
An Object-Oriented View of Grid Computing Technologies to Abstract Remote
Task Execution

J. M. Alonso, V. Hernández, G. Moltó
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain
{jmalonso,vhernand,gmolto}@dsic.upv.es

Abstract

With the advent of Grid technologies, many interest has
arisen in the application of these computational techniques
to multiple fields. However, Grid Computing technologies
have a steep learning curve that tends to discourage sci-
entists from the usage of Grid facilities applied to their re-
search, preventing a widespread adoption of Grid Comput-
ing. In this paper, we describe a Java-based middleware,
built on top of the Java Commodity Grid, that offers an ob-
ject oriented, user-friendly view of the Grid, which hides
much of the underlying complexity when using the Grid
Computing services provided by the Globus Toolkit. The
middleware developed is focused on achieving remote ex-
ecution of tasks, providing automatic file staging services,
parallel execution in multiprocessor machines and fault-
tolerant scheduling capabilities, from a simple and intuitive
Application Programming Interface.

1. Introduction

The introduction of Grid Computing technologies has
opened new ways in the computing field by allowing the
collaborative usage of computational resources across the
world. This situation has enabled to expand the compu-
tational barriers of organisations, and specially research
centres, by performing time consuming executions on dis-
tributed resources from abroad. In fact, the Grid vision [6]
aims at delivering computational performance efficiently to
a large community of users with such huge computing re-
quirements.

Although there are currently several research projects
that aim at developing a middleware that enables to imple-
ment that vision, such as Polder [10] or Condor [16], the
Globus Toolkit [4], [5] represents the de-facto standard for
the deployment of large scale Grid infrastructures.

Unfortunately, users often face a steep learning curve
when trying to use the Globus Toolkit features and thus,
productivity is reduced and delayed until the toolkit features
are mastered. Usually, scientists require the tools to exploit
the benefits of the Grid with their own applications, with-
out worrying for the implementation details of the underly-
ing Grid middleware. Therefore, in order to widespread the
usage of Grid Computing, this technology must get closer
to the end user.

With the purpose of reducing this gap, from Grid tech-
nology to the end user, some approaches have been taken
into account. The Commodity Grid Kits offer a high level
of abstraction that allows computational scientists, who are
not expert in Grid programming, to use the Grid services as
part of the scientific problem-solving process. In fact, the
Java Commodity Grid [17] (CoG) provides, from the Java
programming language, an excellent gateway to the Globus
Toolkit services, such as GridFTP, the Monitoring and Dis-
covery Service (MDS) or the Globus Resource Allocation
Manager (GRAM).

However, a user of the Java CoG has to be aware
of the main components and services offered by the
Globus Toolkit. Even more, these services must be ade-
quately employed and combined to achieve the intended
purpose, which, in general, represents remote task execu-
tion. This involves dealing with resource features discovery,
file staging, job execution and status control, among oth-
ers.

In this paper, we present a Java-based software layer, de-
veloped on top of the Java CoG, which provides an object
oriented view of the Grid, focused on the efficient execu-
tion of a set of tasks in a Grid infrastructure. Rather than
providing a closed software, we offer an Application Pro-
gramming Interface (API) that allows the exploitation and
even the behaviour modification of the middleware to adapt
it, if required, to the computing needs of each specific field.

The article is structured as follows: First of all, section
2 describes the related work, motivating the definition of a



new approach. Then, section 3 defines the purpose and in-
tended target of the software layer designed. Next, section 4
introduces the middleware developed, describing the main
classes and functionality. Later, section 5 exposes two prac-
tical examples of the API usage, as well as its application
to port a real simulation system to the Grid. Finally, section
6 concludes the paper, summarising the principal achieve-
ments, and pointing out the future plans.

2. Related Work

There are other approaches that provide a framework for
simplifying the usage of distributed resources. The Grid
Application Framework for Java (GAF4J [11]) is a sim-
ple framework of classes that abstracts the essentials of in-
terfacing with a Grid infrastructure, assumed to be Globus
Toolkit 2.0. Also, Javelin [14] is a Java-based infrastruc-
ture, for Internet-based parallel computing, which provides
a framework for achieving execution.

These tools aim at simplifying the process of either port-
ing or developing a Java application to be executed on a dis-
tributed environment. However, the middleware being pre-
sented allows execution, on Globus-based distributed re-
sources, for already existing applications that can have been
written in any programming language, not only Java.

There are also open projects that aim at harnessing the
execution on distributed resources. Legion [7] is an object-
based middleware that aims at creating a single virtual su-
percomputer from a set of distributed resources. However,
while Legion provides an API for resource management, as
well as a for managing executions, it is based on its own
self-designed framework, thus being restricted to Legion-
based distributed deployments. As another example, Net-
Solve [3] exposes a self-designed framework in a client-
server system that performs fault-tolerant task allocation to
computational resources in order to solve complex scien-
tific problems.

One of the advantages of the middleware being pre-
sented is that it is compatible with all the largely deployed
Globus-based Grids. Examples of these testbeds are the Na-
tional Technology Grid, that it is being built by the Na-
tional Partnership for Advanced Computational Infrastruc-
ture (NPACI), and the National Computational Science Al-
liance (NCSA) in order to support distributed scientific
and engineering applications, or the LHC Computing Grid
Project, which is stablishing a large-scale Grid deployment
involving more than 80 sites throughout the world to sup-
port application experiments involving real users. Given
that Globus is becoming the industrial standard in Grid de-
ployments, compatibility with a broad range of machines is
guaranteed.

3. Intended Target of the Middleware

The software layer proposed is designed for the execu-
tion of tasks in remote computational resources that form a
Grid infrastructure based on the Globus Toolkit. Given that
a Grid infrastructure is, at first glance, an unknown pool of
computational resources, it can not be assumed that the ex-
ecution hosts have available the required dynamic libraries
that the application depends on, neither the computational
nor the system libraries dependences.

Therefore, for Grid execution, the target application must
be previously adapted by the user, in order to remove any
external dependences, by means of static-linking techniques
and disabling all sort of architecture-dependent optimisa-
tions [2]. For parallel applications based on the MPI stan-
dard, the MPI library can also be introduced into the exe-
cutable by static linking with a MPICH [8, 9] implemen-
tation. These techniques result in a self-contained applica-
tion, where a minimum level of portability is achieved in
order to perform sequential or parallel execution in a wide
range of machines that may form the Grid infrastructure.

The middleware designed is focused on the combination
of two computational techniques. On the one hand, High
Performance Computing enables the speedup of a single
task by the parallel execution on a cluster of PCs. On the
other hand, High Throughput Computing [13] aims at the
effective management and exploitation of all the available
computing resources. Therefore, an integration of both tech-
niques, performing parallel executions on the multiproces-
sor resources of a Grid, seems the key combination to boost
productivity.

Our middleware expects a common execution pattern for
the applications being ported to the Grid: The application
reads a set of input data files, performs a batch computa-
tion without interaction with the user, either sequential or
in a MPI-based parallel manner, and generates a set of re-
sult data files. This is the common behaviour of applications
in the field of Computational Fluid Dynamics, Cardiac Sim-
ulation, Structural Analysis, and many others, thus covering
a wide range of engineering fields.

Therefore, the designed middleware includes a set of
components to abstract the process of remote task execu-
tion, providing the fundamental tools to perform sequential
or parallel executions of a task in a resource. As a result,
the user no longer needs to interact with the Globus Toolkit
services but with the high level API provided by the imple-
mented middleware.

4. Middleware Description and Components

This software layer has been developed on top of the Java
CoG Kit 1.2, which provides a gateway to the functionali-
ties of the Globus Toolkit 2.4 for the Java programming lan-



Figure 1. Diagram of the main classes in the
middleware.

guage. It must be remarked that a user of the Java CoG Kit
needs to know and understand all the different services of-
fered by the Globus Toolkit, and even worse, how to com-
bine them to achieve remote task execution.

For example, porting a scientific application to a Grid
deployment requires using several services provided by
Globus. First of all, the MDS provides information about
the resources. Next, the GridFTP service, or the Global
Access to Secondary Storage (GASS) service, enables to
achieve data transfer. Finally, the GRAM service allows to
achieve execution on the resource. The procedure of remote
task execution involves dealing with various interfaces, dif-
ferent specifications and tends to be error-prone due to the
inherent complexity of the Globus Toolkit.

Therefore, the idea beyond the middleware presented is
to avoid the direct interaction with the Globus services, ex-
posing to the user an object-oriented natural view of the
Grid and providing a complete Application Programming
Interface for the execution of tasks in resources.

The middleware is composed of more than 30 classes or-
ganised in four general packages: Tasks, Resources, Execu-
tion and Scheduling, which encapsulate all the functional-
ity related to these four large areas. Fig. 1 summarises the
principal and most important classes involved in the middle-
ware. Most of the methods have been omitted for the sake
of brevity.

We can see that a TestBed is considered a collection of
GridResources and a GridTaskStudy represents a collection
of GridTasks. A RunnableGridTask is a GridTask that has
been assigned to a GridResource for execution. The Sched-
uler class defines the interface to all the implemented sched-
ulers which provide capabilities for the allocation of Grid-

Tasks to the TestBed.
It should be pointed out that it is responsability of the

designed middleware to interact with the Globus services
via the Java CoG API. Therefore, the user is provided with
an API which no longer exposes the functionality of ser-
vices such as GridFTP, GRAM or MDS, but a very natural,
object-oriented way of interacting with a Grid.

The main classes of the middleware are described in the
following sections.

4.1. The GridTask Abstraction

A GridTask represents the minimum execution unit in
a Grid and has associated several components, such as
a GridExecutableFile which allows having different exe-
cutable file versions for the multiple architectures that can
be found in an heterogeneous Grid deployment. For exam-
ple, we may have available an executable file for the IA-32
(Intel, 32 bits) architecture and other for the IA-64 (Intel,
64 bits) platforms, in order to fully exploit the Intel Itanium
nodes.

Next, a set of dependent input files can be assigned to a
GridTask. They can be specified by an enumeration of files
or through a wildcard mechanism. These files will be trans-
ferred to the remote host before running the application in
order to create an appropriate execution environment.

Analogously, we can also specify the output files that
the application will generate upon execution, by means of a
wildcard, provided that we may not know the name scheme
of the generated archives. Once the execution has finished,
these files will be transferred back to the local host in or-
der to access the generated data. A local directory, which
will host all these staged out files, can be specified.

4.2. The GridResource Abstraction

A GridResource stands as the abstraction for computa-
tional resources. This class offers convenient methods to ac-
cess all the information related to a resource, specially the
information supplied by the MDS of the Globus Toolkit.

Therefore, instead of a traditional customized LDAP
(Lightweight Directory Access Protocol) query to obtain
the required information, the GridResource class offers a
collection of methods, such as getAvailableRam or getAvail-
ableProcessors, which greatly simplify to the end user the
process of extracting information from a resource. This in-
formation is returned to the user as strongly typed data, thus
avoiding the need of data type conversion from the tradi-
tional string representation.

For static features of computational resources, such as
the operating system, the RAM size or the hardware plat-
form, caching capabilities are included in the middleware



to cut down the network usage, therefore reducing the de-
lay caused by multiple consecutive remote LDAP queries.
However, when the user requests a dynamic feature, such as
the number of available processors, the available RAM or
the CPU usage during the last minute, the query is diverted
directly to the resource in order to get the most recent infor-
mation.

4.3. The RunnableGridTask Abstraction

In order to achieve a proper execution of a GridTask in
a GridResource, the RunnableGridTask offers convenient
methods to carry out all the necessary phases.

First of all, the stage in phase must take place, where all
the dependent input files of the GridTask and the GridExe-
cutableFile are transferred to the GridResource, using the
capabilites of the GridFTP service provided by the Java
GridFTP implementation. This process internally involves
selecting an appropriate place in the remote filesystem to
host the incoming files and to activate the executable flag of
the application, which is not set when uploaded. Besides a
shell-script, which wraps the execution of the application in
order to capture its exit code, is also generated and staged
in. All this process is achieved with just an invocation to the
method stageIn().

In addition, this class provides methods to specify the
number of processors that will be involved in the execution,
thus allowing to perform a sequential or parallel execution
from the same API.

Once the execution environment is appropriate, i.e. after
the stage in phase has been completed, the application can
be started in the remote GridResource. If the Globus Toolkit
installation in the remote resource was properly configured,
the execution is integrated with the job manager of the re-
mote GridResource (PBS, LoadLeveler, etc), thus respect-
ing the execution policies of the remote organisation. This
process is achieved with just an invocation to the method
run() offered by this RunnableGridTask.

When the GridTask has finished its execution, the stage
out phase is in charge of retrieving all the output files spec-
ified, from the remote GridResource to the local machine,
storing them in the appropriate local container folder. This
is achieved by the method stageOut() of this class,
which employs the GridFTP service of Globus to accom-
plish reliable data transfer. Finally, as a polite measure, all
the remote temporary files are erased in order to save disk
space in the remote resource, as it probably belongs to an-
other organisation.

It is important to point out that all this burden is hidden
to the user and so, the middleware is responsible to perform
all the mentioned steps to achieve proper execution of the
GridTask in the GridResource.

Figure 2. State transition diagram of a
RunnableGridTask during its life cycle.

4.4. Introducing A-Priori Quality of Service

A GridTask can optionally specify a list of require-
ments through the usage of the GridTaskLoR. Thus, a
GridResource must accomplish these requirements in or-
der to be able to execute the GridTask. This list of require-
ments currently involve several computational aspects, such
as the minimum number of free available nodes in a multi-
processor GridResource, its available MBytes of RAM or
the Instruction Set Architecture of the target execution plat-
form.

This way, the GridTask can define an a-priori quality
of service, preventing the execution of a resource-starved
GridTask on a computationally modest GridResource. This
capability is heavily employed during the scheduling pro-
cess and thus, by fine-tuning the requirements imposed,
many computational resources can be discarded as they turn
out to be less appropriate than others to host the execution
of the GridTask. This strategy tipically leads to shorter ex-
ecution times and an overall increase in the productivity of
the whole task allocation process.

However, it should be considered that a basic knowledge
about the behaviour of the application should be known be-
fore specifying the requirements. Instrumentation and post-
morten [12] analysis are ideal tools to have good estimates
about the memory consumption as well as the optimum
number of processors for a parallel execution.

4.5. The Scheduler Abstraction

In order to achieve the execution of a GridTaskStudy in a
TestBed, a task allocation process must be carried out [15].
We have approached the scheduling process as a state tran-
sition of the RunnableGridTasks during their lifetime in the
system. This way, the scheduling process is reduced to a
state transition problem. Fig. 2 summarises the main states
that traverses a RunnableGridTask during its execution.

A RunnableGridTask in the UNASSIGNED state, that
is, not yet scheduled for execution, can only be promoted
to the SCHEDULED state, by selecting the current best re-
source. Then, the task is left in the STAGED IN state by
the execution of the method stageIn, which is in charge of
performing the stage in phase, as described earlier. Upon



starting execution on the remote resource, the Runnable-
GridTask is transferred to the ACTIVE state. When the ex-
ecution finishes, the RunnableGridTask usually reaches the
DONE state or possible the FAILED state if an error ocurred
during execution. After performing the data retrieval phase,
its state changes to STAGED OUT and when the files gen-
erated in the remote resource are erased, the RunnableGrid-
Task is considered to be in the COMPLETED state, thus
finishing its life cycle.

With this strategy, only a RunnableGridTask that is in a
determined state can be promoted to the next one in its life
cycle. Failures during the execution of the task on the re-
mote resource, as well as during the data transfer phases,
lead the RunnableGridTask to the FAILED state. This con-
dition is detected by the scheduler and mainly involves re-
scheduling the task, probably to another resource, accord-
ing to the state transition diagram, until a successful execu-
tion is achieved.

The BasicScheduler class provides the implementation
of this concept. It is a subclass of the Scheduler class and
thus it is comitted to implement the methods which de-
fine the policy to select the task (chooseGridTask), to se-
lect the resource (chooseGridResource) and to choose the
number of processors of the execution (chooseNumberOf-
Processors). For each GridTask that must be executed, the
BasicScheduler is responsible for its allocation to one re-
source. Therefore, it selects the current best GridResource,
which satisfies the list of requirements of the GridTask, ac-
cording to the criteria of maximum number of free comput-
ing nodes of the GridResource.

This class implements a simple policy for parallel exe-
cutions. Each of them is limited to employ a quarter the to-
tal available processors in the GridResource. Thus, it imple-
ments a polite policy that does not involve all the resources
in a single execution, and provides the appropriate environ-
ment to host up to 4 simultaneous executions, increasing
productivity. For resources with up to 4 processors, parallel
executions take place with the maximum number of avail-
able processors.

The BasicScheduler is a multi-threaded object, where
each thread is in charge of the promotion of the Runnable-
GridTasks from one determined state to the following, ac-
cording to the state transition diagram. This way, it is pos-
sible to concurrently handle an expensive stage in phase
of a GridTask while performing the execution of another
one, thus reducing the bottleneck of traditional sequential
scheduling approaches. Besides the number of threads does
not depend on the number of tasks being executed, thus pro-
viding a scalable approach in the task allocation process.

Currently, the user has to enumerate the machines re-
quired for execution, through the facilities offered by the
TestBed abstraction, but plans are to provide support for the
GIIS (Grid Index Information Service) functionality of the

Globus Toolkit to enable semi-automatic resource discov-
ery.

4.6. Pluggable Scheduling Policies

The design of the middleware allows for an easy imple-
mentation of different scheduling policies by reusing the
components already designed. Recall the diagram in Fig.
1. The Scheduler class is abstract, providing no implemen-
tation but a contract of the interface to be implemented by
the different schedulers. For example, it is completely fea-
sible to subclass the BasicScheduler class in order to over-
ride the chooseGridResource method to implement a differ-
ent policy for selecting the computational resource in which
the GridTask selected by the Scheduler will be executed.

It could also be interesting to override the chooseGrid-
Task method in order to prioritise the GridTasks so that
those with higher priority (the concept of priority would be
defined by the user) are selected first by the scheduler to per-
form execution.

This subclass of the BasicScheduler class would inherit
all the already implemented functionality, what leads to a
shorter development time, where the scheduling policies
can easily be altered by using the object-oriented function-
ality of class inheritance as well as method override.

These pluggable scheduling policies allow us to test dif-
ferent task allocation schemes under the same Grid deploy-
ment (TestBed) in order to measure certain parameters, such
as task distribution, total simulation time or idle time of
resources, in order to decide the most suitable scheduling
strategy for the resources being considered.

4.7. Fault Tolerance Scheme

The GridTask abstraction supports the definition of a
checkpoint scheme to introduce execution recovery after
failure. Checkpointing is an optional capability of an ap-
plication which periodically produces a set of files with the
current state of the computations, allowing a restarted exe-
cution, at a later stage, from the last checkpoint.

Therefore, a GridTask can optionally specify the check-
point files that the application will generate during its ex-
ecution, while the scheduler can be configured to automat-
ically and periodically retrieve these files from the remote
GridResource to the local machine. Having locally avail-
able the latest checkpoint files takes into account failures
in the GridResources, allowing to resume the execution on
another available computational resource. The applications
that do not support checkpointing will be restarted from the
beginning upon execution failure.

In fact, when a RunnableGridTask is selected for execu-
tion and enters the file stage in phase, it is investigated if
there is checkpointing information available, which will be



staged to the execution resource. This way, when the appli-
cation starts the execution on the remote machine, it can be
aware of the presence of a checkpoint, thus automatically
resuming execution instead of restarting from the begin-
ning. Of course, the application must provide proper sup-
port to the generation of its own checkpoint files as well as
resuming from its previously generated checkpoint.

5. Practical Examples

Even though all the capabilities of the middleware have
been thoroughly explained, it is important to present some
examples in order to assess the ease of usage of this ap-
proach compared to using the traditional mechanisms pro-
vided by Globus.

5.1. Single Remote Execution

A typical situation consists of executing a single ap-
plication in a remote multiprocessor resource of the
Grid. The following extract of Java code will accom-
plish the execution, employing 4 processors, in a remote
resource called m1, of an application called app3D re-
siding in the /tmp directory. This task requires a set
of input data files, ending in .dat. When the execu-
tion finishes, all the application-dependent generated data
files ending in .out will be automatically retrieved. Be-
sides, the GridTask demands that the GridResource has at
least 128 MBytes of available RAM. Otherwise the mid-
dleware will prevent its execution.

GridTask gt = new GridTask();
GridExecutableFile gef =

new GridExecutableFile("/tmp/app3D");
gt.setGridExecutableFile(gef);
GridInputFileSet gifs =

new GridInputFileSet();
gifs.addGridFilesBySuffix("/tmp",".dat");
gt.setGridInputFileSet(gifs);
GridOutputFileSet gofs =

new GridOutputFileSet();
gofs.addGridFilesBySuffix(".out");
gt.setGridOutputFileSet(gofs);
GridTaskLoR gtl = new GridTaskLoR();
gtl.addRequirement(AVAILABLE RAM, 128);
gt.addGridTaskLoR(gtl);
GridResource gr = new GridResource("m1");
RunnableGridTask rgt =

new RunnableGridTask(gt,gr);
rgt.setNumberOfProcessors(4);
rgt.stageIn(); rgt.run(); rgt.stageOut();

The example uses some classes which do not appear in
the main class diagram (Fig. 1). The GridInputFileSet en-

closes the dependent input files of a GridTask, that is, the
files that must be accessible in the remote resource prior to
execution. The GridOutputFileSet indicates the output files
that the application will generate during execution, which
will be transferred back to the local machine. Notice that a
wildcard mechanism is employed to define the files.

For the sake of comparison, using the traditional mecha-
nisms provided by Globus, the user would have to perform
the following actions (the parentheses enclose the typical
command that would be used to perform the action):

1. To investigate if the resource is alive (ping), if the MDS
is running (grid-info-host-search), if proper credentials
are being used to access the resource and if the GRAM
service is currently working (globusrun).

2. To ensure that the resource has at least 128 MBytes
available, by using a customized LDAP query (grid-
info-host-search) that only returns the value of the at-
tribute Mds-Memory-Ram-freeMB by the MDS. Be-
sides, to construct another customized LDAP query
that returns the value of the attribute Mds-Computer-
Total-Free-nodeCount. If there are several execution
queues on the resource, to investigate the values for
all of them in order to decide if there are at least 4 pro-
cessors available.

3. To decide where on the filesystem of the remote ma-
chine are going to reside all the files and to trans-
fer them via GridFTP or GASS by issuing as many
globus-url-copy commands as files, as no wildcard
mechanism is currently supported. As an additional
problem, the GridFTP protocol does not maintain the
attributes of the files and thus, the executable file in
the remote resource will have the executable flag dis-
abled, thus preventing its execution.

4. To decide if the execution is going to be batch or in-
teractive and to start the execution (globusrun) with
the number of processors specified. If the execution
is batch, then periodically query the status of the job
(globus-job-status) until the DONE state is reached.

5. To guess where the application will have written its
output data files and to transfer them back to the lo-
cal machine (globus-url-copy). To be polite and erase
all the generated data files in the resource so that they
do not waste disk space in a resource from, possibly,
another organisation.

6. To perform error detection along all the previ-
ous phases and to take appropriate actions to circum-
vent them or notify the user.

It can be noticed that, using the traditional mechanisms
offered by the Globus Toolkit, a user faces lot of complex-
ity and several design decisions that impose a clear over-



head in the process of porting an application to a Grid in-
frastructure.

The sequence of calls carried out with the proposed mid-
dleware involves the usage of the Globus Toolkit services
GridFTP, for file transfer, MDS, for resource information,
and GRAM, for job execution. However, it is clear that the
user is not aware of all this burden, but instead he/she is pro-
vided with an API that allows declaring what to execute and
where to execute it, without declaring how to achieve exe-
cution.

5.2. Multiple Remote Execution

In order to support the execution of a set of tasks, such as
those arising in parameter sweep applications, the schedul-
ing capabilities of the middleware can be employed, as
shown in the following extract of Java code.

GridTaskStudy gts =
new MyCaseStudy();

String hosts = {"machine1","machine2"};
TestBed tb = new TestBed(hosts);
Scheduler sched =

new BasicScheduler(tb, gts);
sched.start();
sched.waitUntilFinished();

The MyCaseStudy class inherits from GridTaskStudy
and represents the problem-dependent definition of the set
of GridTasks that have to be executed in the available
testbed. This class is supposed to use the API provided by
the designed middleware to create the GridTasks, which are
included in the study via the addGridTask method.

The scheduler will be in charge of the allocation of Grid-
Tasks to the machine1 and machine2 GridResources, auto-
matically restarting the failed executions or resuming if the
GridTask provides checkpointing capabilities. When each
GridTask finishes, a folder is created in the local machine,
which will host all the output data files collected from the
remote GridResource. The invocation of the method wait-
UntilFinished causes the flow control to be stopped while
the scheduling process is being performed. Once the task
allocation process is finished, the method gives the control
back.

It can be noticed from the example that it is very straight-
forward to employ the scheduling capabilities of the mid-
dleware. Just the GridTasks to be executed must be indi-
cated, through the definition of the MyCaseStudy class, and
the Globus-based resources that will provide execution ser-
vices must be specified, through the TestBed class. The task
allocation procedure is performed by the middleware.

In the example, it is assumed that the specified resources
are running Globus Toolkit 2.4 and valid credentials are in-
stalled in the local machine. If, for any reason, no access is

available to a resource it will be automatically discarded by
the TestBed class so that it will not take part in the schedul-
ing process.

5.3. Porting a Real Application to the Grid

This middleware is currently being employed for the exe-
cution of parametric simulations in the field of cardiac elec-
trical activity. These are computationally expensive tasks
with an iterative behaviour that reproduce the electrical phe-
nomena of cardiac tissues under a situation of stimulation
produced by an electrical shock. Previously, a parallel sys-
tem for the simulation of action potential propagation on
cardiac tissues [1], had been developed. The system accel-
erated the execution of a single simulation on a cluster of
PCs.

However, cardiac case studies such as the analysis of is-
chemic situations, a condition that may provoke ventricu-
lar fibrilation, requires the execution of different parametric
simulations where, for example, the degree of the ischemia
is altered. The results of each simulation, typically the evo-
lution of the electrical activity of the cardiac tissue, are anal-
ysed in order to detect how much distorsion is introduced in
the shape of the action potential, the principal indicator of
the electrical activity.

This application has been succesfully ported to a Globus-
based Grid deployment by using the middleware being de-
scribed. First of all, the simulator was properly adapted, us-
ing static-linking techniques as well as disabling the archi-
tecture dependent optimisations in the compilation process,
in order to achieve execution on a broad range of Linux ma-
chines, one of the principal targets on a Globus-based Grid.
A case study which analysed the effects of myocardial is-
chemia was successfully executed using this middleware. It
consisted of 20 independent parametric cardiac simulations,
where the time before the ischemic situation took place in
the heart was the parameter to vary.

A Java application, using the functionality offered by
our middleware was easily developed, creating the Is-
chemiaCaseStudy class, subclassing the GridTaskStudy
class, which defined the collection of GridTasks that had
to be executed. For each GridTask, we specified exe-
cutable files for the Intel IA32 and IA64 architectures, in
order to achieve good performance on Intel Itanium plat-
forms, as well as the command-line arguments, the input
and output archives, the application-dependent check-
point files that the simulator periodically generates and the
rest of capabilities available for a GridTask. A TestBed ob-
ject was instantiated which encapsulated the computa-
tional resources available from universities in Valen-
cia and Madrid (Spain), conforming a Grid deployment
with more than 60 processors.



An instance of the BasicScheduler class was created
to delegate the process of task allocation in the Grid de-
ployment. Using the capabilities of this middleware we no
longer had to use complicated RSL commands in order to
achieve remote task execution. We defined what to execute
and provided all the information required so that the mid-
dleware performed the appropriate actions.

6. Conclusions

This paper has presented a middleware which offers
an object-oriented approach to Grid Computing technolo-
gies, encapsulating part of the functionality provided by the
Globus Toolkit in a set of classes that abstract the process
of remote task execution.

The middleware offers all the necessary capabili-
ties in order to carry out the execution of tasks in remote
resources, performing automatic file staging and paral-
lel execution of MPI-based applications in multiprocessor
Grid nodes. Besides, it provides scheduling functional-
ity, performing a fault-tolerant task allocation, based on
application-dependent checkpointing or restarted execu-
tions, on a Globus Toolkit-based Grid deployment.

This middleware, offered as an API from a Java frame-
work, allows the exploitation of the Globus Toolkit func-
tionality without requiring the knowledge of its provided
services. Therefore, reducing the gap from Grid Comput-
ing technologies to the end user represents a step forward
for the widespread adoption of these computational tech-
niques, what would otherwise be restricted to computer sci-
entists with a knowledge of the Grid middleware services.

Future works involve the extension of the capabilities of
the middleware to target other Globus-based Grids such as
the middleware being developed in the framework of the
european EGEE project, which aims at creating the largest
Grid deployment for scientific users. This would enable to
expand the range of available machines by several orders of
magnitude.

Acknowledgements

The authors wish to thank the financial support received
from the Spanish Ministry of Science and Technology to
develop the project GRID-IT (TIC2003-01318). This work
has been partially supported by the Structural Funds of the
European Regional Development Fund (ERDF).

References

[1] J. M. Alonso, J. M. Ferrero (Jr.), V. Hernández, G. Moltó,
M. Monserrat, and J. Saiz. High Performance Cardiac Tissue
Electrical Activity Simulation on a Parallel Environment. In
Proceedings of the First European HealthGrid Conference,
pages 84–91, January 2003.

[2] J. M. Alonso, V. Hernández, and G. Moltó. Grid Comput-
ing Based Simulations of the Electrical Activity of the Heart.
In L. N. in Computer Science. Springer-Verlag, editor, Com-
putational Science - ICCS 2004, volume 3036. Part I, pages
482–485, 2004.

[3] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller,
K. Seymour, K. Sagi, Z. Shi, and S. Vadhiyar. Users’ Guide
to NetSolve V1.4.1. Innovative Computing Dept. Technical
Report ICL-UT-02-05, University of Tennessee, Knoxville,
TN, June 2002.

[4] I. Foster and C. Kesselman. Globus: A Metacomputing In-
frastructure Toolkit. Intl. J. Supercomputer Applications,
11(2):115–128, 1997.

[5] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. Inter-
national Journal of High Performance Computing Applica-
tions, 15(3):200–222, 2001.

[6] I. Foster and K. Kesselman. The GRID: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1999.

[7] A. Grimshaw and W. Wulf. The Legion Vision of a World-
wide Virtual Computer. Communications of the ACM,
40(1):39–45, 1997.

[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
Performance, Portable, Implementation of the MPI Message
Passing Interface Standard. Parallel Computing, 22(6):789–
828, 1996.

[9] W. D. Gropp and E. Lusk. User’s Guide for MPICH, a
Portable Implementation of MPI. Mathematics and Com-
puter Science Division, Argonne National Laboratory, 1996.

[10] K. Iskra, R. Belleman, G. van Albada, J. Santoso, P. Sloot,
H. Bal, H. Spoelder, and M. Bubak. The Polder Comput-
ing Environment: A System for Interactive Distributed Sim-
ulation. Concurrency and Computation: Practice and Expe-
rience, 14(14):1313–1335, 2002.

[11] A. Jhoney, M. Kuchnal, and S. Venkatakrishnan. Grid Appli-
cation Framework for Java (GAF4J). A Technical Whitepa-
per. http://www.alphaworks.ibm.com/tech/GAF4J.

[12] S. Krishnan and L. V. Kale. Automating Parallel Runtime
Optimizations Using Post-Mortem Analysis. In Interna-
tional Conference on Supercomputing, pages 221–228, 1996.

[13] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mecha-
nisms for High Throughput Computing. SPEEDUP Journal,
11(1), June 1997.

[14] M. Neary, S. Brydon, P. Kmiec, S. Rollins, and P. Cappelo.
Javelin++: Scalability Issues in Global Computing. Concur-
rency: Practice and Experience, 12:727–753, 2001.

[15] J. M. Schopf. Ten Actions When Superscheduling.
SchedWD 8.5, Scheduling Working Group, 2001.

[16] D. Thain, D. Wright, K. Miller, and M. Livny. Condor - A
Distributed Job Scheduler. Beowulf Cluster Computing With
Linux, 2001.

[17] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java
Commodity Grid Kit. Concurrency and Computation: Prac-
tice and Experience, 13(8-9):643–662, 2001.


