
Three-Dimensional Cardiac Electrical Activity

Simulation on Cluster and Grid Platforms ?

J. M. Alonso1, J. M. Ferrero (Jr.)2, V. Hernández1, G. Moltó1, M. Monserrat2,
and J. Saiz2

1 Departamento de Sistemas Informáticos y Computación.
Universidad Politécnica de Valencia. Camino de Vera s/n 46022 Valencia, Spain

{jmalonso,vhernand,gmolto}@dsic.upv.es
Tel. +34963877356, Fax +34963877359

2 Departamento de Ingenieŕıa Electrónica.
Universidad Politécnica de Valencia. Camino de Vera s/n 46022 Valencia, Spain

{cferrero,monserr,jsaiz}@eln.upv.es
Tel. +34963877600, Fax +34963877609

Abstract. Simulation of action potential propagation on cardiac tissues
represents both a computational and memory intensive task. The use of
detailed ionic cellular models, combined with its application into three-
dimensional geometries turn simulation into a problem only affordable,
in reasonable time, with High Performance Computing techniques. This
paper presents a complete and efficient parallel system for the simulation
of the action potential propagation on a three-dimensional parallelepiped
modelization of a ventricular cardiac tissue. This simulator has been
integrated into a Grid Computing system, what allows an increase of
productivity in cardiac case studies by performing multiple concurrent
parallel executions on distributed computational resources of a Grid.

1 Introduction

Cardiac arrhythmias are one of the first causes of mortality in developed coun-
tries. Among them, ventricular tachycardias and ventricular fibrillation stand
out because of triggering sudden cardiac death. In spite of intense research, the
mechanisms of generation, maintenance and termination of these arrhythmias
are not clearly understood.

Recently, mathematical models of the propagation of cardiac electrical acti-
vity are being considered as a powerful and helpful tool to better understand
the mechanisms involved in the development of ventricular arrhythmias. The
electrical activity of cardiac cells is described by detailed models of ion move-
ments through the cell membrane. By combining the mathematical formulation

? The authors wish to thank the financial support received from (1) the Spanish Min-
istry of Science and Technology to develop the projects CAMAEC (TIC2001-2686)
and GRID-IT (TIC2003-01318), and (2) the Universidad Politécnica de Valencia for
the CAMAV project (20020418).

of membrane ion kinetics and the structural complexity of the heart it is possible
to simulate in computers the complex electrical propagation in cardiac tissues.

Earlier studies characterised this tissue as a simple one dimensional fiber. A
more realistic model consisted of a thin sheet of myocardium, where one cell was
connected to its four neighbours in a two-dimensional regular structure. However,
to study the complex dynamics underlying the formation and development of
ventricular tachycardias and ventricular fibrillation, a 3D model of a cardiac
tissue with appropriate dimensions is required. This 3D tissue consists of a very
large number of cardiac cells (typically hundreds of thousands), governed by
time-consuming ionic models which require tenths of state variables for each cell.
Besides, provided that the simulation periods are typically milliseconds and even
seconds, integrated with time steps of a few µs, an action potential propagation
simulation can last for several days or even weeks on a traditional serial platform.

In addition to all the computational requirements for a single simulation,
there are many cardiac case studies that demand the execution of several si-
mulations. For example, testing the effects of new drugs requires the execution
of multiple parametric simulations, where for instance the drug concentration
is changed. As another example, studying the effects of late ischemia, it is nec-
essary to vary the junctional resistances in a determined interval and observe
the evolution of the electrical activity of the tissue under different anisotropy
conditions.

Therefore, to harness all this computational burden, we have integrated two
different technologies. First of all, High Performance Computing techniques of-
fer the possibility to reduce the execution time of a single simulation, as well as
to enable the simulation of larger three-dimensional tissues during longer time
by performing execution on a cluster of PCs. On the other hand, Grid Com-
puting technology emerges as a solution for the collaborative usage of multi-
organisational computational resources [1]. In this work, both techniques have
been integrated into a system that allows concurrent parallel simulations of ac-
tion potential propagation on remote, multi-organisational resources of a Grid
infrastructure, based upon the public domain Globus Toolkit [2] and the com-
mercial InnerGrid [3] middlewares.

The article is structured as follows. Section 2 presents the underlying ma-
thematical model. Then, section 3 explains the parallelisation approach imple-
mented in order to reduce the execution time of a single simulation. Next, sec-
tion 4 discusses the performance results achieved. Later, section 5 describes the
Grid Computing approaches with both middlewares. Section 6 presents a case
study to analyse the Grid advantages and finally section 7 summarizes the main
achievements.

2 Mathematical Model and Geometry

The action potential propagation on a monodomain modelization of a cardiac
tissue can be described by the following partial derivative equation:

∇ · σ∇Vm = Cm ·
∂Vm

∂t
+ Iion + Ist (1)

where σ represents the conductivity tensor, Vm is the membrane potential
of the cells, Cm stands for the membrane capacitance, Ist represents an stimu-
lus current to provoke an action potential and Iion is the sum of ionic currents
traversing the membrane of each cell, computed by the comprehensive and de-
tailed Luo-Rudy Phase II ionic model [4].

The term action potential denotes a transient change of the membrane poten-
tial caused by the electrically excitable heart cells. When a stimulus applied to
the cell leads to depolarization of resting membrane potential up to its threshold,
then an action potential is induced. This response is characterised by an initially
fast rise of the membrane potential followed by a slow recovery to the resting
potential.

In our three-dimensional modelization, the ventricular tissue cardiac cells
are linked with resistances within a parallelepiped geometry. Cardiac muscle
fibers are assumed to have faster longitudinal than transversal or transmural
conductivity, accounting for the anisotropy condition of a ventricular cardiac
tissue.

Equation (1) is spatially discretized using a seven-point finite difference sten-
cil and employing the Crank-Nicholson’s semi-implicit method, what leads to
the following algebraic equation:

GL · V t+1
m = GR · V t

m + It

ion + Ist,∀t = 1, 2, ..., n . (2)

The matrices GL and GR account for the conductivity along the cells of
the tissue. The Iion term encapsulates the cellular ionic model, requiring the
resolution of several time-dependent ordinary differential equations. Thus, the
simulation turns into an iterative process where the membrane potential of the
cells is reconstructed through the resolution of a large sparse linear equation
system for each simulation time step.

Even though there have been several parallel approaches to this computa-
tional problem [5], the good efficiency results achieved on a beowulf cluster,
logically based on a distributed memory paradigm, together with appearing to
be the first simulation system to approach both a parallel and a Grid Computing
philosophy represent a step forward in the study of the electrical activity of the
heart.

3 Parallel Solution

3.1 Parallelization Approach

The cells in our three-dimensional parallelepiped are numbered following a natu-
ral ordering and assigned to the processors by groups with contiguous numeration
indexes of approximately the same size. This way, each processor is in charge of
performing all the calculations corresponding to its part of the tissue.

3.2 Conductivity Matrix Generation

The conductivity matrices GR and GL are generated in parallel with no commu-
nication among the processors. These matrices, together with the ionic (Iion),
the stimulus (Ist) and membrane potential (Vm) vectors, have been partitioned
among the processors following a rowwise block-striped distribution, what over-
comes the memory constraints that may arise when simulating a large three-
dimensional tissue on a single computer, thus enabling the simulation of larger
tissues.

3.3 Cell Membrane Potential Calculation

In order to obtain the membrane potential of the cells, a large sparse linear
equation system must be solved for each simulation time step. The GL coefficient
matrix is symmetric and positive definite, with a size equal to the number of cells
in the tissue. For a 3D tissue of 1 million cardiac cells (100x100x100 cells), the
coefficient matrix has dimension 1 million with 7 million nonzero elements.

Based upon the framework that the PETSc library [6] offers, two different
strategies have been employed in order to solve this large sparse linear equation
system. A parallel direct method, based on a Multifrontal Cholesky Factorization
provided by the MUMPS library [7], integrated within PETSc, and a parallel
iterative method, based on the Preconditioned Conjugate Gradient, have been
tested. For the direct method, a previous step of ordering to reduce the fill-in is
performed with the Multilevel Nested Dissection algorithm implemented in the
METIS library [8].

3.4 Right-Hand Side Vector Generation

The right-hand side vector generation of the linear equation system has been
fully parallelised. First of all, a distributed updating of the state of the cells
and the computation of the I t

ion
term, via the Luo-Rudy Phase II model, take

place. This represents the most time-consuming step of the simulation, where
each processor only updates its local part of the tissue without any inter-process
communication.

Then, a sparse matrix-vector product GR · V t
m, with the data distribution

described in section 3.2, must be carried out in parallel. Communications are
needed in this stage taking into account the sparsity pattern of the GR matrix,
where each processor can demand the membrane potential of cells residing in its
neighbour processors.

Next, the Ist stimulus vector is computed with no communications. Finally,
the right-hand side vector is generated as a sum of three vectors, with no inherent
communication cost.

4 Experimental Results of the Parallel Implementation

The simulations have been run on a cluster of 20 dual-processor 2 GHz Pentium
Xeon with 1 GByte of RAM, interconnected with a 4x5 torus SCI network.

Figure 1 shows the execution time of a single time step, comparing the direct
and the iterative method, when simulating an action potential propagation on a
50x50x50 cells tissue.

Regarding the direct method, the ordering, symbolic and numerical factoriza-
tions cost have been neglected because the coefficient matrix remains constant
through the simulation and thus, they can be reused. Therefore, only the solu-
tion of the triangular systems is included in the cost of the direct method, as the
time of the three steps would vanish in a long simulation. It should be taken into
account that, for very large tissues, the factorization could exceed the available
memory, what represents a handicap which an iterative method does not suffer
from.

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Direct vs Iterative Method (50 cells in each dimension)

Number of processors

C
o

st
 o

f
a

si
m

u
la

ti
o

n
 t

im
es

te
p

 (
se

co
n

d
s)

Direct Method
Iterative Method

Fig. 1. Conjugate Gradient Method versus solution of the triangular systems after a
Multifrontal Cholesky Factorization

The conjugate gradient method with no preconditioning has probed to be
the best iterative solver tested. Besides, as Fig. 1 reflects, it performs twice as
fast as the resolution of the triangular systems. In fact, the coefficient matrix is
well conditioned and convergence is obtained within few iterations with a good
residual tolerance.

Figure 2 shows the speedup and efficiency of the whole simulation system
when simulating an action potential propagation on a 100x100x100 cells cardiac
tissue during 250 ms, using the conjugate gradient method with no precondi-
tioning, and employing up to 32 processors. Simulations have been performed
running two processes per node. It should be pointed out that the simulation
system scales quite linear with the number of processors.

For such a simulation, the execution times are reflected in Table 1. When
using 32 processors, we have reduced a simulation that on a sequential platform
would last more than two days to a couple of hours. Time results for one processor
are not provided due to memory requirements.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35
Speedup of the Simulation System

Number of Processors

S
p

ee
d

u
p

Achieved Speedup
Ideal Speedup

0 5 10 15 20 25 30 35
86

88

90

92

94

96

98

100
Efficiency of the Simulation System

Number of Processors

E
ff

ic
ie

n
cy

 (
%

)

Fig. 2. Scalability of the simulation system

Table 1. Execution times and scalability results for a simulation of action potential
propagation on a 100x100x100 cells tissue during 250 ms (dt = 8 µs), using up to 32
processors

Number of processors Simulation time (hours) Speedup Efficiency

2 34.72 - -
4 17.55 3.95 98.88
8 9.06 7.66 95.79
16 4.75 14.58 91.18
32 2.51 27.63 86.36

5 Grid Computing Approaches

In order to harness all the computational requirements that cardiac case stud-
ies require, which may overwhelm the resources of a single organisation, we have
deployed two middlewares, a commercial solution provided by InnerGrid [3] soft-
ware and the wide adopted public domain industrial standard Globus Toolkit
[2].

Innergrid is a multi-platform software that enables the collective sharing of
computational resources, within an organisation, in order to enlarge the produc-
tivity of parametric sequential jobs. This software offers a fault-tolerance scheme
that guarantees the execution of the tasks as long as there are living nodes in
the Grid. InnerGrid exposes a web interface from which the configuration and
the management of the tasks is performed.

On the other hand, the Globus Toolkit is an open source tool that allows
the generation of inter-organisational Grids within a secure and transparent en-
vironment. It offers basic building tools for data transfer, parallel execution and
integration with remote execution policies, among other features.

5.1 Enabling Portability

A distributed Grid infrastructure is, at first glance, an unknown pool of com-
putational resources. It can not be assumed that the execution hosts will have

available the required dynamic libraries that the simulation system depends on,
neither the computational nor the system libraries dependences. Therefore, the
simulation system should have no requirements of any external library. We have
approached this problem by static linking the application, that is, introducing
the code from all the dynamic libraries into a single executable with no external
library dependences. The MPI message passing layer is also introduced into the
executable by static linking with a standard MPICH [9][10] implementation, spe-
cially configured to disable shared memory communication between processes in
the same node of a cluster, which is known to introduce memory leak problems
because of relying on the System V IPC facilities [9].

In addition, all sort of platform-dependent optimised software should not be
employed, such as the BLAS or LAPACK libraries implementations for a con-
crete architecture, as well as platform-dependent compiler optimization flags,
such as -march or -mcpu which allow the compiler to emit specific code for a
specific platform. This way, the simulation system will not execute any illegal in-
struction on the remote machine. Fortunately, traditional compiler optimization
flags, i.e. -O3, can be used with no risk.

Therefore, it is possible to achieve a self-contained parallel simulation system
that can be executed on different Linux versions. Besides, having integrated
the MPI communication software, it can be executed in parallel on a remote
cluster without depending on the MPI implementation of the execution host.
This has been ensured by parallel simulations in a variety of machines of different
architectures such as Pentium III, Pentium Xeon and even Intel Itanium 2 with
different Linux flavours such as Red Hat Linux Advanced Server, Red Hat 8.0
and Debian GNU/Linux.

This process of adapting the simulation system to the Grid infrastructure re-
sults in a weighty executable file that can be lightened by discarding the symbols
from its object files. Through compression, with a Lempel-Ziv coding scheme,
the executable archive has been reduced, in our case, to a self-contained simu-
lation system of less than 2 MBytes. This self-contained simulator performs on
average 2% slower than the optimised counterpart.

It should be pointed out that such a simulator runs on compatibility mode
on an Intel Itanium 2 (64 bit) platform and thus, it is up to 8 times slower than
on an Intel Pentium Xeon (32 bit). Therefore, we have natively compiled on
the Intel Itanium 2 platform in order to achieve comparable execution times on
both architectures, and to be able to exploit Itanium Grid execution nodes. This
results on two self-contained simulation systems, one for IA-32 and other for
IA-64 platforms, an strategy that could be refined to target more architectures.

5.2 Grid Infrastructure

The available Grid infrastructure, shown in Fig. 3, is composed of local resources,
belonging to our research group, the High Performance Networking and Com-
puting Group (GRyCAP-UPV), and remote resources from the Distributed Sys-
tems Architecture & Security group (ASDS-UCM), at Universidad Complutense
de Madrid. Table 2 summarises the main characteristics of the machines.

Internet

KefrenKefren

R a m s esR a m s es

Hp
 S

ys
te

m
 z

x6
00

0

B a s t etB a s t et

Hp
 S

ys
te

m
 z

x6
00

0

B a s t etB a s t et

hp wor kstat ion xw5000

H y d ru sH y d ru s

hp wor kstat ion xw5000

H y d ru sH y d ru s
hp workstat ion xw4100

C y g nu sC y g nu s

hp workstat ion xw4100

C y g nu sC y g nu s

hp w or kst ati on xw 4000

A q u i l aA q u i l a

hp w or kst ati on xw 4000

A q u i l aA q u i l a

C ep h eu sC ep h eu sC ep h eu sC ep h eu s

GRyCAP-UPV ASDS-UCM

Fig. 3. Computational resources within the Grid infrastructure

The Globus Toolkit version 2.4 [2] has been installed on all the machines of
this testbed. Besides, provided that there is no Itanium version of InnerGrid yet,
and this software is focused for single-organisational resources, this middleware
has only been installed on Ramses and Kefren clusters.

Table 2. Detailed machine characteristics

Machine Processors Memory Job Manager

kefren 10 (2 x Intel Xeon 2.0 Ghz) 1 GByte pbs, fork

ramses 12 (2 x Intel Pentium III 866 Mhz) 512 MBytes pbs, fork

bastet 2 x Itanium 2 (900 Mhz) 4 GBytes fork

hydrus,cygnus 1 x Pentium 4 (2.53 Ghz) 512 MBytes fork

aquila 1 x Pentium III (666 Mhz) 128 MBytes fork

cepheus 1 x Pentium III (666 Mhz) 256 MBytes fork

5.3 Globus Developments

Figure 4 shows a conceptual view of the Grid Computing system developed.
The JobScheduler is the module responsible for the allocation of simulations to
the computational resources. It delegates into a JobSubmitter instance, for each
simulation, which will be in charge of the proper execution of the task in the
resource.

The JobScheduler Module. This module reads an input file with a para-
metric description of the multiple simulations that form a whole case study.
For each simulation, it finds out the best available resource, from a predefined
list of machines, by consulting their number of available nodes on the machine,
via the Monitoring and Discovery Service (MDS) provided by Globus. Clusters

Fig. 4. Scheme of the Grid Computing system developed

with the Globus Resource Allocation Manager (GRAM) Reporter installed re-
port the number of free computing nodes, delegating in the local queue manager
(LoadLeveler, PBS, etc). For workstations or sequential PCs, an estimate of the
CPU usage during the last minute serves as an indicator of the availability of the
resource. This strategy allows to customise a parallel execution to the number
of available nodes in the host.

We have included basic quality of service capabilities by specifying the mini-
mum and maximum number of processors on which a parallel simulation can be
run. These numbers are thought to increase productivity and to ensure execu-
tions with some minimum requirements. Besides, a problem-dependent memory
estimator of each simulation prevents the execution of tasks on machines that
will otherwise become memory exhausted.

Then, this module selects an appropriate executable based on the architec-
ture of the remote machine. The JobScheduler is also responsible for submitting
the unassigned simulations and restarting the failed executions, delegating on an
instance of the JobSubmitter module. If no available resources exist, it periodi-
cally checks their availability to continue submitting pending tasks.

Given that the amount of data generated by the simulator is quite large
(hundreds of MBytes), the GridFTP protocol is employed for all the data trans-
fers as opposed to the GASS (Global Access to Secondary Storage) service. This
ensures high performance reliable transfers for high-bandwidth networks.

The JobSubmitter Module. Each instance of this module is in charge of
the proper execution of a single simulation. First of all, the input files that
the simulation system needs are staged in, via the GridFTP service, to the
execution host. Through the Globus native interface, the remote machine is
queried about its availability to run MPI jobs, so a serial or parallel execution
can be selected. The execution of the simulation is integrated, if configured, with
the queue manager of the remote node (PBS, LoadLeveler, etc), thus respecting
the execution policies of the organisation.

While the simulation is running on the remote resource, a checkpoint job is
periodically submitted by this module, which transfers, if not already done, a
compressed image of the checkpoint data generated by the application to the
local machine. Thus, the latest checkpoint files always will reside in the submis-
sion machine and a failed simulation can be automatically restarted on a new

computational resource. A message digest mechanism ensures that the latest
checkpoint data is only transferred once, thus saving bandwidth.

Once the execution has finished, all the result files are compressed, transferred
back to the submission node and saved in the appropriate local folder created
for this simulation. All the output files in the execution node are deleted, and
finally, the JobSubmitter module annotates whether the simulation has finished
correctly or not. This information will be used by the JobScheduler module to
be able to restart or resume the failed simulations.

5.4 InnerGrid Developments

InnerGrid software has been tested as an alternative, easy-to-use middleware for
Grid execution. InnerGrid automatic file staging capabilities, combined with its
built-in task scheduler, dramatically simplifies the extra development in order
to execute cardiac case studies. We have developed a new module that allows
to specify the memory and disk requirements of each simulation. Besides, this
module specifies the varying parameters of the study.

Then, a task can be seen as the instantiation of a module, and thus, new
tasks, that define the range of variation of the parameters, can be created.

6 Case Study

In order to test the capabilities of the Grid Computing system developed, a real
case study has been executed on the available Grid infrastructure.

6.1 Description

Myocardial ischemia is a condition in which oxygen deprivation to the heart
muscle is accompanied by inadequate removal of metabolites because of reduced
flood. The mechanisms of generation of ventricular tachycardia and ventricular
fibrillation (the most mortal of arrhythmias) can be studied using a model of
a regionally ischemic cardiac tissue (which would result from the occlusion of
a coronary artery) in which certain part of the substrate is ischemic while the
surrounding tissue remains in normal conditions [11].

In the ischemic zone, the values of several electrophysiological parameters
suffer variations through time as ischemia progresses. Extracellular potassium
concentration ([K+]o), in first place, changes from its normal value (5.4 mmol/L)
to a value of 12.5 mmol/L in the first 5 minutes, reaching a plateau for the next
5 minutes of ischemia [12]. In second place, intracellular concentration of ATP
([ATP]i) decreases almost linearly with time from a normal value of around 6.8
mmol/L to 4.6 mmol/L in the first 10 minutes of ischemia, while the intracellular
concentration of ADP ([ADP]i) increases from 15 µmol/L to 100 µmol/L in the
same time interval [12, 13]. Finally, acidosis reduces the maximum conductance
of sodium (INa) and calcium (ICa(L)) currents to around 75% of its normal
values between the fifth and the tenth minute of the ischemic episode [14].

Thus, the four parameters mentioned (which are present in the model of
the cardiac action potential) change differently with time during the first 10
minutes of myocardial ischemia. In the simulations presented here, the short-
term electrical behaviour of the tissue was simulated in different instants of time
after the onset of ischemia. Time was, therefore, the changing parameter of the
set of simulations.

The simulated virtual 3D tissue comprised a central ischemic zone, consis-
ting on a 20x20x20-element cube (which represents 2x2x2 mm) in which [K+]o,
[ATP]i, [ADP]i, INa and ICa(L) changed with time, embedded in a 60x60x60-
element cube. The electrophysiological parameters of the tissue that surrounds
the central ischemic zone is maintained in their normal values.

This case study will analyse the influence in action potential propagation of
different degrees of ischemic conditions that take place from 0 to 10 minutes
from the onset of ischemia. Using a time increment of 0.5 minutes, this results
in 21 independent parametric simulations that can be executed in a Grid infras-
tructure. Each execution will perform a simulation during 80 ms with a time
step of 10 µs. A supra-threshold stimulus will be applied to all the cells at the
bottom plane during the simulation time interval [50, 52] ms. A snapshot of the
membrane potential of the tissue cells will be stored every 1 ms during the inter-
val [40, 80] ms, resulting in a total 68 MBytes of raw data. Besides, a total 180
MBytes of RAM is required for the execution of each simulation on a sequential
platform.

6.2 Execution Results

For the Globus-based Grid Computing system designed, Table 3 summarises the
task distribution in the Grid. As maximum, parallel executions have been limited
to a quarter the total available processors of the remote resource, implementing a
polite policy that allows multiple concurrent simulations. The minimum number
of processors where set to one, thus allowing serial executions. In the table, an
entry like 3 (5 p.) indicates that three simulations were performed with five
processors each one.

The machines Bastet and Cepheus do not appear in the table because they
were heavily overloaded during the test and thus, the scheduler never chose them.
Besides, the machine Aquila did not have enough RAM to host a simulation and
thus, the scheduler did not considered it for execution.

Table 3. Distribution of the simulations in the testbed, for each machine. The number
in parentheses indicates the number of processors involved in the execution

Machine Simulations Machine Simulations

Kefren 4 (4 p.), 3 (3 p.), 2 (2 p.) 2 (1 p.) Hydrus 2 (1 p.)

Ramses 1 (6 p.), 3 (5 p.), 1 (4 p.), 1 (1 p.) Cygnus 2 (1 p.)

The execution of the whole case study lasted for 10.27 hours in the Grid
deployment. It can be seen that the scheduler dynamically assigned to each
machine a number of simulations proportional to its computational power, thus
resulting in a scheduling policy that takes into account Grid computers with
little computational resources.

The execution of the case study via the InnerGrid middleware lasted for 22.57
hours, distributing the tasks among the nodes of the two clusters. Executing the
same case study in a traditional sequential manner in one node of the cluster
Kefren required 81.1 hours. Finally, performing a High Performance Computing
approach, executing each simulation with 4 processors in the same cluster (thus
allowing two concurrent executions), required a total 11.9 hours.

While InnerGrid seems more appropriate to take advantage of idle computers
in single-organisational Grids, the Globus Toolkit is more focused on running
on dedicated resources from different organisations. Therefore, a Globus-based
solution is much more appropriate for the cardiac electrical activity simulation
problem, as it offers the possibility to access distant computational resources in
a transparent manner.

6.3 Case Study Results

Figure 5 summarises the results obtained in the case study. It represents the
membrane potential of the cells of a vertical tissue slab at the center of the cube,
for three different ischemic conditions and at four simulation time instants. Is-
chemic conditions at 0 minutes introduce no perturbation in action potential
propagation, while more severe degrees of ischemia provoke a slowdown in prop-
agation within the tissue area affected.

Figure 6 offers a three-dimensional representation of the membrane potential
of all the cells of the tissue at simulation time 59 ms, for three different degrees
of ischemia. Again, it can be seen that the ischemic zone reduces the velocity of
action potential propagation, which is more severe as the ischemia progresses in
time.

7 Conclusions

This paper presents an efficient parallel implementation for the simulation of
the action potential propagation on a three-dimensional monodomain ventricu-
lar cardiac tissue. The use of a High Performance Computing-based model has
reduced the simulation times from days to few hours. Besides, larger 3D tissues
can be simulated during longer time by only employing more processors, thus
enlarging the global available memory.

In addition, to harness resource-starved cardiac case studies, a Globus-based
Grid Computing system has been developed, what allows the integration of MPI
parallel executions on multiprocessor machines within a Grid infrastructure. The
system features important capabilities such as self-contained executable, depen-
dencies migration, data compression, cross-linux portability, as well as the inte-
gration of parallel executions in the Grid.

55.5 ms.

0.
0

m
in

.

59.0 ms.

62.5 ms.

65.0 ms.

2.
5

m
in

.

10
.0

 m
in

.

Fig. 5. Membrane potential at four simulation time instants under three degrees of
ischemia. Propagation takes place from left to right. Colourbar is the same as shown
in Fig. 6

(a) Ischemia after 0
min.

(b) Ischemia after 2.5
min.

(c) Ischemia after 10
min.

Fig. 6. Three-dimensional representation of the membrane potential of the tissue at
simulation time instant 59 (ms.)

Besides, InnerGrid commercial product has been tested as an alternative
middleware for creating single-organisational Grids. As part of our work, a new
InnerGrid module has been developed which allows varying several parameters
and managing the execution of the parametric tasks from a web environment.

As High Performance Computing techniques are responsible for speedup, Grid
Computing is responsible for productivity. The integration of both computational
strategies has represented to be a key combination in order to enhance produc-
tivity when executing cardiac case studies.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International Journal of High Performance Computing
Applications 15 (2001) 200–222

2. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Intl.
J. Supercomputer Applications 11 (1997) 115–128

3. GridSystems S.A.: InnerGrid Nitya Technical Specifications. (2003)
4. Luo, C.H., Rudy, Y.: A Dynamic Model of the Cardiac Ventricular Action Po-

tential. I Simulations of Ionic Currents and Concentration Changes. Circulation
Research 74 (1994) 1071–1096

5. Vigmond, E.J., Aguel, F., Trayanova, N.A.: Computational Techniques for Solving
the Bidomain Equations in Three Dimensions. IEEE Transactions on Biomedical
Engineering 49 (2002) 1260–1269

6. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M., McInnes, L.C.,
Smith, B.F., Zhang, H.: PETSc User Manual. Technical Report ANL-95/11 -
Revision 2.1.5, Argonne National Laboratory (2002)

7. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: MUltifrontal Massively
Parallel Solver (MUMPS Version 4.3) User’s Guide. (2003)

8. Karypis, G., Kumar, V.: METIS. A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes and Computing Fill-reducing Orderings of Sparse Ma-
trices. University of Minnesota. Version 4.0. (1998)

9. Gropp, W.D., Lusk, E.: User’s Guide for MPICH, a Portable Implementation of
MPI. Mathematics and Computer Science Division, Argonne National Laboratory.
(1996)

10. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A High-Performance, Portable, Im-
plementation of the MPI Message Passing Interface Standard. Parallel Computing
22 (1996) 789–828

11. Coronel, R.: Heterogeneity in Extracellular Potassium Concentration During Early
Myocardial Ischaemia and Reperfusion: Implications for Arrhythmogenesis. Car-
diovasc. Res. 28 (1994) 770–777

12. Weiss, J.N., Venkatesh, N., Lamp, S.T.: ATP-sensitive k+ Channels and Cellular
k+ Loss in Hypoxic and Ischaemic Mammalian Ventricle. J. Physiol. 447 (1994)
649–673

13. Ferrero (Jr.), J.M., Saiz, J., Ferrero, J.M., Thakor, N.: Simulation of Action Po-
tentials from Metabolically Impaired Cardiac Myocytes. Role of ATP-sensitive k+

Current. Circ. Res. 79 (1996) 208–221
14. Yatani, A., Brown, A.M., Akaike, N.: Effects of Extracellular pH on Sodium Cur-

rent in Isolated, Single Rat Ventricular Cells. J. Membr. Biol. 78 (1984) 163–168

