
Towards On-Demand Ubiquitous Metascheduling on

Computational Grids

J. M. Alonso, V. Hernández, G. Moltó

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, Spain
{jmalonso,vhernand,gmolto}@dsic.upv.es

Abstract

Grid Computing Technologies are mature enough to

be successfully applied to computationally intensive sci-

entific applications. However, the current process of

applying Grid Computing to them is still hard and

difficult for the least experienced users. In this pa-

per we describe the adaptations made to the GMarte

metascheduling framework in order to provide an ubiq-

uitous access to its functionality as an efficient re-

source broker for the execution of tasks on computa-

tional Grids. A metascheduling component accessible

by only means of a Java-enabled web browser has been

developed, requiring almost zero configuration by the

client. This approach has enabled to produce a generic

multi-platform metascheduler which can be automati-

cally deployed in the clients interested in resource bro-

kering on computational Grids based on the Globus

Toolkit.

1 Introduction

Grid Computing technologies [7] have emerged as a
solution for the computational problems of Virtual Or-
ganisations (VOs), enabling the collaborative usage of
remote resources to satisfy the execution of computa-
tionally expensive tasks. Among all the available Grid
middlewares, the Globus Toolkit [6, 5] is broadly ac-
cepted to be the current de facto standard for deploy-
ing computational Grids. However, the Globus Toolkit
only provides the basic services and capabilities to sup-
port Grid infrastructures. Performing complete exe-
cutions of scientific applications on Grid environments
typically requires the usage of metascheduling [10] tech-
nologies, that provide all the functionality required for
efficient remote task execution.

We envisage Grid metascheduling technologies as a
set of interoperable components which abstract all the
underlying complexity of the Grid middleware, which
in turn provides the execution support. Only if we
manage to get the Grid closer to the end user, these
technologies will have a real impact in many scientific
fields.

In this paper we propose an on-demand metasched-
uler that is accessible via the network by every user in-
terested in performing task allocation functionality on
a Grid deployment. Access is provided by only means
of a web browser, thus requiring almost zero configu-
ration by the client. This way, the user just focuses on
defining the computational tasks to be executed and
delegates to this component their efficient execution
on the available Grid infrastructure. As opposed to
traditional metaschedulers, which typically require an
installation and configuration on the client machine,
and are typically bounded to a given platform (usually
Unix-based), we propose a multiplatform metaschedul-
ing component that is accessible from different plat-
forms and operating systems. This approach enables to
simplify the usage of computational Grids for job ex-
ecutions, even for Windows-based desktop PCs, thus
paving the way for the widespread adoption of Grid
technologies by the least experienced users.

The remainder of the paper is structured as fol-
lows. First, section 2 introduces the metaschedul-
ing framework and abstraction environment provided
by GMarte, which is the starting point of this work.
Then, section 3 details the architecture of the devel-
oped GMarte-based component. Next, section 4 fo-
cuses on the related work. Finally, section 5 sum-
marises the paper pointing to future research lines.

1

Stage Out

Grid
Application

Target
Application

Resource
Discovery

Resource
Filtering

Resource
Selection

Selects

Remote Machine

Stage In
Execution

Client Machine

GMarte
Abstraction

Layer

Refers Uses

Performs

XML
Definition

Develops

Writes

User

Generate

XML
Adapter

Figure 1. Overview of the principal phases in-
volved in the GMarte framework

2 The GMarte Framework

GMarte [2, 4] is a software framework developed by
our research group aimed at simplifying the process of
executing batch parallel (MPI-based) applications on
computational Grids based on the Globus Toolkit [6, 5].
It has been developed as a Java library which exposes
a high level API (Application Programming Interface).

The GMarte framework is a layered software. First
of all, a common interface is provided to access the
information systems (via the Monitoring and Dis-
covery Service) found on different versions of the
Globus Toolkit (MDS2, MDS4) combined with several
job managers such as Portable Batch System (PBS),
Torque, Sun Grid Engine, etc. This enables to intro-
duce high level objects that abstract the access to com-
putational information from different resources. On
top of it, GMarte introduces a new level that enables to
perform the remote execution of a single task in a com-
putational resource by combining the usage of the un-
derlying Grid services provided by the Globus Toolkit
such as GridFTP, for file transfer, or the Globus Re-
source Allocation Manager (GRAM), for job execution.
Finally, above both layers, we abstract the process of
multiple task allocation, enabling to perform resource
discovery and fault-tolerant metascheduling.

Figure 1 summarises the principal phases that cov-
ers the GMarte framework. First of all, the user devel-
ops a small GMarte API-based Java application that
provides the description of the tasks to be executed
on the Grid as well as an enumeration of the compu-
tational resources to be employed. Alternatively, the
user can also rely on the resource discovery function-
ality implemented. The metascheduling functionality
requires several phases. First of all, the Resource Dis-

covery stage obtains a set of candidate execution ma-
chines from either a GIIS (Grid Index Information Ser-
vice) or a BDII (Berkeley Database Information Index).
Both components aggregate resource information and
can be queried to retrieve a list of machines that sat-
isfy some features specified by the user. Once a list
of potential execution machines have been retrieved,

the Resource Filtering phase is in charge of discard-
ing those resources that either are not accessible with
the user credentials or do not satisfy the computational
requirements of the task to be executed. When both
previous phases finish, a set of computational resources
on which to perform the execution of the tasks is avail-
able. In order to decide which resource is going to ex-
ecute each task, a Resource Selection stage must take
place for each one, which chooses the current best ma-
chine on which to execute a given task. In GMarte,
a performance model is employed for resource selec-
tion that considers the task requirements, the dynamic
state of resources and the network bandwidth. Finally,
the Remote Execution phase takes place which requires
proper data staging. A key point in GMarte is that it
implements a multi-threaded metascheduler that en-
ables to concurrently perform the different phases in-
volved in remote task execution for the different tasks
(resource selection, stage in, execution, stage out).

The usage of such a system enables unattended reli-
able execution of applications on computational Grids
based on the Globus Toolkit versions 2.X (GT2) and
4.X (GT4).

3 Towards Ubiquitous On-Demand

MetaScheduling

With the GMarte framework providing
metascheduling functionality via an API, we de-
cided to move further and create a component fully
accessible by clients interested in task allocation
on computational Grids. This section covers how
GMarte has been adapted so that users no longer
need to write a single line of Java code to access its
functionality, but they specify their computational
tasks and Grid resources via XML (eXtensible Markup
Language) documents. Then, the Java Web Start
technology that enables to publish applications on the
web is briefly described. Finally, this section discusses
the overall system developed to achieve on-demand
metascheduling.

3.1 Developing XML interfaces to access
GMarte

If we abstract the semantics of metascheduling, the
main information needed for this process can be sum-
marised in several items. On the one hand, we require
the set of tasks, that is, a definition of all the jobs that
are going to be executed on the Grid. This means spec-
ifying, for each task, the executable file, the dependent
input files, the output files that should be retrieved
upon execution and the computational requirements of

2

each task in terms of available RAM, minimum number
of processors to use for parallel applications, etc. On
the other hand, we require the set of resources, that is,
an enumeration of the machines that will be employed
for the execution of the tasks. As mentioned before,
the user may specify an Index Service (GIIS or BDII)
so that resources are automatically discovered. Finally,
different parameters related to the metascheduler must
also be configurated. For example, in our case, we may
decide the number of threads employed to perform the
file stage in of the tasks, or to disable the automatic
reallocation of tasks in the case of execution failure.

Thanks to the adaptations performed in GMarte,
the user just needs to describe, in a declarative manner,
all the above information in three XML documents,
one per item. The XML language was chosen because
it is both easily readable by human beings and it can
be parsed to access the coded information using soft-
ware tools in many programming languages, including
Java. Also, XML documents can be constrained to a
W3C XML Schema, so that the syntax specified by the
Schema is followed by the XML document. This way,
it is said that the XML document is an instance of
the Schema. Therefore, we have developed three dif-
ferent W3C XML Schemas that specify the syntax of
the three XML documents that the user has to specify.

All the information specified in the XML documents
will be automatically mapped to Java objects without
any additional user action. Thus, the developed gate-
way enables to simplify the access to the GMarte func-
tionality as it is no longer required to write a GMarte-
based Java application.

3.2 Automatic Execution on the Client:
Java Web Start

In order to achieve the feature of an ubiquitous ac-
cess to the application, we have relied on the Java Web
Start technology, which enables to deploy a full appli-
cation accessible from the network. The principal ad-
vantage is that the user, with the only requirement of a
web browser and the Java Runtime Environment, can
access a Java Web Start deployed application. In ad-
dition, the user needs no special privileged account on
the computer in order to run the network application.

The usage of this technology requires deploying an
application on a Web server. This involves a set of
JAR (Java ARchive) files and a JNLP (Java Network
Launch Protocol) file which mainly describes and ref-
erences the application files. The client, with a web
browser, accesses the JNLP file and this causes the
Java Web Start support in the client machine to start
downloading all the application files that specifies the

Client Machine

GMarte (JNLP, JAR) and its
Software Dependences (JAR)

Computational
 Grid

XML Specification of
Tasks ,

Resources and
Scheduler

Configuration

(1) Access the GMarte Component
with the Web Browser

(2) The GMarte Application is Automatically
Transferred to the Client Machine and Started

(3) The User Specifies

(4) The Client Machine Turns Into a
MetaScheduler, Performing the Task Allocation

(5) The Output Results are Available on the
Client Machine when the Execution Finishes

VO1 VOn

...

Web Server

Figure 2. Scheme of the Grid Computing sys-
tem developed

JNLP file. Once the application files are available in
the user machine, the application is started outside the
scope of the browser. Thus, it is considered that the
application has been successfully deployed to the end
user.

It is important to point out that Java Web Start
technology has a caching component that prevents from
downloading any of the application files that have not
been modified since the last access. This allows saving
bandwidth from the client-side, while ensuring that the
latest version of the application will always be updated
on the client machine. In addition, although the appli-
cation runs outside the browser, this does not mean
that it has full access to the user machine. In fact,
the application runs on the sandbox provided by the
Java Virtual Machine, thus being restricted by the Java
policies. If an application deployed via Java Web Start
wants to have full access to the client machine, then it
has to be signed by the certificate of application devel-
oper. This procedure also involves signing all the JAR
files that our application depends on. Furthermore,
the client is always warned that the remote application
demands full access to the local machine.

3.3 Overview of the System Developed

Figure 2 describes the main architecture found in
the system developed. First of all, the user must have
available in the client machine all the components re-
quired for security based on Globus GSI (Grid Security
Infrastructure). This information typically involves:

1. An User Certificate signed by a Certificate Au-
thority (CA), who ensures that the Public Key in-
cluded in the certificate belongs to the user. This
way, the user can be recognised as such by the

3

computational resources in the Grid that trust in
the CA that signed the user’s certificate.

2. A Private Key, only readable by the user, which
enables to decipher messages, addressed to the
user, which were ciphered with his/her Public Key.
In GSI security, the Private Key is also protected
by a password, to introduce an additional level of
security.

3. CA certificates which signed the computational re-
sources certificates.

The GSI-based security configuration on the client
machine is a one-time process, provided that any cer-
tificate involved does not expire. In order to ease this
procedure, we have also deployed, under Java Web
Start, the configuration setup of the Java Commod-
ity Grid Kit [12], a step-by-step GUI that enables to
configure the client machine.

Once the GSI configuration has been performed, the
client will always interact the computational resources
via a user proxy, which implements a single sign-on
strategy that prevents the user from typing the pass-
word each time the Private Key is accessed. The proxy
is just a small file that holds the user credential for a
limited amount of time.

After the security configuration procedure, the user
accesses the Web site that enables to launch the
GMarte component via JNLP. This process automati-
cally retrieves the GMarte software itself and all its de-
pendent JAR libraries. All this information represents
a total of 8 MBytes to be downloaded to the client ma-
chine (841 KBytes for GMarte). Considering the cache
that implements Java Web Start and the fact that the
only component which is expected to change in each
new release is GMarte, we can affirm that a lightweight
access to the metascheduler is provided.

Before the application is started in the client ma-
chine, the user is notified that the software demands
full access to his/her machine (in order to read cer-
tificates, perform GridFTP data transfers, create di-
rectories, etc.) and shows the certificate information
of the developer that signed the application. Upon ac-
ceptance, the GUI component is launched to enable the
user specify the XML documents that define their usage
of the computational Grid. Finally, the metascheduling
procedure is started, thus turning the client machine
into a full metascheduler.

To ensure multiplatform, successful tests have been
performed in several architectures (Intel Xeon, AMD
Opteron and UltraSPARC-III) and operating systems
(Linux Fedora Core, Windows XP and Solaris 10). It is
important to point out that, although the metaschedul-
ing is performed in the client machine, a commodity

PC (Pentium IV, 512 MBytes of RAM) is able to han-
dle the whole process, while enabling the user to work
as usual. The data transfers during the stage-in and
stage-out phases are the ones which require the max-
imum workload (30% of CPU usage). However, mini-
mal workload is required to query for the status of the
computational tasks.

Currently, the usage of the GMarte metascheduler
has been successfully applied to different areas such as
cardiac electrical activity simulation [3] and dynamic
structural analysis of buildings [1], where it provides
an efficient solution for the execution of case studies
composed of multiple computational tasks.

4 Related Work

The work presented in this paper involves the us-
age of an accessible on-demand self-contained software
combined with the metascheduling capabilities over the
abstraction layer provided by the GMarte framework.

There are many research projects that aim at solv-
ing the problem of metascheduling over the Globus
Toolkit. First of all, the GridLab project1, funded
by the European union, aims at developing application
tools and middleware for Grid environments. Within
this project, the Grid Application Toolkit (GAT) [11]
also provides an object-oriented approach trying to
provide an abstraction layer. From the GridLab docu-
mentation, it appears that the resource management is
only available for the Globus Toolkit 2.4, thus being re-
stricted to work with the Pre-Web Services components
of Globus. Also, the Grid Application Framework for
Java (GAF4J) [9], is a simple framework of classes that
abstracts the essentials of interfacing with a Grid in-
frastructure, assumed to be the Globus Toolkit 2.0,
but offers no possibility to access the computational
services provided by the latest version of the Globus
Toolkit.

As another example, GridWay [8] is an open source
meta-scheduler that performs job execution manage-
ment, enabling unattended, reliable and efficient exe-
cution of different kind of jobs. Currently, GridWay
enables to perform execution to both GT2 and GT4
resources, offering additional functionality such as task
migration depending on the current performance of the
jobs being executed. However, GridWay only runs on
UNIX-like operating systems, which prevents all the
Windows client machines from using metascheduling
on computational Grids.

The main advantage of GMarte over other
metaschedulers can be summarised in the following

1GridLab - http://www.gridlab.org

4

items: First of all, an ubiquitous access is provided
so that it is accessible by only means of a web browser
with Java support. Second, we achieve multiplatform
availability to be automatically run on all the platforms
on which Java support is provided, thus covering a wide
range of machines. Third, we provide an XML inter-
face to access the functionality of GMarte so that users
are not required to develop an API-based application.
Finally, we support both GT2 and GT4 computational
resources.

5 Conclusions and Future Works

In this paper we have described the adaptations per-
formed to the GMarte framework in order to create
an on-demand metascheduler that is accessible via a
Java-enabled web browser. The usage of Java Web
Start has enabled to deploy a web application accessi-
ble by all the clients interested in turning their PCs
into metaschedulers with almost zero configuration.
This approach simplifies the usage of Grid Technolo-
gies, thus avoiding the installation and configuration of
the metascheduler itself, so the user just concentrates
on defining what should be executed and where (or just
rely on the resource discovery functionality).

The future works involves moving the metaschedul-
ing functionality from the client machine to a spe-
cialised host which offers a metascheduling Grid Ser-
vice to all the lightweight clients. This would reduce
the amount of work performed by each client, which
would turn into simple agents that would interact with
the brokering Grid Service to access the metaschedul-
ing functionality. With this approach, we would be
able to deploy the Grid Service as a gateway for an
already established Grid, so the users would just spec-
ify the computational tasks. As an additional benefits,
the clients could submit their executions, turn off their
PCs and reconnect at a later stage to investigate the
progress of the metascheduling procedure.

Acknowledgements

The authors wish to thank the financial support
received from the Spanish Ministry of Science and
Technology to develop the project GRID-IT (TIC2003-
01318). This work has been partially supported by the
Structural Funds of the European Regional Develop-
ment Fund (ERDF).

References

[1] J. M. Alonso, V. Hernández, R. López, and G. Moltó.
A Service Oriented system for On Demand Dynamic

Structural Analysis over Computational Grids. In
VECPAR’06: Seventh International Meeting on High

Performance Computing for Computational Science,
2006. To appear.

[2] J. M. Alonso, V. Hernández, and G. Moltó. An Object-
Oriented View of Grid Computing Technologies to Ab-
stract Remote Task Execution. In Proceedings of the

Euromicro 2005 International Conference, pages 235–
242, 2005.

[3] J. M. Alonso, V. Hernández, and G. Moltó. Experi-
ences on a Large Scale Grid Deployment with a Com-
putationally Intensive Biomedical Application. In I. C.
Society, editor, 18th IEEE International Symposium

on Computer-Based Medical Systems, pages 567–569,
2005.

[4] J. M. Alonso, V. Hernández, and G. Moltó.
GMarte: Grid Middleware to Abstract Remote
Task Execution. Concurrency and Computa-

tion: Practice and Experience, 2006. [early
view] http://www3.interscience.wiley.com/cgi-
bin/fulltext/112606256/PDFSTART.

[5] I. Foster. Globus Toolkit Version 4: Software for
Service-Oriented Systems. In LNCS, editor, IFIP In-

ternational Conference on Network and Parallel Com-

puting, volume 3779, pages 2–13, 2005.
[6] I. Foster and C. Kesselman. Globus: A Metacom-

puting Infrastructure Toolkit. Intl. J. Supercomputer

Applications, 11(2):115–128, 1997.
[7] I. Foster and C. Kesselman. The Grid: Blueprint for

a New Computing Infrastructure. Morgan Kaufmann,
2004.

[8] E. Huedo, R. S. Montero, and I. M. Llorente. A Frame-
work for Adaptive Execution on Grids. Software Prac-

tice and Experience, 34:631–651, 2004.
[9] A. Jhoney, M. Kuchhal, and Ventakrishnan. Grid Ap-

plication Framework for Java. 2003.
[10] J. M. Schopf. Ten Actions When Superscheduling.

SchedWD 8.5, Scheduling Working Group, 2001.
[11] E. Seidel, G. Allen, A. Merzky, and J. Nabrzyski. Grid-

lab: A Grid Application Toolkit and Testbed. Future

Generation Computer Systems, 18:1143–1153, 2002.
[12] G. von Laszewski, I. Foster, J. Gawor, and P. Lane.

A Java Commodity Grid Kit. Concurrency and

Computation-Practice & Experience, 13(8-9):645–662,
July 2001.

5

