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1. Introduction

In the mid 90s, the Grid concept appeared as a new trend in distributed computing. Grid Comput-
ing technology [6] emerged as the solution for some of the computational problems of organisations,
enabling the collaborative use of remote resources to execute computationally expensive tasks across
the world. The main aim of a computational Grid is to provide a coherent view of distant heteroge-
neous machines so that they act as a single, huge, powerful and self-managed computer. This fact
has caused a tremendous impact for computationally intensive applications, which can benefit from
the power that a Grid infrastructure aims at delivering.

Nowadays, important research efforts are being dedicated to the development of the software
infrastructures that enable to achieve this vision. However, Grid Computing is still in the early
stages and the users face a lot of complexity as well as a steep learning curve when applying this
technology to their own applications.

In this paper we describe the usage of Grid Computing technologies in two applications belonging
to different scientific fields. The first one involves the 3D dynamic analysis of large-scale buildings.
The second one performs electrical simulations of cardiac tissues. In both applications, an iterative
simulation procedure gives place to a computationally and memory-intensive process. Two previ-
ously implemented applications have been ported to a Grid infrastructure by developing and using
later, a generic software layer called GMarte, which simplifies the process of executing a scientific
software on a Grid-based distributed infrastructure.

To test the benefits of Grid Computing in the applications considered, executions have been per-
formed both on a local and a large-scale Grid infrastructure. On the one hand, the local infrastructure
represents a Globus-based Grid composed of machines from our research group. On the other hand,
we have also employed part of the resources available in the framework of the EGEE project, the
largest distributed deployment available for e-science.

The remainder of the paper is structured as follows: Section 2 presents the two target applica-
tions considered. Then, section 3 details the GMarte software layer employed to develop the Grid
applications that enable the target applications to be executed on a Grid. Next, section 4 describes
the structural case study that has been executed, detailing the computational infrastructure employed
and the results. Later, section 5 reports the execution of a cardiac case study on the large Grid de-
ployment. A discussion of the principal problems that arise when moving from a local to a global
Grid is performed in section 6. Finally, section 7 summarises the main achievements and concludes
the paper.

2. Target Applications

This chapter briefly describes the two applications chosen for their execution on a Grid. They
have been selected because of their large computational and memory requirements.
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2.1. Structural Dynamic Analysis of Buildings
3D dynamic analysis of large-scale buildings has been considered by engineers as a challenging

problem, owing to its high computational demand. Most of the existing commercial codes are com-
posed of questionable simplifications, reducing the number nodes to be considered and the number
of degrees of freedom associated, because the computational and memory requirements involved in
a realistic simulation may be too intensive for a traditional computer. Notwithstanding, these simpli-
fications, although appropriate for single structures, have demonstrated to be completely inadequate
for complex buildings. Previous research has shown that results from seismic analysis are model
dependent and it indicates the need for an adequate and realistic 3D analytical model [11].

In the preliminary stage of a building, structural engineers usually work with different initial
designs. Each design can be a different layout, composed of distinct materials (concrete, steel, etc.),
where different dimensions are assigned to the members, or even where several external loads, which
could occur during the lifetime of the structure, are applied. The large number of resulting structural
solutions must be analysed rapidly.

In some cases, all these designs are rejected, thus returning to the initial design stage. Never-
theless, a selection among these solutions has to be made before proceeding to the detailed design
phase. Now, an iterative trial-error process takes places by the structural engineer to achieve the most
efficient solution where, varying the member dimensions, the whole structure is analysed and the re-
sults are interpreted. Obviously, calculations must be performed accurately, complying criteria of
safety, cost limitations and construction constraints. Moreover, this number of simulations required
is notably increased when dealing with dynamic analysis owing to the need to work with several dy-
namic loads. As an example, the Spanish Earthquake-Resistant Construction Standards (NCSE-02)
requires that a building is analysed with at least five different representative earthquakes. This gives
place to a large amount of different structural alternatives to be computed (a structural case study),
where a huge computational power is demanded.

In a previous work, an application was developed to perform 3D dynamic analysis of buildings,
where all the nodes of the structure are considered and 6 degrees of freedom per node are taken into
account [3]. Simulations are carried out by means of 8 well-known direct time integration methods
[8].

2.2. Simulation of the Electrical Activity in Cardiac Tissues
According to the European Heart Network1, cardiovascular disease causes nearly half of all deaths

in Europe. In fact, cardiac arrhythmias are one of the first causes of mortality in developed countries.
However, despite the intense research in this area, the generation of ventricular tachycardias and
ventricular fibrillation (the most mortal arrhythmias) are not clearly understood.

Simulation is an excellent tool that enables to formulate multiple hypotheses in silico prior to
clinical experimentation. However, the simulation of the electrical propagation in cardiac tissues (a
key indicator of the state of the heart) represents a computational and data intensive problem, where
the electrical study of a medium-sized tissue can last for several days on a sequential platform. This
is mainly due to the usage of comprehensive ionic models which detail the internal behaviour of
each cardiac cell being simulated.

A MPI-based parallel simulator was developed for the simulation of the action potential propaga-
tion in cardiac tissues. It enabled a substantial reduction in the execution time of a single simulation
on a cluster of PCs [1]. However, in addition to this computational cost, there are many research
studies that involve the execution of parametric simulations. For example, to test the effects of new

1http://www.ehnheart.org
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Figure 1. Principal diagram of usage of GMarte.

medicines, it is required to perform multiple simulations varying the drug concentration. As another
example, to study the effects of late ischemia it is necessary to vary the junctional resistances in a
given interval and investigate the evolution of the electrical activity.

These cardiac case studies, composed of multiple independent parametric executions, enlarge the
total computing cost by the number of simulations to be run, what turns the global study procedure
into an even larger computational problem.

3. The GMarte Framework

These two different scientific fields face common problems. They involve the execution of mul-
tiple independent parametric simulations. Given that a Grid infrastructure aims at offering a large
computing power, a Grid-based solution, that enables to perform multiple concurrent simulations on
these machines, would be an ideal solution to accelerate the execution of these problems, which will
be denoted as case studies.

To support our executions, we have focused on the Globus Toolkit 2.4.3 [7], the current de facto
standard middleware for computational Grids. This middleware provides protocols and services for
connecting resources and deploying large-scale computational global Grids. However, its inherent
complexity often discourages scientists from porting their applications to a Grid infrastructure. To
overcome this handicap, GMarte (Grid Middleware to Abstract Remote Task Execution) [5] was
developed. It consists of an easy-to-use middleware, developed on top of the Java CoG 1.2 [10],
exposing an Object-Oriented view of the Grid that enables fault-tolerant metascheduling in a Globus-
based framework. GMarte has also been extended to support executions on the Computing Elements
of the LCG testbed, which is the largest Grid deployment available for scientific computation. A
more detailed description of this infrastructure will be provided later.

Using the high level API provided by GMarte, the user no longer interacts with the low-level
services provided by Globus. Therefore, instead of detailing how to perform the executions, the user
declares what to execute by using the high-level object abstractions offered by the Java API provided
(i.e. GridTask, GridResource, etc). An XML approach for the definition of the case studies is
currently under development to enable the case study definition without depending on the Java API.
It is important noting that GMarte is a client-side middleware, only installed on the client machine,
which will interact with the computational resources of the Grid infrastructure. In addition, as it is
developed in Java, the client is functional on different operating systems, such Windows and Linux.
Being out of the scope of this paper, further information about GMarte can be found elsewhere [4].

Figure 1 describes the corresponding usage diagram for a user that wants to execute a particular
case study on a Grid deployment. First of all, the user writes a small GMarte Application which
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describes the tasks to be executed (i.e. instances of the Target Application) along with their comput-
ing requirements in terms of processors, needed RAM, etc. This application also specifies the set
of machines to be employed for execution, either by an explicit enumeration or by delegating into
a resource discovery component. Finally, this application may also specify a certain metascheduler
(the component that performs the task allocation) from those already implemented in GMarte. Once
the case study simulation is launched, the GMarte middleware performs a sequence of steps in order
to achieve successful execution of the tasks. First of all, if required, the Resource Discovery phase
obtains a list of potential machines candidates for execution. This is obtained by querying standard
Index Information Services for Globus or LCG. Then, Resource Filtering discards those resources
that are unavailable for execution, that can not be accessed with the user credentials supplied or that
do not fulfill the minimum application-dependent execution requirements. These two phases are
only executed once in the scheduling procedure.

Then, for each task, the following phases are performed to achieve remote task execution: First of
all, Resource Selection involves choosing the current best resource for the execution of the task. The
implemented policy in GMarte considers the application requirements as well as an estimate of the
data transfer cost to each resource. Besides, a workload component prevents from the allocation of
all the tasks to a single resource, what would be critical if the resource fails. This policy can easily be
altered by the user in order to guide the scheduling procedure. Once the machine has been selected,
the File Stage In phase transfers the Target Application as well as all its dependent input files from
the Client Machine to the Remote Machine. Next, the Execution phase starts the application in the
remote machine. Finally, when the execution finishes, the File Stage Out phase retrieves the selected
output data files back to the local machine, erasing the remote data files.

4. Structural Case Study

To assess the effectiveness of Grid Computing technologies in the 3D structural analysis of build-
ings, a hotel was simulated. These singular buildings must be carefully designed, because an ap-
propriate solution can be the differential factor for economical profitability in countries where the
tourism is one of the biggest industry. The design of hotel facilities and security requirements imply
to consider distinct relevant factors, leading to different structural solutions for the same problem.

In our case, the hotel geometric model was composed of about 100,000 degrees of freedom
and two alternatives were considered for the construction material: reinforced concrete and steel-
concrete composite frame. For each material, five combinations of different structural member di-
mensions were assigned. Finally, and taking into account the NCSE-02, six representative earth-
quakes were applied to each structural solution. Therefore, a total of 60 dynamic simulations were
executed, before selecting the most suitable structural solution. HHT-α was chosen as the direct time
integration method to carry out the simulations. The behaviour of the different structural alternatives
were analysed during 7 seconds. The accelerograms used presented values of ground acceleration at
every 0.01 seconds and this time was chosen as the integration time step.

Each simulation demanded a total of 350 MBytes of RAM and generated 126 KBytes of out-
put results. For each structural member, the output files indicated if its stresses and deformations
obtained overcame the maximum values according to the construction standard employed, and there-
fore showing if the member dimension must be changed or not.

4.1. Computational Infrastructure and Execution Results
The Grid deployment that we used for the execution of this structural case study is composed of

three clusters of PCs belonging to our research group. The Globus Toolkit 2.4.3 was installed in all
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Table 1
Summary of the local Grid deployment and distribution of the simulations in the testbed.

Machine Computational Nodes Memory Avail. Nodes Simulations
RAMSES 10 Dual Pentium III 866 Mhz 512 MB 10 10
KEFREN 20 Dual Xeon 2.0 Ghz 1 GB 20 20

ODIN 55 Dual Xeon 2.8 Ghz 2 GB 52 30

the machines except Ramses, which runs the LCG-2 middleware and is part of the Biomed Virtual
Organisation which will be explained later on.

Table 1 summarises the testbed (i.e., the set of computational resources) employed and the task
allocation result. The table indicates, for each machine involved, its principal capabilities, the num-
ber of computing nodes that were available just before that scheduling procedure started, together
with the number of simulations allocated to it.

The global execution time of the whole structural case study on this Grid was 33 minutes, since
the scheduling procedure started until the output data of the last task was retrieved. Later analysis
revealed that the executions at Ramses machine lasted 3 times longer than those executed at Odin.
This caused the scheduling procedure to wait a few minutes for the executions at Ramses to finish,
what could have probably been shortened with a different task allocation policy that had assigned
more simulations to the free nodes of Odin cluster. A typical execution model in an engineer stu-
dio would involve the sequential simulation of the case study on just one computer. This kind of
execution, on one node of Odin cluster, required a total 495 minutes (8.25 hours), what represents a
speedup of 15 when executing the 60 structural simulations.

5. Cardiac Case Study

Myocardial ischemia is a condition caused by oxygen deprivation to the heart that can result in
an angina. During myocardial ischemia, the extracellular potassium concentration increases in a
triphasic pattern, an initial early increase, a constant phase, and a late increasing stage [9]. Other
cellular characteristics such as the intracellular concentration of ATP and ADP, and the sodium and
the calcium currents that traverse the cell membrane, also vary during this pathology.

In order to study the effects of various degrees of ischemia, a cardiac case study composed of mul-
tiple parametric simulations was executed. It analysed the influence, in the electrical propagation,
of different degrees of ischemic conditions that take place during the first 10 minutes from the onset
of a myocardial ischemia. This case study was originally executed on a restricted Grid deployment,
composed of machines from our research group and from another university at Spain, with a naive
Globus-based Grid prototype. A fully detailed description of it, which requires the execution of 21
parametric simulations, can be found in a related paper [2]. However, the simulation time has been
reduced from 80 ms., in the original case study, to 20 ms, as previous executions revealed that the
important information for this particular study appeared within the first 20 ms.

5.1. Computational Infrastructure
The execution of this case study has been carried out in a large deployment. The LCG2 project

aims at the development of the computing infrastructure for the simulation, processing and analysis
of the data provided by the Large Hadron Collider (LHC), the most powerful particle accelerator

2LHC Computing Grid Project. http://lcg.web.cern.ch
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Table 2
Initial state of the resources and distribution of the cardiac simulations in the testbed, for each ma-
chine. The number in parentheses indicates the number of nodes involved in the execution.

Machine Country Nodes Memory Av. Nodes Simulations
RAMSES Spain 10 Dual Xeon 866 Mhz 512 MB 8 2 (7 p.), 1 (2 p.)

CNAF-INFN Italy 8 Dual Xeon 2.4 Ghz 512 MB 7 7 (1 p.)
IN2P3-1 France 112 Dual Xeon 3 Ghz 4 GB 42 2 (1 p.)
IN2P3-2 France 58 Dual Pentium IV 1 Ghz 512 MB 28 8 (1 p.)

BA-INFN Italy 84 Dual Xeon 2.4 Ghz 881 MB 32 1 (1 p.)

which is being constructed at CERN. The LCG-2 middleware, developed in the mentioned project,
was the starting point of EGEE3, a European Union funded project that aims at developing a service
Grid infrastructure available to scientists 24 hours a day.

The LCG-2 middleware is based on the Globus Toolkit 2, providing additional enhancements and
functionalities to support the execution of the experiments to be performed in the field of physics.
Within the framework of both the LCG and the EGEE projects, a large testbed composed of ma-
chines is available for execution. This testbed currently consists of more than 9500 CPUs, from
112 sites, across 31 countries, with a total storage capacity of 4 Petabytes, representing the largest
computational deployments devoted to Grid Computing in science.

Although the LCG project was originally devoted to physics, the EGEE project fosters the migra-
tion of biomedical applications to the Grid. In fact, the Biomed Virtual Organisation (VO) has been
created with those computational resources belonging to project partners that support biomedical
research. It currently consists of more than 2500 processors, from 35 sites, across 13 countries.

5.2. Execution Results
Currently, the submission of parallelised applications with the MPI standard is not supported in

the EGEE testbed. Therefore, even though GMarte allows the execution of parallel applications
on multiprocessor or clusters of PCs, the simulations on machines belonging to the EGEE testbed
will always be sequential, that is, with just one processor. However, the Ramses cluster, although
belonging to the EGEE testbed, has been specially configured to support MPI-based executions.

Table 2 summarises the task allocation process. The table shows, for each machine involved
in the scheduling procedure, its corresponding country and its features, the number of computing
nodes that were available just before the scheduling process started and the number of simulations
allocated. The parentheses indicate the number of processors employed in each execution.

When the executions were performed, the resource discovery listed a set of potential remote ma-
chines. The resource filtering phase discarded some of them that were unavailable or stated autho-
risation problems with the user credentials supplied. Also, the machines that did not satisfy the
minimum execution requirements were also discarded. This notably reduced the available comput-
ing resources. In addition, several hosts were never selected for execution, mainly due to the large
data transfer cost estimated (for example, one machine located in Taiwan).

The total execution time of the case study was 102 minutes. Performing a sequential execution of
the case study, one simulation after another on a Pentium IV machine, required a total of 1569 min-
utes. Using a cluster of such PCs, performing executions with 8 processors one after another, lasted

3Enabling Grids for E-sciencE. http://eu-egee.org
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for a total 221 minutes. This represents a speedup of 15.38 and 7.1 respectively when executing
the 21 simulations on the Grid infrastructure. In terms of global execution time, the Grid computing
approach enabled to reduce the simulation time of the case study from more than one day to less than
two hours. This increases the research productivity as more simulations per day can be achieved.

6. Discussion: From Local to Global Grid

As shown, the solution adopted to accelerate the execution of the case studies have been to perform
multiple concurrent simulations on the machines of a Grid infrastructure. Under an ideal situation,
we could assume that the Grid would offer enough computing resources for all the executions to
proceed simultaneously. Moreover, the underlying middleware would have a negligible cost and
data movements among the resources of the Grid would be instantaneous. With these assumptions,
the global time of executing a case study would be reduced to the time required by the slowest task.
However, as ideal conditions can not be applied to distributed infrastructures such as a Grid, we have
to cope with these drawbacks.

When moving from a local Grid to a global Grid, many problems arise. First of all, the lower
bandwidth and the increased latency of the communication networks make the data transfer cost a
crucial parameter that needs to be considered when selecting a machine for execution. GMarte im-
plements a resource selection policy that considers resource proximity by computing the bandwidth
available, for each data transfer, from the local to the remote machine, which is averaged among all
the data movemements with this host to provide valuable feedback to the metascheduler.

Second, the resource selection phase, involves a huge amount of communications to gather all the
information required from each candidate host in order to select the most appropriate one for the
execution of a given task. GMarte implements a cache component that stores the static attributes of
each machine (i.e. Operating System, CPU architecture, etc.) so that no unnecessary queries and
communication are performed. We have also uncoupled the most important stages of remote task
execution (resource selection, file stage in, execution and file stage out), allowing multiple threads
to independently perform these phases for different tasks. This approach enables to concurrently
perform multiple task execution, thus accelerating the global procedure of scheduling.

Finally, a Global Grid subject to different management policies, and an obvious computational
diversity, is very prone to distinct kind of failures. In GMarte, failures are managed at different
levels. A data transfer failure is retried several times before notifying the error to the upper software
layers. Also, failures during the execution of a task are detected by the scheduler. In both cases,
the application is re-scheduled for execution in a different machine. A failure in a resource is also
managed by re-scheduling the tasks as well as marking the resource as failed. A resource resurrector
component periodically investigates if the resource is available again for execution.

7. Conclusion

In this paper, we have described the usage of Grid Computing in two different applications, one
performing the 3D structural dynamic analysis of buildings and the other simulating the electrical
activity in cardiac tissues. A common software layer has been employed, called GMarte, which
enables to perform fault-tolerant metascheduling over Globus-based Grid infrastructures.

We have performed the execution of a structural case study on a local Grid and a cardiac case
study on part of a large-scale Grid available in the framework of the EGEE project. Substantial
reductions in the global execution times of both case studies have been achieved by performing mul-
tiple concurrent executions on the distributed infrastructures. Finally, we have also discussed some
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important aspects that must be considered when employing a large Grid. As said in the introduction,
the Grid is still in the early stages, and much research and developments have to be performed in
order to turn the Grid into an easy-to-use technology for its application in different scientific fields.
However, important benefits can be obtained, as shown, for computationally intensive applications.
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[4] J. M. Alonso, V. Hernández, and G. Moltó. Enabling high level access to grid computing services.
ERCIM News. Special: Grids: The Next Generation, 59:42–43, 2004.
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