table I shows the complete
list of operating parameters.

The experimental database was generated by taking each of
the 19 engine conditions, and producing different variations for
values of the seven additional operating parameters. Starting
from the nominal values of these parameters for each engine
condition, independent variations of each parameter at three
or four levels were established. In this way, a total number of



This article has been accepted for inclusion in a future issue.

ALONSO et al.: COMBINING NEURAL NETWORKS AND GAS TO PREDICT AND REDUCE DIESEL ENGINE EMISSIONS 3

440 test cases, representative of the LD engine and close to the
manufacturer cartography, were obtained.

All nine operating parameters were used as the inputs to the
ANN, considering that the empirical model is only able to pre-
dict trends in emissions and fuel consumption that have been
integrated into the test cases used as training patterns. As pre-
dictions and optimization were integrated together in this study,
the definition of the inputs in the ANN also determined the vari-
ables to be modified in the optimization process.

Another important feature of the experimental database from
the point of view of ANN and optimization development was the
range of variations of the operating parameters, as the validity
of the predictions and the range of variation in the optimization
were restricted for those values. The ranges of variation covered
by the different operating parameters within this experimental
study are presented in Table I.

The quality of the ANN predictions, due to the empirical na-
ture of the model, is highly dependent on the experimental noise
in the measurements. The noise in the experimental data comes
from different sources: first of all, it is influenced by the mea-
suring devices accuracy (which can be obtained from the man-
ufacturer), secondly, it depends on the experimental measuring
methodology and mainly on the engine and measuring devices
stability with time.

The Horiba manufacturer ensures a precision of % for the
emission measurements. Later, experimental studies performed
in single-cylinder engine showed poorer accuracy, lowering the
value to % [27]. The resolution for the particulate estima-
tion device (Avl 415) assures 0.05 FSN of repetitivity for values
within 0.5 and 6 [28]. The BSFC was derived from two mea-
surements: fuel mass (obtained with an Avl S733 gravimetric
balance with % of accuracy [27]) and torque (measured
with load cell Zöllner A-350/AE with an accuracy of Nm
[27]).

The measuring protocol and methodology, including the post-
processing of the measured data, was defined to reduce to the
minimum the sources of error obtained during the experimental
study. A global maintenance test was carried out for most of
the devices employed for the variables used as inputs/outputs to
the ANN. Daily calibration and purging between test cases were
performed in the emission equipment. Large stabilization times
were considered before measuring each stationary test, in which
the variables were averaged during 30 seconds. As the measure-
ment of the large experimental test matrix extended for months,
all the emissions as well as the fuel consumption were corrected
taking into account atmospheric conditions, as described in the
European legislation [26]. All the experimental data were ad-
ditionally put under a quality control, in which anomalous data
were detected and the measurements repeated when necessary.

The experimental dispersion observed in the dependent
variables integrated the accuracy of the devices, the measuring
methodology considered, and the deviation of the engine and
measuring devices equipment with time. This dispersion was
evaluated comparing the same reference test case repeated every
measuring day. The reference test case was a nominal operating
condition from the manufacturer cartography that belonged to
the area where the EGR is present, i.e., the European transient
cycle area [26]. Up to 40 repetitions of the reference test case

TABLE II
VARIANCE COEFFICIENT EVALUATED FOR THE VARIABLES

IN THE REFERENCE TEST CASE

were analyzed and repetitivity of the different emissions and
the fuel consumption studied.

Equations (1) and (2) define the variance coefficient
(VarCoeff), which was chosen as an estimation of the sta-
bility of the measurements

(1)

% (2)

where is the standard deviation, is the total number of test
cases evaluated, is the variable for which the repetitivity
is being evaluated, and is the mean value of that variable.
The results obtained for the reference test case are presented in
Table II.

As observed in Table II, the smallest variance was obtained
for BSFC, which was by far the most stable output to be pre-
dicted. Within the emissions, the NOx presented the highest sta-
bility, which was followed with similar results in variance coef-
ficients by PM and CO. Measuring problems, such as uncon-
trolled temperatures influencing HC condensation, may have
been responsible for the low HC emission stability.

It was important to analyze these results, as the quality of the
ANN predictions has been highly influenced by the repetitivity
of each of the variables to be predicted. According to Table II,
and assuming that ANNs are empirical models, BSFC was ex-
pected to show the most accurate ANN predictions, while HC
emissions were expected to present the poorest results.

IV. ANN DEVELOPMENT AND PREDICTIONS

One of the main ANN’s advantages is their ability to model
complex nonlinear relationships between multiple input vari-
ables and the required outputs [29]. ANNs are also able to self-
identify these complicated relationships, so that the ANN de-
signer does not need to make any assumption about the equa-
tions governing the process to be reproduced [30]. In the case
of emission modeling in a diesel engine, where the complex and
local phenomena are not yet completely understood and are dif-
ficult to model, this fact implies an enormous simplification.
Another important advantage of the ANN approach is its fast
response, which enables it to be included in more complex pro-
cedures, such as optimization applications [31]. More informa-
tion about the general features and working principles of ANNs
can be found in [29]–[31] .

The main ANN modeling objective in this study was to be
able to reproduce diesel exhaust emissions (NOx, PM, CO, and
HC) together with the fuel consumption (BSFC), starting from
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the engine setting information obtained from the experimental
test database. In this work, both ANN implementation and
training was developed using the neural network toolbox of
Matlab [32].

Different ANNs were built (one for each output), rather than
using one large ANN including all the output variables. This
strategy allowed for better adjustment of the ANN for each spe-
cific problem, including the optimization of the architecture for
each output. It was also pointed out by some authors [33] that
including many outputs in the same ANN causes the least accu-
rate variable to drag down the prediction of the other outputs.

The ANN architecture used in this work was based on the
multilayer perceptron (MLP) with only one hidden layer, as
including more layers could increase the risk of finding local
minima in the error surface, thus degrading the ANN prediction
accuracy [33]. The activation functions chosen were sigmoids
for the hidden neurons as they allowed nonlinear relationships
between inputs and outputs, and linear activation function for
the output neurons. Both types of functions complied with the
differentiability conditions imposed by the training algorithm.

As described next, different steps were followed in the devel-
opment of the ANN-based approach: training procedure, data
transformation or scaling, and ANN specific architecture defini-
tion. More details about the procedure for the selection of ANN
architecture and training can be found in previous works of the
authors [34], [35].

A. Training Procedure

One of the most relevant aspects of a neural network is its
ability to generalize, that is, to predict cases that are not included
in the training set. An important concern in ANN training is
the risk of overfitting, which occurs when good predictions are
achieved for the training data set, but a significantly lower suc-
cess rate is achieved when predicting the test data set [31].

Due to the difficulty and the cost associated to taking mea-
surements in a diesel engine, the available measurement data-
base was reduced to contain only 440 patterns. In order to com-
pensate for the possible problems of overfitting associated with
the small data set available, several countermeasures were ap-
plied during the ANN training, as described in the following
paragraphs.

Early stopping of the ANN training procedure can be quite
effective when dealing with this problem. It has been demon-
strated [36] that there is an optimal stopping time which guar-
antees generalization prior to convergence of the network on the
training set. Nevertheless, the fact that an optimal stopping time
exists does not imply that a stopped training method will be able
to find it.

Taking this into account, the training methodology employed
in this study combines cross-validation with early stopping, in
order to avoid overfitting, while being able to use all the patterns.
The method consists of three stages, as described next.

The first stage randomly divided all the patterns into a
training set (90% of the patterns) and a validation set (10%
remaining patterns). The neural network was trained with a
traditional cross-validation scheme, and the training set error
corresponding to the minimum validation error was stored.
This process was repeated for 50 runs, randomly dividing the

patterns into the training and validation sets in each run. Next,
the training errors were averaged, obtaining a mean-square
training error (MSTR) which was the stopping error to be used
in the second and the third phases of the training procedure.

The second stage was used as an intermediate step to eval-
uate the effects of the number of neurons for the ANN predic-
tions quality (see Section IV-C). At this second stage, the ANN
was initialized five times, and for each of them, ten different it-
erations divided the patterns into 90% for training and 10% for
ANN prediction evaluation. Each ANN was only trained until
the averaged MSTR obtained in the previous stage was reached.
For each of the five iterations, the quality of the ANN predic-
tions was evaluated for a matrix which only contained data not
seen by the ANN during the training. The different iterations al-
lowed the evaluated matrix to contain as many data as the total
experimental patterns, which increased the statistical validity of
the results.

In the third stage, the neural network was trained, using all the
patterns, until the training error reached the MSTR calculated
in the first phase. The training was repeated 20 times, which re-
sulted in 20 different ANNs due to the randomness of the initial
ANN weights. As the optimization process is dependent on the
specific ANN considered, the 20 trained ANN for each output
were assembled in an ANN committee, in order to compensate
for the differences in initialization and local minima in each
ANN.

For all the stages, the Levenberg–Marquardt training
algorithm was employed [37], [38]. The principal idea
of the Levenberg–Marquardt algorithm is to maintain the
second-order approach of the ANN error in order to speed up
the training (like in the Newton method), but at the same time
evaluating the Hessian matrix using an approximation (like the
quasi-Newton methods).

B. Data Transformation

Large differences in the absolute values of the different in-
puts can complicate the ANN learning process. To overcome
this potential problem, all the inputs and outputs were previ-
ously normalized so that only relative changes in the variables
were learned by the network. In this study, the inputs and tar-
gets were normalized between their minimum and maximum
values. As the ANN predictions were to be included in the per-
formance function for the optimization algorithm, a higher ac-
curacy for lower levels of predictions was necessary. One possi-
bility could have been to change the error to be minimized in the
training algorithm from absolute to relative. Instead of changing
the training algorithm, the same objective was obtained by ap-
plying a logarithmic scale to the input and output variables [23].
Both normalization and scale transformation were applied be-
fore presenting the training patterns to the ANN, and then con-
verted again to obtain the results in their original levels.

C. ANN Architecture

The selection of the exact number of neurons in the hidden
layer for each output was based on the accuracy of results, fol-
lowing a trial and error procedure. This adjustment allowed the
complexity of the modeled phenomenon to be taken into ac-
count. The number of neurons evaluated ranged from 1 to 30,
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TABLE III
OPTIMUM NUMBER OF NEURONS FOR THE ANN OF EACH OUTPUT

which avoided large number of weights to be adjusted in the
training process for the available experimental patterns. The dif-
ferent architectures derived for each output were trained fol-
lowing the first and second training stages described above. In
the trial and error procedure, the accuracy of the ANN predic-
tions results was compared and the best architecture for each
output is presented in Table III.

From a mathematical point of view, a larger number of neu-
rons implies more complex ANN relationships, which is re-
quired to model more complex processes. The differences in
the optimal number of neurons for each output were in accor-
dance with the diesel combustion knowledge. On the one hand,
it is well known that the emission formation in diesel engines is
much more complicated than the processes governing the fuel
consumption, which is consistent with the smaller number of
neurons required for the BSFC ANN predictions. On the other
hand, the increasing number of neurons required for the opti-
mized architectures for the different emissions is in accordance
with the increasing variance coefficient shown in Table II. This
fact may imply that the variables with less stable measurements
need more complicated mathematical equations in the predic-
tion ANN models.

D. ANN Prediction Quality

Once the different stages of the training process and the ANN
architectures had been determined, and before the optimization
procedure was developed, it was important to estimate the ANN
prediction qualities.

Fig. 1 presents the predictions obtained for the emissions and
the fuel consumption when averaging all the neural networks
that integrate the ANN committee. As a result of the incorpo-
ration of the logarithmic scale, in most of the graphs, higher
accuracy can be observed for low levels of predictions.

In order to quantify the quality of the predictions obtained
for each output, the average relative error [as presented in (3)]
is evaluated in each case

(3)

where is the ANN predicted value, is the ex-
pected value and is the total number of experimental cases to
be evaluated.

Fig. 2 analyzes the differences in relative error among the 20
ANN that form the committee for each output. Different con-
clusions can be derived from both figures. The best predictions,
together with the lowest dispersion among ANN, were obtained
for the BSFC case. NOx were the emissions that presented more
accurate results. For the case of CO and HC, poorer predictions

were achieved and the dispersion within the ANN committee in-
creased. A notable decrease in the quality of the PM predictions
could be observed.

As remarked previously, the complexity of the phenomena
to be reproduced, together with the experimental problems an-
alyzed for each output (Table II) can explain these results.

V. OPTIMIZATION PROCEDURE

It should be noted that the optimization of the whole range
of engine operating conditions was not feasible due to the
large number of parameters involved. Instead, this process was
simplified by optimizing only a small number of particular
engine conditions (defined by engine speed and total fuel
mass injected). Each of these optimization subproblems was
in charge of selecting the combination of operating parameters
which produce the lowest fuel consumption subject to certain
emission constraints.

The minimization process was subject to two different types
of constraints. On the one hand, the operating parameters were
bounded by a minimum and maximum value for each engine
condition. On the other hand, different criteria were established
for the emission constraints depending on the engine area.

With respect to the emission constraints, the main priority
for the operating conditions within the European transient cycle
area is the NOx emissions, so that a reduction of 20% with re-
spect to the measured nominal value was imposed for this emis-
sion. In the case of full load operating conditions, the selected
criterion was to reduce the measured FSN obtained for the nom-
inal test case by 10%. In both cases, the maximum limits for
the remaining emissions were set at their cartography nominal
levels.

GAs have traditionally been employed for optimization prob-
lems with objective functions that do not present continuity or
differentiability properties [39]. In these algorithms, the search
for a global minimum is performed through the application of
reproduction operators and “survival of the fittest” strategies.
Moreover, the mutation operator introduces the possibility of
exploring the whole search space, an interesting ability that re-
duces the risk of finding a local minimum. However, a GA does
not guarantee that the global minimum is found.

A. GA Population

Considering that the optimization process was performed for
each engine condition, which was indicated by a combination of
engine speed (n) and fuel mass (Mf), each individual of the ge-
netic population corresponded to a combination of values for the
remaining seven operating parameters, namely: air mass (Ma),
exhaust gas recirculation (EGR), injection pressure (IP), start
of pilot injection (SOIp), start of main injection (SOIm), intake
temperature (Tint), and water temperature (Tw).

The chromosome of each individual was represented as
a vector of seven real-valued elements, where each element
expressed directly the value of a parameter, using the units
shown in Table I. There have been studies confirming that a
real-valued representation is more efficient and produces better
solutions than binary-coded GAs [40] [41]. It is also argued
that a real-valued representation offers enhanced precision
and more consistent results between different replications.
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Fig. 1. Predictions for each output averaging the results of a 20 ANN committee.

Fig. 2. Differences in the relative error among the 20 ANN committee for each
output.

Therefore, the parameters of an individual were represented by
real values within lower and upper bounds, these bounds being
specific for each engine condition.

First of all, the genetic population was created. Even though
there are approaches using microgenetic algorithms ( GA) with
a very small population [42], it was found that, for the problem
described in this paper, a population between 100 and 150 in-
dividuals produced higher quality solutions than those obtained
with smaller populations. The usage of different subpopulations
(from 2 to 8), with 150 individuals equally distributed among
them, was initially considered. This technique has been shown
to improve the quality of the results compared with the usage of
a single population in other problems [43] [44]. However, no no-
ticeable changes in the solution for this particular problem were

obtained. Therefore, it was decided to carry out the experiments
using a single population with 150 individuals.

B. GA Objective Function

The definition of the objective function in a GA is crucial for
the success of the optimization process, because it assesses the
fitness of an individual. The value of the objective function rep-
resents a measure of the quality of a member of the population,
and thus, the searching process is guided by the results of the
objective function.

Taking into account that the main target of the optimization
process was to reduce the fuel consumption (BSFC), subject
to the operating parameter constraints and the emission con-
straints, the objective function (OF) was defined as follows:

(4)

where represents the value of emission for the indi-
vidual represents the maximum value allowed for the
emission, and is a penalty factor. The value of quantifies
the penalty imposed to an individual that does not accomplish
the restriction about the contaminant emission . The larger the
value of , the higher the penalty, which results in a substantial
increase of the objective function value, and reduces the proba-
bility of the individual to be chosen for reproduction. The emis-
sions and the BSFC terms are obtained for each individual (com-
bination of operating parameters) by making use of the ANN
committee previously described.

The definition of the OF represented the main objectives
of the optimization: first of all, to minimize fuel consumption
[first term in (4)] and also to keep the emissions below certain
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limits, controlled by the exponential terms, which significantly
increase when the upper bounds are exceeded.

In order to weigh the different constraints in emissions, so that
a final value of the OF was representative of the global compli-
ance of the restrictions, an iterative process for the adjustment
of the parameters in (4) was developed. The initial values
for the parameters for all exponential terms were set to one.
The GA was executed until convergence and, if a certain emis-
sion did not comply with the maximum limit, its corresponding

value was increased. The process was repeated until all the
constraints were satisfied.

C. GA Selection and Replacement

The objective function measures the quality of the individ-
uals with respect to the problem domain. In our case, the fittest
individuals had the lowest objective function values.

The selection phase determines the individuals that are going
to produce the offspring. This includes a first step of fitness as-
signment, where each individual of the population receives a
fitness value proportional to its probability of being selected for
reproduction. As the fitness value influences the offspring for the
next generation, caution should be taken so that highly fit indi-
viduals do not dominate the reproduction to avoid a rapid con-
vergence to a possible suboptimal solution. The second step is to
select individuals for reproduction, based on their fitness values.
Stochastic Universal Sampling (SUS) [45] was employed for
this selection. With this method, the individuals are mapped
one-to-one into contiguous segments of a line, where the size of
the segment of each individual corresponds to its fitness value.
Then, as many equally spaced pointers are placed along the line
as individuals are to be selected, and the number of pointers to an
individual’s segment indicates how many times that individual
is selected for reproduction.

Crossover between individuals was performed using Inter-
mediate Recombination [46] [47], a method that produces new
offspring around and between the values of the parents. In this
method, which is applied to real-valued representations of the
individuals, the value of each gene in a new individual is ob-
tained following the rule:

(5)

where and are the values of the same gene in the parents,
and is a scaling factor chosen randomly for each gene within
an interval (typically [ ]). Another method consid-
ered for crossover was Line Recombination, which is similar to
Intermediate Recombination, with the difference that the same
value of is used for all the genes in the same descendant. How-
ever, we found that the choice of any of these two methods did
not affect, on average, to the quality of the solution.

Once the new offspring has been produced, a reinsertion
policy specifies the insertion of the new individuals into the
population, as well as the replacement of the existing indi-
viduals. Different aspects need to be taken into account here,
such as which is the number of newly created individuals with
respect to the population size used, which proportion of those
new individuals will be actually inserted in the population, and

which old individuals are to be replaced by the new ones. After
several experiments, the number of individuals produced in
each generation was fixed to be equal to 80% of the population
size, only 90% of which were inserted in the population, the
remaining 10% being discarded. The corresponding old indi-
viduals to be replaced were those found to be least fit (lowest
fitness values). The size of the population remained constant
through all the generations, as experimental studies showed
that an increase in the population size did not provide better
solutions in terms of fuel consumption. This enabled to keep
the computational times low.

A high mutation rate was used for the real-valued GA imple-
mented in this study. It was shown in [48] that high mutation
rates combined together with nonbinary representation, used in
complex combinatorial optimization problems, gave place to
significantly better solutions than using a typical mutation rate
between 0.1% and 1% [49]. Applied to this particular problem,
it was found that, on average, high mutation rates allowed the
GA to find individuals with lower objective function value. In
particular, a mutation rate equal to the inverse of the number of
variables in the individuals of the population (i.e., the number of
operating parameters defining an individual) was used, as sug-
gested in [49].

No stopping condition was imposed on the algorithm, this de-
cision being left to the user. Thus, the user was in charge of ob-
serving periodically the evolution of the population through sev-
eral graphical results that summarized the optimization process.

VI. OPTIMIZATION RESULTS

In order to assess the performance of the optimization
process, two different engine conditions were optimized out of
the total 19 considered. Each engine condition belonged to a
different area, namely European transient cycle and full load,
thus covering a wide range of engine conditions where the
emissions have important restrictions. All the executions were
performed on an Intel Pentium Xeon running at 2.0 GHz with
2 GBytes of RAM.

Fig. 3 shows the evolution of the objective function value
during the optimization process for the two considered oper-
ating conditions. In each graph of Fig. 3, the evolution of two
objective function values is shown: the mean value of the objec-
tive function averaged for all the individuals (dotted line) and
the value of the objective function for the best individual in each
generation (solid line).

The continuous approach along the consecutive generations
of both objective function values represented in the graphs,
suggests that the differences among the individuals of the pop-
ulation get progressively smaller. A stable objective function
value is reached around the 140th generation for Fig. 3(a) and
around the generation number 100 for Fig. 3(b). No further
improvement in the objective function is observed in the next
generations, indicating that no better individual is found in
future iterations and, thus, that the algorithm has converged.
The corresponding operating parameters obtained at the con-
vergence stage were the best combination found which allows a
minimized fuel consumption, while also satisfying the imposed
emission constraints.
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Fig. 3. (a) Evolution of the objective function value during successive generations for the full load and (b) the European transient cycle engine conditions.

TABLE IV
COMPARISON OF NOMINAL VALUES, LIMITS, AND GA OPTIMIZED VALUES FOR

EMISSIONS AND BSFC IN THE FULL LOAD OPERATING CONDITION

The graphs in Fig. 3 do not show the objective function values
for the first 20 generations, due to the fact that the random ini-
tialization of the individuals in the GA causes that many indi-
viduals do not satisfy the constraints during the first generations,
implying an important increase in the mean objective function
values. Thus, showing the value of the objective function for the
first generations would have altered the scale completely, hiding
the evolution of the values for later generations. The peaks in the
second graph are due to mutations leading to individuals that do
not satisfy a constraint, thus obtaining a large value of the objec-
tive function, and altering the mean value for all the population.

The whole optimization process required around a minute and
convergence was achieved in approximately 140 generations for
both the case of European transient cycle and the full load op-
erating condition.

Once GA converged, the values for the emissions and fuel
consumption (BSFC) corresponding to the obtained OF min-
imum were analyzed, as shown in Tables IV and V. The first
of these tables presents the results for the full load operating
condition, where column Nominal contains the values of ex-
haust emissions and fuel consumption obtained with the nom-
inal values of the operating parameters, as defined by the orig-
inal engine cartography. Column Limit shows the maximum
acceptable limits imposed on each contaminant. According to
what was stated in Section V, the limit of FSN is fixed to a value
10% lower than the corresponding nominal value. Column Best

TABLE V
COMPARISON OF NOMINAL VALUES, LIMITS, AND GA OPTIMIZED VALUES FOR

EMISSIONS AND BSFC IN THE EUROPEAN TRANSIENT CYCLE CONDITION

Found contains the values of contaminants and fuel consump-
tion obtained as a result of the optimization process. Finally,
the last column shows the reduction achieved with respect to
the nominal values, in each emission and in fuel consumption.
It can be seen that all emissions obtained after the optimization
satisfied the limits imposed, particularly FSN, and reductions of
up to 36.2% in the case of HC were achieved. A decrease in fuel
consumption of 2.9% was also obtained.

Table V presents the same results for the case of the European
transient cycle condition. In this case, the priority was to reduce
the NOx emissions, as pointed out in Section V, thus the im-
posed limit was 20% lower than the nominal value. As in the
previous operating condition, the operating parameters found
by the optimization process satisfied all the emission constraints
imposed, and particularly that of NOx. Additionally, important
reductions were achieved both in the emission levels (up to
26.7% for FSN) and in fuel consumption (6.1%).

VII. CONCLUSION

The optimization approach described here uses ANNs as
the basis for the evaluation of the objective function that is
used within a GA optimization process. This is applied to
solve the problem of reducing the fuel consumption, while
keeping the emissions under certain maximum limits in a diesel
engine under stationary conditions. An application of a similar
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approach to the case of transient engine conditions is currently
under study.

The ANNs have been employed as predicting tools for BSFC,
NOx, PM, CO, and HC. Different quality for the predictions was
obtained for the outputs, which was strongly related to the com-
plexity of the phenomena to be modeled and the experimental
repetitivity of each variable. A committee of 20 ANNs for each
output was produced and integrated within the optimization pro-
cedure in order to average the predictions of the different spe-
cific ANN trainings.

The GA optimization was performed for two engine operating
conditions, where the limits in emissions were established ac-
cording to the values in the nominal engine cartography and the
main restrictions in each case. A methodology for the objective
function adjustment was proposed, including special penalties
for the more restrictive emission limits.

For the two operating conditions studied, the convergence of
the optimization process was fast (less than a minute) and all
the constraints were satisfied in the resultant solutions. Impor-
tant improvements with respect to the nominal manufacturer en-
gine cartographies were observed both in terms of emissions (up
to 36% reduction for HC) and fuel consumption (between 3%
and 6% reduction depending on the engine condition). This has
been achieved in a problem of high dimensions (seven operating
parameters) and high number of constraints (four emissions).
Finally, it should be noticed that the engine emission and con-
sumption improvement was reached without the incorporation
of any new technological device, just combining in a better way
the operating parameters that are currently considered by the
manufacturer.

Additional efforts and future work will focus on experimental
confirmation of optimized settings and also in implementation
of the presented procedure for transient operation of the engine.
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