
A Self-managed Mesos Cluster for Data Analytics with QoS
Guarantees

Sergio López-Hugueta,∗, Alfonso Péreza, Amanda Calatravaa, Carlos de Alfonsoa,
Miguel Caballera, Germán Moltóa, Ignacio Blanquera

aInstituto de Instrumentación para Imagen Molecular (I3M)
Centro mixto CSIC - Universitat Politècnica de València

Camino de Vera s/n, 46022, Valencia

Abstract

This article describes the development of an automated configuration of a software plat-
form for Data Analytics that supports horizontal and vertical elasticity to guarantee
meeting a specific deadline. It specifies all the components, software dependencies and
configurations required to build up the cluster, and analyses the deployment times of dif-
ferent instances, as well as the horizontal and vertical elasticity. The approach followed
builds up self-managed hybrid clusters that can deal with different workloads and net-
work requirements. The article describes the structure of the recipes, points out to public
repositories where the code is available and discusses the limitations of the approach as
well as the results of several experiments.

Keywords: Cloud Orchestration, Elasticity, Quality of Service, Data Analytics, Hybrid
Clusters

1. Introduction

The need for data analytics platforms has risen in the recent years, in parallel to the
increase in the computing and data storage requirements, in order to tackle the challenges
of data processing. Configuring and operating such platforms is not straightforward and
requires non-trivial system administration skills. Data analytics platforms involve multi-
ple components and resources, which must be appropriately linked and cross-configured.
In addition, dealing with unpredictable workloads is an operationally complex task that
requires dynamically readjusting the resources and reconfiguring them on the fly.

In this way, this article presents a set of tools and configuration recipes for deploying
a virtual self-managed cluster of computing nodes. The cluster can scale horizontally (in
and out), by adding and removing computing resources and reconfiguring them according
to the workload, and vertically (up and down), by readjusting the assigned resources to
individual jobs dynamically to satisfy a given Quality of Service (QoS).

∗Corresponding author: Tel. +34963877356
Email addresses: serlohu@upv.es (Sergio López-Huguet), alpegon3@upv.es (Alfonso Pérez),

amcaar@i3m.upv.es (Amanda Calatrava), calfonso@upv.es (Carlos de Alfonso), micafer1@upv.es
(Miguel Caballer), gmolto@dsic.upv.es (Germán Moltó), iblanque@dsic.upv.es (Ignacio Blanquer)

Preprint submitted to Elsevier February 25, 2019



This paper introduces the problem, the software architecture, the automatic deploy-
ment tools and recipes, the elasticity mechanism and the experiments, discussing the
results obtained. The reminder of the paper is structured as follows. First, section 2
examines the requirements of a data analytics platform and revises the state of the art
related to the work presented in the paper. Then, section 3 presents the proposed ar-
chitecture of the platform used to perform data analytics and the mechanisms involved
in the elasticity management. Also, a brief analysis of each component involved in the
architecture is presented in this section. Section 4 describes the most relevant metrics
obtained from the deployment of the self-managed virtual cluster and the execution of
several test cases to validate the horizontal and vertical elasticity. Section 5 discusses
the main developments and improvements presented in this work in comparison with the
state of the art. Finally, section 6 summarizes the main results, concludes the paper and
points to future work.

2. Requirements & State of the art

This section presents the requirements and reviews the state of the art of the two main
areas of research that constitute the basis of this work (cloud orchestration and elastic
clusters) as well as other cloud-based processing software architectures that address the
requirements identified.

2.1. Requirements

In this work, we consider three types of use cases that address three main problems
in data analytics [1]. The first use case is data acquisition, which deals with the periodic
acquisition of external datasets and the integration with the previously acquired data.
The second use case is the development of descriptive models, aiming at deriving addi-
tional information and knowledge from raw data. Finally, the third use case concerns
predictive models, which build up models for estimating specific variables under new
scenarios.

From this analysis, we identified the following technical requirements concerning pro-
cessing:

1. Running unrestricted batch jobs. This requirement refers to the execution of batch
jobs that do not have any QoS guarantee to meet, such as long-running jobs that
are not linked to a production service.

2. Running periodic batch jobs. Periodic workloads, such as daily jobs that retrieve
the updated data from a public data source, must be regularly executed by the
platform.

3. Running batch jobs with QoS restrictions. Tracking the job progress is a complex
task that is limited to jobs that use a specific execution framework that supports it
(e.g. Spark, Marathon, etc.). We consider in this requirement the guarantee that
a given amount of CPU time is assigned to a running job in a given time frame.

4. Self-adapting elasticity. This requirement is strongly linked to requirement 3. The
platform should provide enough resources to deal with new jobs and to ensure that
jobs with QoS are properly executed.

2



5. Running parallel Spark jobs. The platform must support the execution of Spark
jobs across several nodes in parallel, providing the right amount of resources to
each job.

Considering these requirements, we focus on analyzing the available technologies for
cloud orchestration, elasticity and cloud services for data analytics.

2.2. Cloud Orchestration

Cloud orchestration is the process needed to automate the entire lifecycle of a cloud
application. It implies the deployment of all the computational resources, the installation
and configuration of the different component parts of the application and their correct
interconnection.

To describe cloud applications, the Topology and Orchestration Specification for
Cloud Applications (TOSCA) [2] open standard has been defined by the OASIS con-
sortium1. It defines the interoperable description of services and applications to be
run on the cloud, including their components, relationships, dependencies, requirements,
and capabilities; thereby enabling portability and automated management across cloud
providers regardless of the underlying platform or infrastructure.

By using TOSCA to model the user’s complex application architectures it is pos-
sible to obtain repeatable and deterministic deployments. Users can port their virtual
infrastructures among cloud providers obtaining the same expected topology.

Several open source orchestration tools and services exist in the market, but most of
them come with the limitation of only supporting their own Cloud Management Platforms
(CMPs) because they are developed within those project ecosystems. As an example we
can cite some of them, such as OpenStack Heat [3] and its YAML-based Domain Specific
Language (DSL) called Heat Orchestration Template (HOT) [4], native to OpenStack [5].
OpenNebula [6] also provides its own JSON-based multi-tier Cloud application orches-
tration called OneFlow [7]. Eucalyptus [8] supports orchestration via its implementation
of the Amazon Web Services (AWS) CloudFormation [9] web service.

In case of other general orchestration tools, we can find Cloudify [10], which provides
TOSCA-based orchestration across different cloud providers. Unfortunately Cloudify is
not currently able to deploy on OpenNebula sites, one of the main CMPs used within
current science clouds. Apache ARIA [11] is a very recent project, not mature enough
and also without support for OpenNebula. Project CELAR [12] uses an old XML-based
TOSCA version with SlipStream [13] as the orchestration layer (this project has no ac-
tivity in the last years and SlipStream has the limitation of being open-core, thus not
supporting commercial providers in the open-source version). CompatibleOne [14] pro-
vided orchestration capabilities based on the Open Cloud Computing Interface (OCCI).
However, the project has not been active in the last years. OpenTOSCA[15] currently
only supports OpenStack and the AWS EC2 [16] service.

Our previous work in the field is the Infrastructure Manager (IM) [17], a cloud orches-
tration runtime that deploys complex and customized virtual infrastructures on multiple
back-ends. It supports the TOSCA Simple Profile in YAML version of the standard. It
is compatible with a wide variety of Cloud back-ends, both on-premises CMP and public

1https://www.oasis-open.org/

3



Cloud providers, thus making user applications cloud agnostic. In addition, it features
DevOps capabilities, based on Ansible2 to enable the installation and configuration of all
the user required applications providing the user with a fully functional infrastructure.

2.3. Cloud-based Data analytics

In recent years, the Data Deluge [18] made it possible to enter an era in which
distributed computing is now the new normal, paving the way for Big Data, a term coined
for scenarios in which the amount of data (or the speed at which data is generated) can
no longer be processed in a feasible time in a single computer. Google, being a large-
scale data-oriented enterprise, faced the challenges that involved the processing of huge
datasets and, in 2008 unveiled the MapReduce programming model [19], together with
an associated implementation for processing large datasets. This was the seed that made
possible the Apache Hadoop project [20], an open-source software for reliable, scalable,
distributed computing that ended up forming the kernel (as is the case of the Hadoop
Distributed File System) of a huge ecosystem of tools aimed at solving Big Data problems.
This is the case of Hive [21], a data warehouse software for querying and managing large
datasets in a distributed storage or Pig [22], a platform for analyzing large datasets via
a high-level language for expressing data analysis programs. Other platforms such as
Spark [23], due to its speed related to in-memory processing, are also fundamental for
many Big Data scenarios.

In addition, the trend towards lightweight virtualization allowed container technol-
ogy to considerably evolve, exemplified by the recent advances in Linux containers (LXC)
[24] and Docker [25], and the HPC-specific Singularity [26]. LXC enables to run multi-
ple isolated processes in one host without the overhead caused by the hypervisor layer
introduced by Virtual machines (VMs) in CPU, memory and storage [27], as if it was
a whole new machine. Docker is oriented to applications, and the underlying idea is
to run a single application that is isolated and with a tailored environment. Moreover,
the ecosystem of tools around Docker has exploded in the last years, with contributions
in many areas such as Continuous Integration/Continuous Delivery (CI/CD), applica-
tion packaging and container orchestration tools. Indeed, there are many applications to
manage the execution of containers across multiple hosts (e.g. Kubernetes [28] or Deis
[29]) but one of the most advanced tools for computationally challenging problems is
Apache Mesos [30], a software that abstracts CPU, memory, storage and other compute
resources away from machines to enable fault-tolerant distributed systems to be built.
Moreover, Mesos supports several frameworks suitable for resource-intensive computing,
as is the case of Chronos [31], for the job fault-tolerant executions, and Marathon [32],
for the execution of long-running services. Finally, Singularity is an alternative to Docker
that has been developed in the HPC context. Its growing popularity is due to the ability
to create containers that run in the user space, and are integrated with the underlying
system by mapping the system user ids and important folders (such as home). In order
to foster its usage, it is able to get images in Docker format, among others.

2.4. Elastic Clusters

Elasticity is the property of an infrastructure to dynamically adapt itself to the current
or estimated workload. This is manifested in cloud infrastructures at several levels. In the

2https://www.ansible.com/

4



lower level of on-premises clouds, elasticity represents the ability to dynamically power
on and off the nodes of the underlying hardware in order to provision and relinquish
physical computing hardware on which the virtualized infrastructure will run. At the
level of IaaS (Infrastructure as a Service), these techniques should be integrated within
the Cloud Management Frameworks (CMF) so that requests of virtual infrastructure
deployment trigger, if necessary, the powering of physical nodes in order to accommodate
the virtual infrastructure that will be executed on top of the physical infrastructure.
Horizontal elasticity is the ability to dynamically deploy and terminate nodes within a
virtual infrastructure according to a set of elasticity rules (scale in/scale out) and this
is exemplified by services such as Auto-Scaling [33] for AWS or Heat/AutoScaling for
OpenStack, to name a few.

In the literature, we can find several research works regarding horizontal elasticity in
virtual clusters. In [34] and [35], the Nimbus toolkit is employed to implement a tool to
create elastic sites, so that physical clusters based on a Local Resource Management Sys-
tem (LRMS) such as Torque are supplemented with computational resources provisioned
from AWS according to different policies.

A widely used tool is StarCluster [36] which enables the creation of virtual clusters in
ÅWS, that satisfy a user-defined list of required applications (Sun Grid Engine, Open-
MPI, NFS, etc.). The Virtual Machines (VMs) are based on predefined Amazon Machine
Images (AMI). In addition, a plugin named Elastic Load Balancer [37] is available to add
and terminate new cluster nodes taking into account the number of jobs queued up at
the LRMS. The main limitation of this plugin is that it requires a permanent connection
to the cloud infrastructure from the StarCluster installation in the user’s computer in
order to deploy and terminate the VMs.

In the last years, horizontal elasticity has also been introduced in well-known Big
Data frameworks. This is the case presented in [38], where the authors propose a system
called BBQ, which is able to provide elasticity to Hadoop MapReduce. It works with
AWS and needs a specific modified implementation of Hadoop to properly work with
BBQ, thus, limiting the ability to choose a desired configuration for the users.

Our previous work in the field is Elastic Cloud Computing Cluster (EC3) [39], a
tool that creates elastic virtual clusters from computational resources provisioned from
IaaS clouds. These clusters scale out to a larger number of nodes on demand, up to a
maximum size specified by the user. Whenever idle resources are detected, the clusters
dynamically and automatically scale in, according to some simple policies, in order to
minimise the costs in the case of using a public cloud provider.

To dynamically manage the clusters, EC3 relies on the CLUster Energy Saving
(CLUES)[40] tool, an elasticity manager. CLUES has been already integrated in public
and on-premises cloud environments in order to deploy/destroy VMs and it is able to
automatically integrate the VMs in the LRMS according to the workload of the cluster.

Horizontal elasticity is appropriate when the problems solved are inherently parallel.
In cases where the problems cannot benefit from an increase in the amount of resources,
another elasticity strategy must be considered. Vertical elasticity is the ability to dy-
namically resize the resources of the nodes, such as the number of CPUs, the share of
CPU or memory, according to a set of elasticity rules (scale up or scale down).

Most of the hypervisors and cloud IaaS support vertical elasticity. This is the case
of OpenNebula and OpenStack, which offer functions to resize the memory or change
the number of CPUs of stopped VMs. Nevertheless, dynamic resizing of VMs is not

5



supported because it is necessary to act both at the level of the hypervisor and at the
level of the VM’s operating system.

There are techniques for providing vertical elasticity leveraging the CPU CAP (the
maximum amount of CPU resources a VM can use) and the physical memory allocated
by the hypervisor. This strategy only acts at the level of the hypervisor and, thus,
it has a better approach than the strategy described above. This way, the internal
configuration of the VM remains the same, but it is provided with a higher share of
physical resources, so the virtual CPU can run faster or slower, and have more RAM
mapped on physical RAM. For example, the work by Shen et al. [41] describes an
approach named CloudScale to automate fine-grained elastic resource scaling for multi-
tenant cloud computing infrastructures. Other examples of these techniques are described
in [42]. It should be pointed that, in this example, the system needs access to the private
network to connect with the worker nodes and root privileges for leveraging the CPU
CAP and the memory RAM.

Vertical memory elasticity is interesting for some problems (e.g. when the consumed
memory grows over time). For this purpose, the virtualization hypervisors provide two
mechanisms: add or remove memory, also named hot memory plugging, and memory
ballooning ([43], [44]). In any case, the allocation of resources with the aforementioned
techniques affects all of the tasks running in the VM.

Providing vertical elasticity to guarantee QoS restrictions requires a more fine-grained
approach than the techniques described above because it is necessary to resize the as-
signed resource for a specific job (not all the running jobs of the VM). For this purpose,
it is needed to act at the level of processes of the operating system of the VM.

Nowadays, Docker containers are becoming the new platform for packaging, distribu-
tion and deployment of applications in Cloud Computing. Vertical elasticity in Docker
containers has few works in the literature compared those available for VMs. The work
by Al-Dhuraibi et al. [45] presents a mechanism that modifies the allocated resources
(CPU time, vCPU cores and memory) of a Docker container according to the workload
demand. This mechanism monitors the CPU time, CPU utilization, vCPUs and memory
utilization to take the elasticity decisions and implements these decisions modifying the
cgroups pseudofiles of the Docker container directly.

The job execution capabilities of the Mesos cluster are provided by their frameworks
and, commonly, these jobs are encapsulated in Docker containers or Mesos native con-
tainers, which are processes of the VM. In case of Mesos, the level of processes of the
operating system of the VM can be seen as the jobs of frameworks that support vertical
elasticity (for example, Marathon).

Some techniques modify the assigned resources for Apache Mesos execution frame-
works. One example of this approach is [46], a Mesos executing and monitoring frame-
work called Makeflow is designed to adjust the number of vCPUs of a series of indepen-
dent jobs according to their actual performance. The work [47] proposes a mechanism
to provide both horizontal and vertical elasticity according to the share of CPU and
memory used. This technique considers that the jobs do not store a persistent state and,
thus, they can be easily restarted.

6



EC3 Client

Ask for a 
virtual 

appliance

Administrator user

Infrastructure 
Manager (IM)

contextualizer
Deploy and 

Contextualize 
infrastructure Horizontal elasticity

Monasca

Openstack
Keystone

Public 
network

Private network

InfluxDB
Apache
Storm

Grafana

Monasca
Agent

Hadoop
DataNode

Monasca
Agent

Hadoop
DataNode

Monasca
Agent

Hadoop
DataNode

Marathon Chronos

Weave

Docker

Hadoop NameNode

NFS service

CLUES IM

Mesos Agent

NFS Spark

Mesos Agent

CRIU

Task 1 Task 2

Task 3 Task 4

Docker

CRIU

Task 1 Task 2

Task 3 Task 4

Docker

Overlay network

OpenNebula Cloud

Mesos Master

Working NodeFront-end Working Node

Kafka

Monasca API/ persister

Monasca Agent

NFS Spark

Monasca Agent

Zookeeper service

Spark

Marathon Exec. Marathon Exec.

Weave Weave

Figure 1: Architecture of the required infrastructure to perform data analytics.

3. Architecture Design

The architecture of the infrastructure must enable the execution of a wide variety of
workloads, that range from parallel to high-throughput jobs, including short jobs and big
data workflows. This section provides information on the proposed architecture for the
deployment and the automatic management of both horizontal and vertical elasticity at
the level of the framework.

3.1. General Architecture

The proposed architecture is depicted in Figure 1. In the scenario, the administrator
user is in charge of deploying the virtual infrastructure by using the EC3 client. EC3
interacts with the Infrastructure Manager (IM), requesting the needed resources consid-
ering the characteristics of the cluster together with its specific configuration. With these
data, the IM interacts with the selected cloud provider, requests the VMs that compose
the cluster and configures them. Notice that, by using IM, the cluster can be deployed
on different on-premises and public clouds. In particular, at least the following providers
can be used: OpenNebula, OpenStack, Amazon Web Services, Google Cloud Platform
[48] and Microsoft Azure [49].

The infrastructure has three main types of nodes:

• The front-end node, that is the master of the cluster. It contains the Mesos master
instance together with the Marathon and Chronos frameworks, and also including
Docker, Hadoop, Spark and NFS. The front-end also has an instance of the IM that,
together with CLUES, is in charge of managing the elasticity of the cluster. This
node is also in charge of offering an interface for end users of the infrastructure.

7



• The Monasca [50] nodes, that include the Openstack Monasca server instance, that
also have Apache Kafka [51], Apache Storm [52], InfluxDB [53] and Grafana [54];
three Monasca agents also act as Hadoop datanodes. The architecture also includes
a VM that provides the keystone [55] server needed by Monasca. It is not running
inside the Monasca server to avoid excessive resource consumption.

• The working nodes, that are the elastic part of the infrastructure. These nodes
are deployed on-demand when triggered by CLUES, that monitors the Mesos and
Marathon queues and reactively provides the needed Mesos agents. These working
nodes also contain Docker and CRIU [56], to have the ability to run jobs inside
containers with checkpointing capabilities. NFS is employed to provide a shared file
system across the nodes to manage the checkpointed containers. A Spark daemon
is also running on each working node and all of them are monitored by Monasca.

Regarding networking, all the components of the infrastructure are interconnected by
a private network. Moreover, a dedicated overlay network, managed by Weave [57], is
created to interconnect the containers running on different hosts. The front-end is also
connected to this overlay network, so that applications running in the containers can
interact with the services using the overlay network. This guarantees a bi-directional
communication on a wide range of ports without exposing the jobs to the Internet. The
front-end of the cluster is the only component that can be accessed via a public net-
work, even though the whole infrastructure has access to the Internet via NAT (Network
Address Translation).

3.2. Vertical scaling

This section describes the architecture of the developed mechanism for providing ver-
tical elasticity to the batch jobs with QoS restriction. As it is described in section 2, the
developed mechanism aims to guarantee that the desired amount of CPU time is assigned
to a running job in the given time frame of the targeted QoS. These jobs are embedded
in Docker containers and are executed using the Marathon framework of Mesos. The
architecture is composed of three main components: Launcher, Executor and Supervi-
sor. This architecture is depicted in Figure 2, where the green dashed lines represent
the interactions between components and the other services (Marathon, Monasca and
Keystone).

Vertical elasticity is the ability to resize the assigned resources of a job in order to
meet a targeted QoS. In this work, the mechanism varies the assigned share of CPU to the
job. Resizing jobs in Marathon requires updating the job specification in the Marathon
scheduler via its REST API. Once the job specification is changed, Marathon removes
the older version of the job without preserving the execution state. Then, it runs the job
with the new resource reservation. Furthermore, it should be pointed out that the new
job execution can run on another working node.

Therefore, everytime a job is resized its progress state is lost. To avoid this problem,
this work uses CRIU [56], which is a project for the Linux operating system that allows
to freeze a running application as a collection of files called checkpoint. Checkpointing
allows users to stop and resume the job at the same execution point as it was when the
checkpoint was made, even in another machine. As Marathon cannot freeze and resume
the Docker container using CRIU, it is required that the developed mechanism manages
the Docker container execution.

8



The Launcher is a command-line tool in charge of the submission of the job. Users
run the Launcher specifying the job in JSON format with the QoS information, the
parameters to connect and configure the Supervisor, and the credentials of the Marathon
scheduler. The QoS information is composed of the number of seconds of CPU time that
the mechanism should assign for completing the job, the over-progress percentage, and
the time frame (in seconds) for executing the job. Users can configure, with the parameter
called over-progress percentage, the overprogress threshold used by the Supervisor in
Algorithm 1 for computing the job performance state .

First, the Launcher assigns to each job a unique identifier (UUID). If the Launcher
submits to Marathon the job specification provided by the user, then the Marathon
executor will manage the Docker container. As the mechanism must manage the Docker
container for using the checkpointing feature, an additional component, the Executor, is
required. To allow the Executor to manage the Docker container, the Launcher creates
a new job specification based on the job specification provided by the user. Tasks in
Mesos are isolated because they are executed embedded into Docker containers or Mesos
native containers. Thus, the Marathon executor runs the new job (the Executor) created
by the Launcher isolated by a Mesos native container. Once the new job specification
is generated, the Launcher submits it via a REST API call to the Marathon scheduler.
Finally, the Launcher sends a message with information about the job to the Supervisor.
This information is formed by the job name, the job UUID, the maximum overprogress
percentage, the number of seconds of CPU time that the mechanism should allocate for
completing the job, and the time frame for executing the job in seconds.

The Executor performs several tasks. First, it prepares the worker node to enable
the Docker container monitoring using a modified Docker plug-in of the Monasca Agent.
Afterwards, it checks for the existence of a previous checkpoint of the job in the directory
shared by all of the worker nodes. If the Executor does not find a checkpoint, then it
starts the Docker container. Once the Docker container is running, the Executor notifies
via a REST API call to the Supervisor. Then, it waits until the Docker execution
is done or until capture the termination signal sent by the Marathon executor when
a scaling decision is implemented by the Supervisor. If the Docker container ends its
execution, the Executor cleans the worker node and the shared directory, and notifies
the end of the job execution via a REST call to the Supervisor. If the Executor captures
a termination signal, then it means that the Docker container will be resized. Thus, the
Executor performs the checkpoint of the execution and stores it into the directory shared
by all the worker nodes. Once the Marathon executor runs the Executor with the new
allocated resources, the Executor resume the Docker container execution from the stored
checkpoint.

The Supervisor is a REST service in charge of the decision making. When the Ex-
ecutor notifies the start of the job execution to the Supervisor, it begins to periodically
monitor the job to decide if scaling up or down is needed. There are three possible job
performance states: overprogress, underprogress or ontime. If the job state is overprogress
or underprogress, then the Supervisor scales, respectively, down or up the assigned re-
sources to the job. The Supervisor implements the scaling decision re-submitting the
job specification (which is available on the Marathon scheduler) with the new resource
reservation by a REST API call to the Marathon scheduler. The amount of share of
CPU that is incremented or decremented is set at the startup of the Supervisor. For this
work, empirical observation indicates that 0.4 offers good results. Once the new resource

9



assignation arrives to the Marathon scheduler, it notifies the Marathon executor to send
the termination signal to the old version of the job, which is captured by the Executor
to create and store the checkpoint.

The Supervisor uses the Algorithm 1 to determine the job performance state. This
algorithm has three input values: the performance, the overprogress, and underprogress
thresholds. The performance is obtained using the Equation 2. The Equation 2 uses the
CPU time consumed cputimecurrent(t) and the expected CPU time consumed (cputimedesired(t))
on a certain time t (both expressed in seconds). The Supervisor estimates the CPU time
consumed at certain time t, cputimecurrent(t), requesting via the REST API the gath-
ered information about the Docker container to the Monasca. The information obtained
by the Supervisor from Monasca is composed of two metrics (container.cpu.user time
and container.cpu.system time). These values correspond to the total user and system
clock ticks consumed by the container in the node where it is running. These values are
transformed into seconds, dividing them by the clock ticks per second constant of the
system. The addition between these values is the cputimecurrent(t). In addition, the
Supervisor also estimates the CPU time that the job would have to consume at certain
time t, cputimedesired(t), by means of Equation 1.

cputimedesired(t) =

{
(tcurrent−tstart)∗secondsjob

secondstimeframe
if tcurrent ≤ tstart + secondstimeframe

secondsjob otherwise

(1)
where tcurrent is the current time in timestamp format, tstart is the start time of the
execution in timestamp format (obtained when the Executors notifies the start of the
execution), secondsjob is the number of seconds of CPU time that the mechanism should
allocate for completing the job (sent by the Launcher), and secondstimeframe is the
available time interval to complete the execution of the job (sent by the Launcher).

The underprogress threshold is 10% by default, so the value used in Algorithm 1 is
0.9. The overprogress threshold is customizable by the user because this value is sent
by the Launcher. The value used in Algorithm 1 is 1.0 plus the overprogress threshold
provided by the user to the Launcher.

performance(t) =
cputimecurrent(t)

cputimedesired(t)
(2)

3.3. Description of the components

As shown in the figures above, the proposed architecture is composed of several
components. Most of them are well-known software packages and frameworks while
others are software tools developed by our research group.

All these components require different configuration files and installation steps, which
are customized for the different underlying operating systems supported by the VMs.
Therefore, this involves a large number of configuration files. Therefore, to ease the de-
ployment and installation process, Ansible roles and playbooks were used for the sake of
maintainability and high reusability. These are configuration files that describe the pro-
cess of installation, configuration and integration with the selected architecture. Further-
more, to keep the component recipes as generic as possible (to further ease maintenance
and reuse), such recipes were coded according to the following principles:

10



Obtains metrics for calculate 
current CPU time consumed

UserUser

JSON file JSON file 

Launcher

Front-endFront-end

NFS service

Marathon Scheduler

Supervisor

Mesos Master

JSON file JSON file 

Provides the job specification and 
their QoS restrictions, and 

parameters to configure the 
Supervisor

Public 
network

Sends relevant information 
about the job and their QoS 

restrictions and the 
overprogress threshold

Sends the 
new JSON 
file with 
job spec

JSON file JSON file 

Sends the job 
specification with new 

resource allocation

Working Node

NFS 

Marathon ExecutorMesos Slave

Obtains, stores or 
removes the 
checkpoints 

Private network

Runs jobs inside Mesos native 
containers

Mesos native container 1

Executor of Task 1

Docker container

Task 1

Docker container

Task 1

Monasca Agent

MonascaMonasca

Monitors the Docker running containers 
and sends the collected data to Monasca

Notifies 
start and 

end of 
execution

OpenStack
KeyStone

OpenStack
KeyStone

Obtains the key for 
querying Monasca 

Notifies 
start and 

end of 
execution

Assigns a UUID to the 
job and modifies the 

job specification

Computes the job 
performance state

Manages the job 
execution (starts, 
resume or stop)

Mesos native container 2

Executor of Task 2

Manages the job 
execution (starts, 
resume or stop)

Docker container

Task 2

Figure 2: Architecture for vertical scaling.

Algorithm 1: Algorithm used by the Supervisor to obtain the job state.

Input : performance, thresholdoverprogress and thresholdunderprogress

Result: state
begin

if performance > thresholdoverprogress :
state = overprogress ; /* Decrease resource reservation */

else if performance < thresholdunderprogress :
state = underprogress ; /* Increase resource reservation */

else:
state = ontime ; /* Nothing to do */

end

11



• The production Ansible roles should be stored in public repositories such as GitHub
(all the recipes should be open-source and available to the public).

• The variables used inside the Ansible roles should be defined in a way that they
can be set up at deployment time. This way, updates can be automatically applied
to the roles, so users do not keep outdated configurations on their systems (except
those that could have been explicitly modified by the user).

• The Ansible roles should be added to Ansible Galaxy3 a public repository4 of roles
so that others can reuse them, thus greatly simplifying the roles definition and
composition.

• In addition to the Ansible roles, there must exist high-level installation recipes (also
stored in GitHub) for the Infrastructure Manager 5 and EC36 that contain all the
configuration steps for deploying complete virtual infrastructures.

• The recipes should support different platforms (currently Ubuntu 14, Ubuntu 16
and CentOS 7).

Table 1 includes the components that were identified and configured using Ansible
roles for the creation of the virtual infrastructure previously described.

The EC3 tool is in charge of deploying the fully configured cluster by using these
Ansible recipes. Thus, it provides the required infrastructure with the necessary services
to deploy applications by using only a command, that automatically configures and
contextualizes all the VMs that compose the cluster infrastructure. As stated above, all
the sources of the recipes used to configure the cluster are stored in GitHub7. Moreover,
for the sake of reproducibility of the results of this contribution, a Docker container image
with the EC3 client installed has been released8.

4. Results

The experiments performed in this paper address three main aspects: i) the efficiency
of the deployment of a medium-sized virtual infrastructure; ii) the overhead of the hori-
zontal elasticity compared to the execution with resources deployed upfront; and iii) the
ability of the vertical elasticity to reconfigure the reservation of resources for a running
job to meet a specific QoS.

For the first case, this work measures the deployment time of a cluster with 50 nodes
and 100 processing cores. This time includes the deployment of the VMs, the download
and installation of the software dependencies, and the configuration of all the services.
This process is entirely automatic.

The second case covers the execution of a set of 20 parallel Spark jobs at different
time intervals. Initially, there are no processing resources except the front-end node of

3https://galaxy.ansible.com/
4https://galaxy.ansible.com/grycap
5https://github.com/grycap/im
6https://github.com/grycap/ec3
7https://github.com/grycap
8https://hub.docker.com/r/eubrabigsea/ec3client/

12



Node Type Component Version Requirements Comments

Front/wn Apache Mesos 1.4.1 All
Main framework,

including Mesos-DNS.

Front Marathon 1.4.3 1,3,4
For deploying long-term and

high-availability services on Mesos.

Front Chronos 2.1.0 1,2,4 Cron-like job scheduler for Mesos.

Front/wn Spark 1.6.3 1,5

Execution of Spark code through

spark-submit from the Front/End

or external resources.

Datanode Hadoop 2.6 All HDFS storage backend.

Front/Monasca Zookeeper 3.4.8-1 All
High availability of Mesos

and Marathon.

Front/Monasca/wn Docker 17.05.0-ce 1-4

Containerization of applications

launched through Marathon

and Chronos.

Front Docker registry 2 1-4

Mirroring and caching the Docker

images to speed-up distribution

along the cluster.

Front CLUES 2.1.0b 4 Manages horizontal elasticity.

Front Infrastructure Manager 1.6.6 4
Manages the configuration of the

internal nodes.

Front/wn CRIU 2.6 4 Performs container checkpointing

Monasca/wn OpenStack Monasca 1.6.1 3,4

Monitoring system, including

the Docker plugin.

Monasca agent installed in WN.

Keystone OpenStack Keystone 13.0.0 3,4

A service that provides API

client authentication, service

discovery, and distributed

multi-tenant authorization.

Monasca

Apache Kafka +

Storm + Grafana +

InfluxDB

2.12,

1.0.2, 4.0.1

& 0.9.5

3,4 Components for the Monasca Server

Front/wn Weave 2.1.3 All
Provides the overlay network to

the container infrastructure.

Front/wn Vertical Elasticity 1.0 3,4
Proactive vertical elasticity mechanism

for Marathon using Monasca

Table 1: Components of the Mesos cluster architecture.

13



the cluster and the system automatically starts and reconfigures them as required. The
execution intervals have been defined in a way that the job queue is flushed completely,
triggering the suspending of idle nodes.

The third case deals with the Quality of Service guarantees for a Marathon job exe-
cuted in the cluster. The cluster is busy with other jobs competing for the resources, so
we aim to assign the required CPU time to meet the targeted QoS. The developed tool9

dynamically readjusts the share of CPU to reduce the assigned resources to a job if it
is over progressing and increases the assigned resources if the job progress is lower than
expected. We measure the job performance as the amount of CPU time consumed by a
job according the given time frame of the QoS agreed.

For the three experiments, the physical infrastructure used is composed by two type
of nodes. The first type of node has two Intel(R) Xeon(R) CPU E5-2683 v3 2.00GHz
(14 cores) processors, 64 GB of memory RAM, 240 GB of Solid State Disk, two 1 GB
Ethernet network adapter and one 10 GB Ethernet network adapter. The second type of
node has two Intel(R) Xeon(R) CPU E5-2660 v4 2.00GHz (14 cores) processors, 128 GB
of memory RAM, 250 GB of Solid State Disk, two 1 GB Ethernet network adapter and
one 10 GB Ethernet network adapter. The Storage Area Network is a Dell Equallogic
PS4210 with 16 TB availables. This hardware is managed by the OpenNebula Cloud
Management Framework and the KVM hypervisor.

4.1. Deployment metrics

The deployment of the data analytics cluster is done automatically through EC3. The
following metrics have been evaluated to show the performance and the impact of the
usage of the elasticity on the user experience when interacting with the virtual cluster:

• Deployment of the static components (not managed by CLUES): Mesos master
(front-end of the cluster, with 4 CPUs and 16Gb of RAM), Monasca master (with
2 CPUs and 8Gb of memory RAM) and 3 HDFS datanodes (with 2 CPUs and 2Gb
of memory RAM). This set of nodes are deployed by the EC3 client in the virtual
cluster creation step.

• Deployment of the first working node (with 1 CPU and 2Gb of RAM), including
the creation of the golden image that will be used to speed up the deployment of
the rest of the elastic nodes. This feature consists on creating a VMI from the
first working node correctly configured and integrated in the system. Thus, this
VMI is used for the next working nodes deployed in the system, accelerating their
configuration.

• Deployment of a second working node using the created golden image to measure
the impact of the usage of golden images in subsequent nodes.

• Concurrent deployment of multiple concurrent working nodes (10, 20, 35 and 50
nodes). It will show how the system will react when a large set of nodes are
requested.

9https://github.com/eubr-bigsea/vertical elasticity

14



1406

631

383

0

200

400

600

800

1000

1200

1400

1600

Front End 1st WN Rest of WNs

Ti
m

e 
(s

ec
on

ds
)

Figure 3: Deployment time of the different node types.

These measures give information about the overheads on the deployment of the full
operational cluster and their reconfiguration, which serves as basis for defining elasticity
mechanisms and suitable applications.

The first step is the deployment of the front-end and the set of static nodes (front
+ monasca node + 3 datanodes). The average deployment time for the complete initial
infrastructure is 23min 26sec (1406 s). Figure 3 shows the comparative deployment time
of the initial infrastructure and the working nodes. The deployment of a node without
golden image plus the creation of the golden image when the node has been configured
takes an average time of 10min 31sec. (631 s) whereas the deployment of nodes with
golden images takes an average time of 6min 38 sec. (383 s). Clearly, nodes deployed
from a Virtual Machine Golden Image, created on the fly, show a smaller configuration
time.

Finally, for testing the scalability of the system, we present the deployment times
for a concurrent deployment of multiple nodes (10, 20, 35 and 50 nodes). Table 2 de-
picts the results of each test, where golden images have been used to accelerate the
deployments. The configuration system has been improved in the frame of the EUBra-
BIGSEA10 project to deal with the bottlenecks that appear when a large number of nodes
are simultaneously configured. In the original approach a single VM is selected as the
“master”. Then, Ansible is installed in this VM, which configures all the VMs in parallel.
In this new approach (suitable for a large number of simultaneous VM deployments), An-
sible is installed in all the VMs and each one configures itself in parallel. This approach
increases the latency but reaches higher scalability, being successfully demonstrated in
more than 100 machines.

10http://www.eubra-bigsea.eu/

15



Number of nodes 10 20 35 50

Average time per

node (sec.)
513.647 560.349 666.997 900.841

Total time (sec.) 520.472 592.602 751.997 1052.883

Table 2: Deployment time for different quantities of nodes (deployed simultaneously).

0

10

20

30

40

50

60

940 960 980 1000 1020 1040 1060

N
um

be
r o

f n
od

es

(secs)

Figure 4: Deployment time for 50 simultaneous nodes.

Figure 4 shows the latency time (in seconds) from the request of the deployment of 50
simultaneous nodes in the cluster to the actual provisioning of the resources. The graph
shows the number of machines deployed at each timestep. The figure shows that most of
the nodes (42) are fully configured in less than 980 seconds. The rest of the nodes take
a bit more time (72 seconds). It is only 7.3% more than the first groups of nodes. This
delay is produced by different bottlenecks of the cloud platform (mainly network) when
a large number of nodes are configured in parallel.

4.2. Horizontal Elasticity

The second case consisted of submitting 20 parallel data analytics jobs (implemented
in Spark) to an infrastructure that initially had only two nodes started (2 vCPUs and 4
GB RAM each). These jobs were submitted at different time frames as shown in Table
3. The infrastructure had to detect the registration of a Spark framework, realize that
there are not enough resources and deploy an additional node when a job remains queued
longer than a given threshold (5 seconds in the experiment), with a cooling time (waiting
time to perform a new action) of 5 minutes. Jobs were prepared to run for approximately

16



Job Submit Job Submit Job Submit Job Submit

1 0:00:30 6 0:35:54 11 0:55:14 16 1:31:14

2 0:01:15 7 0:52:34 12 1:28:34 17 1:31:54

3 0:01:53 8 0:53:14 13 1:29:14 18 2:05:14

4 0:18:34 9 0:53:54 14 1:29:54 19 2:21:54

5 0:19:14 10 0:54:34 15 1:30:34 20 2:38:34

Table 3: Scheduling of the jobs to be executed.

11 minutes and were able to use up to 4 cores each and request 0.5GB of memory RAM.
It is important to state that even if the job requests for 4 cores and Mesos offers it 2
cores, the job would anyway start. If there are enough resources (4 free cores), the job
will take them all.

During the execution of the jobs, we measured the timestamp at the submission,
execution start and execution end. We also registered all the changes in the status
of the nodes, which could be OFF (not deployed), RESTART (being restarted), IDLE
(powered-on and without jobs allocated), USED (executing jobs) or SUSPEND (being
suspended). Figure 5 shows the results of the evolution of jobs and Figure 6 shows the
status of the nodes along time.

Figure 5 shows the number of jobs (vertical axis) along time (horizontal axis) for five
metrics. Submitted, Started and Ended lines denote the accumulated number of jobs that
have been submitted, have actually started and have been completed over time. The lines
Queued and Running denote the number of jobs that are queued or concurrently running
at a given time. The execution profile has been defined to ensure that there are peaks
of workload that require starting up new VMs and idle periods long enough to trigger
the suspension mode for the VMs. This is used to analyze the behaviour system when
adjusting the infrastructure. More details are provided in Figure 6.

As depicted in Figure 5, the length of the queue does not grow above one job. The
delay between the submission and the start of a job (the difference in the horizontal axis
between submitted and started lines) is negligible. It is important to remark that this
overhead relates mainly to the time required for the VMs to change from suspended to
running, as the VMs are suspended on disk rather than destroyed. It should be pointed
out that the execution time for the jobs varies according to the resources available at the
executing time.

Figure 6 shows how the working nodes are started and suspended on demand. The
figure shows the number of working nodes (vertical axis) that are in each one of the five
possible status (described at the beginning of this section) along time (horizontal axis). It
is important to outline that transitions are very short, and the submission pattern of the
execution enables emptying the queues and triggering the suspension of idle resources.
Moreover, the default amount idle time to switch off a node in CLUES was used (20
minutes) but this value can be modified by user depending on the requirements.

4.3. Vertical elasticity

Running batch jobs that need to deal with QoS restrictions on infrastructures with a
significant amount of free resources is not a complex task. For this type of infrastructures,

17



0

5

10

15

20

25

0:00:00 0:28:48 0:57:36 1:26:24 1:55:12 2:24:00 2:52:48

Submitted Started Ended Queued Running

N
um

be
r o

f j
ob

s

(secs)

Figure 5: Jobs queued vs jobs running in the platform during the experiment and accumulated list of
jobs (suspend mode).

0

2

4

6

8

10

0:0
0:0
0

0:1
0:0
4

0:2
0:0
9

0:3
0:1
4

0:4
0:1
8

0:5
0:2
3

1:0
0:2
7

1:1
0:3
2

1:2
0:3
6

1:3
0:4
1

1:4
0:5
6

1:5
1:0
1

2:0
1:0
5

2:1
1:1
0

2:2
2:4
1

2:3
2:4
5

2:4
2:5
0

2:5
2:5
4

3:0
2:5
9

3:1
3:5
6

3:2
4:0
1

3:3
4:0
6

IDLE USED RESTART SUSPEND OFF

Figure 6: Evolution of the state of the cluster nodes, started and suspended on demand.

18



0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0:00:00 0:01:31 0:03:42 0:05:58 0:06:50

R
at

io
 (%

)

Timeline (hh:mm:ss)

Figure 7: Performance during the experiment.

it is very easy to accomplish the QoS restrictions because the scheduler only has to assign
the maximum resources to all running applications. Thus, vertical elasticity makes sense
in congested infrastructures. The QoS restrictions for this type of jobs are defined as the
allocation of a minimum CPU time to the job during a given time interval.

The job used for checking the vertical elasticity capabilities of the implemented ar-
chitecture takes 480 seconds (one CPU) and 360 seconds (two CPUs) to be completed.
The number of the seconds (CPU time) that the mechanism must allocate is set to 400
seconds, which is a value between the completion time when using one and two CPUs.
If a node has more amount of CPU share available than the job needs, the job uses all
amount of CPU share. The QoS restriction on this test is set to the same completion
time than when the job is executed using one CPU. Indeed, the developed mechanism
for providing vertical elasticity is designed to make all jobs with QoS restrictions of a
congested infrastructure to accomplish their agreed QoS. The maximum overprogress
threshold is 10%, which means the job enters to overprogress state when its performance
is 10% better than the required for meeting the targeted QoS.

The test has special interest because the job enters into the three possible states
(described in section 3.2) during the execution. In addition, the experiment ends in 393
seconds, demonstrating that the system can scale up and down to guarantee a minimum
CPU time. The execution trace can be observed in Figures 7 and 8.

Figure 7 shows the performance value (obtained using 2) and the performance state
(obtained using 1) along the experimentation. The Y-axis and X-axis of the Figure
7 represent, respectively, the performance and the time when the sample was collected.
The Y-axis colored ranges denote the performance state: red, green and yellow represent,
respectively, underprogress, ontime and overprogress.

Figure 8 shows a comparison between the consumed and the desired CPU time con-
sumed, and the assigned share of CPU at each sample. The X-axis represent the time

19



Figure 8: The dashed line represents the CPU share assignation during the experiment. The rest of
the figure is a comparison between the CPU time consumed and the CPU time (desired) that the job is
expected to consume at the time when the sample was collected.

when the sample was collected. The desired CPU time is the amount of time that the
developed mechanism estimates that should be consumed at the moment of which the
samples are collected. The left Y-axis represents the amount of CPU time consumed in
seconds. The right Y-axis represents the share of CPU assigned to the job during the
experiment. If the working node where Marathon executes the job has 1 CPU and the
user assigns 1.0 CPU share to the job, it means that the job has the 100% of the CPU
share of one CPU. Thus, if the working node has 3 CPU and the CPU share assigned to
the job is 2.5 CPUs, the job has reserved all of the CPU share of two CPUs and the 50%
of the CPU share of the remaining CPU.

It should be noted that instants when the samples were collected are the same at both
figures. The first sample corresponds to the start of the job. When the second sample is
collected, it can be observed in Figure 7 that the job performance state is overprogress. In
Figure 8 it can be observed at the second sample that the difference between the current
time of CPU consumed and the desired time of CPU consumed is big enough to make
the performance above the overprogress threshold. Thus, the Supervisor decrements the
assigned share of CPU, which can be seen in the dashed line at the same figure. Then,
the Executor performs a checkpoint as soon as it realises that the Supervisor decreased
the job assigned resources.

As it can be seen in Figure 8, the current CPU time consumed is lower than the
desired CPU time consumed in the next two samples but, the job’s states are not equal.
In case of the third sample, the performance state is underprogress (the performance
value is 69%) so the Supervisor will do an increment of the assigned share CPU and the
Executor will create a checkpoint.

Regarding the job performance at the fourth sample, the CPU time consumed is lower

20



than the required CPU time calculated using Eq. 1. Due to the underprogress threshold
is set to 90% and the performance value (calculated using the equation 2) is 93%, the
performance state is ontime. For this reason, the job does not require to be resized.

The last sample corresponds with the end of the execution. Figures 7 and 8 show
that the application terminates fulfilling the quality of service agreed with 87 seconds of
margin.

We measured that the time from the start of the checkpointing to when it is stored in
the shared directory (NFS) ranges from 30 to 60 seconds. After several tests, we estimate
that executing one checkpointing and restart of the job execution increases the execution
time in 6 seconds. Thus, even though the time of checkpointing in NFS is considerable,
the downtime of the job execution is negligible. This is because the container continues
to be executed while the checkpoint is created, similarly to virtual machine live migration
techniques. Indeed, only when the checkpoint is completed the container is stopped and,
then, it is immediately rescheduled in a new machine. Therefore, the time required for
loading the checkpoint and starting the process is negligible.

It is complicated to estimate the overhead caused by the checkpoint mechanism in
the experiment. The duration of the experiment was 393 seconds. The average duration
of the job execution with 1 and 2 CPU takes, respectively, 480 and 360 seconds. In this
experiment, the mechanism performed two checkpoints, so the overhead of checkpointing
is 12 seconds. Thus, the overhead of the mechanism will be lower than 33 seconds and
higher than 12 seconds.

5. Discussion

This section compares the proposed tools and solution exposed in this work with the
already available solutions that can be found in the literature regarding the execution of
time critical applications. Concerning cloud orchestration, our analysis of the state of the
art revealed that there is no general orchestration tool that enables the deployment of
cloud applications in several on-premises and public IaaS deployments using the standard
TOSCA specification. Most of them only provide access to a very limited list of cloud
providers. Our proposed cloud orchestration solution, the IM tool, supports the TOSCA
standard and a big number of public and federated Cloud providers and on-premises
CMPs, making the application cloud agnostic. The IM automates the Virtual Machine
Image (VMI) selection, deployment, configuration, software installation, monitoring and
update of virtual infrastructures.

The deployment of Big Data frameworks such as Mesos or Kubernetes requires an
underlying distributed computing and storage infrastructure, that can be provisioned
from on-premises clouds, public clouds or even from bare metal. However, there are
several limitations that hinder the adoption of these frameworks, especially by Data
Scientists that may be well versed in using the frameworks themselves but not specifically
on efficiently deploying and scaling them. The framework presented in this paper in
combination with the EC3 tool, considerably simplifies the deployment of these Big
Data frameworks. EC3 allows to automatically deploy these Big Data frameworks with
a single command, and without the need of user interaction.

Most of the already available solutions to automatically deploy clusters provide a
virtual cluster with a fixed number of nodes, other solutions are oriented to a specific

21



LRMS or they are tied to Amazon EC2 and, therefore, cannot provision nodes from
other public Cloud providers, or even on-premises Cloud deployments (e.g. based on
OpenNebula, OpenStack, etc.). The vertical elasticity mechanism presented in this work
in combination with EC3 and the IM tools allows the user to deploy virtual clusters offer-
ing at the same time both horizontal and vertical auto-scaling capabilities. In addition,
the contribution of the presented mechanism to the vertical elasticity capabilities (i.e.
executing data analytics jobs embedded in Docker containers using Marathon involving
common applications with QoS restrictions) was not found in the literature.

6. Conclusions

This paper has presented a software architecture and a set of open-source tools and
configuration recipes for deploying a virtual self-managed cluster which offers horizontal
(in and out) and vertical (up and down) scalability. Moreover a series of plugins have
been developed to offer quality of service capabilities inside the cluster.

Regarding the technical requirements identified at the beginning of the paper, the
test cases defined and the results exposed, it can be concluded that all the requirements
proposed were fulfilled by the architecture presented. Running unrestricted batch jobs is
one of the basic functionalities offered by the standard cluster configuration. In all the
test cases it is demonstrated how the cluster admits different types of jobs and executes
them without issues.

For running periodic batch jobs, the cluster must be prepared to accept a set of jobs
defined to be executed in an specific time. In section 4.2 a batch of jobs are programmed
to be launched and the cluster executes them by adjusting the resources available. This
demonstrates that the defined architecture is not only able to process this kind of sched-
uled jobs, it is also able to self adapt horizontally depending on the workload. Moreover,
the jobs presented in section 4.2 are a set of Spark jobs that were executed in parallel
thus complying with the last requirement presented which required to execute Spark jobs
in parallel.

In addition, the QoS restrictions and the vertical elasticity were tested in section 4.3.
The execution of batch jobs with QoS restrictions by adjusting the share of CPU assigned
is done thanks to a set of plugins developed and deployed automatically in combination
with the frameworks available in the architecture presented.

Moreover, and as an extra step towards reusability and community usage, all the code
developed for this project is publicly available and any user with access to one of the
supported cloud providers (which include the most popular ones) can deploy an elastic
cluster and tweak the configuration to fit the needs.

Future work includes testing the cluster with bigger setups, such as several hundred
nodes and thousands of jobs during long periods of time but unfortunately and due to
all the test being done in real infrastructures with shared resources and real users, the
test cases have to be limited.

Acknowledgements

The work presented in this article has been partially funded by the project EUBra-
BIGSEA, a project funded by the European Commission under the Cooperation Pro-
gram, Horizon 2020 grant agreement No 690116. Este projeto é resultante da 3a Chamada

22



Coordenada BR-UE em Tecnologias da Informação e Comunicação (TIC), anunciada pelo
Ministério de Ciência, Tecnologia e Inovação (MCTI) (Europe - Brazil Collaboration of
Big Data Scientific Research Through Cloud-Centric Applications). The authors would
also like to thank the Spanish “Ministerio de Economı́a, Industria y Competitividad” for
the project “BigCLOE” with reference number TIN2016-79951-R.

References

[1] EUBra-BIGSEA. Deliverable d7.1: End-user requirements elicitation. http://www.eubra-bigsea.

eu/sites/default/files/D7_1_End-User_Requirements_Final.pdf. [Online; accessed April-2018].
[2] Oasis topology and orchestration specification for cloud applications (tosca). https://www.

oasis-open.org/committees/tc_home.php?wg_abbrev=tosca. [Online; accessed April-2018].
[3] OpenStack. Openstack heat. http://wiki.openstack.org/wiki/Heat. [Online; accessed April-

2018].
[4] OpenStack. Heat orchestration template (hot) guide. https://docs.openstack.org/heat/latest/

template_guide/hot_guide.html. [Online; accessed April-2018].
[5] OpenStack. Openstack. https://www.openstack.org/. [Online; accessed April-2018].
[6] OpenNebula. Opennebula. https://opennebula.org/. [Online; accessed April-2018].
[7] OpenNebula. Oneflow. http://docs.opennebula.org/5.2/advanced_components/application_

flow_and_auto-scaling/index.html. [Online; accessed April-2018].
[8] DXC Technology. Eucalyptus cloud platform. https://github.com/eucalyptus/eucalyptus. [On-

line; accessed April-2018].
[9] Amazon. Cloudformation. https://aws.amazon.com/cloudformation/. [Online; accessed April-

2018].
[10] Cloudify. Cloudify. https://cloudify.co. [Online; accessed April-2018].
[11] The Apache Software Foundation. Apache aria tosca orchestration engine. http://ariatosca.

incubator.apache.org. [Online; accessed April-2018].
[12] I. Giannakopoulos, N. Papailiou, C. Mantas, I. Konstantinou, D. Tsoumakos, and N. Koziris. Celar:

Automated application elasticity platform. In 2014 IEEE International Conference on Big Data
(Big Data), pages 23–25, Oct 2014.

[13] SixSq. Slipstream. http://sixsq.com/products/slipstream/. [Online; accessed April-2018].
[14] Sami Yangui, Iain James Marshall, Jean Pierre Laisne, and Samir Tata. CompatibleOne: The Open

Source Cloud Broker. Journal of Grid Computing, 12(1):93–109, 2014.
[15] University of Stuttgart. Opentosca. http://www.opentosca.org. [Online; accessed April-2018].
[16] Amazon. Amazon ec2. https://aws.amazon.com/ec2/. [Online; accessed April-2018].
[17] Miguel Caballer, Ignacio Blanquer, Germán Moltó, and Carlos de Alfonso. Dynamic Management

of Virtual Infrastructures. Journal of Grid Computing, 13(1):53–70, 2015.
[18] Chris Anderson. The end of theory: The data deluge makes the scientific method obsolete. http:

//www.wired.com/2008/06/pb-theory/. [Online; accessed April-2018].
[19] J Dean and S Ghemawat. Simplified data processing on large clusters. Communications of the

ACM, 51(1):107–113, 2008.
[20] The Apache Software Foundation. Apache hadoop. http://hadoop.apache.org. [Online; accessed

April-2018].
[21] The Apache Software Foundation. Apache hive. http://hive.apache.org. [Online; accessed April-

2018].
[22] The Apache Software Foundation. Apache pig. http://pig.apache.org. [Online; accessed April-

2018].
[23] The Apache Software Foundation. Apache spark. http://spark.apache.org. [Online; accessed

April-2018].
[24] Ltd. Canonical. Linux containers. https://linuxcontainers.org/. [Online; accessed April-2018].
[25] Docker Inc. Docker. https://www.docker.com/. [Online; accessed April-2018].
[26] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. Singularity: Scientific containers for

mobility of compute. PLOS ONE, 12(5):1–20, 05 2017.
[27] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated performance compar-

ison of virtual machines and Linux containers. In ISPASS 2015 - IEEE International Symposium
on Performance Analysis of Systems and Software, pages 171–172, 2015.

[28] The Linux Foundation. Kubernetes. http://kubernetes.io/. [Online; accessed April-2018].

23

http://www.eubra-bigsea.eu/sites/default/files/D7_1_End-User_Requirements_Final.pdf
http://www.eubra-bigsea.eu/sites/default/files/D7_1_End-User_Requirements_Final.pdf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://wiki.openstack.org/wiki/Heat
https://docs.openstack.org/heat/latest/template_guide/hot_guide.html
https://docs.openstack.org/heat/latest/template_guide/hot_guide.html
https://www.openstack.org/
https://opennebula.org/
http://docs.opennebula.org/5.2/advanced_components/application_flow_and_auto-scaling/index.html
http://docs.opennebula.org/5.2/advanced_components/application_flow_and_auto-scaling/index.html
https://github.com/eucalyptus/eucalyptus
https://aws.amazon.com/cloudformation/
https://cloudify.co
http://ariatosca.incubator.apache.org
http://ariatosca.incubator.apache.org
http://sixsq.com/products/slipstream/
http://www.opentosca.org
https://aws.amazon.com/ec2/
http://www.wired.com/2008/06/pb-theory/
http://www.wired.com/2008/06/pb-theory/
http://hadoop.apache.org
http://hive.apache.org
http://pig.apache.org
http://spark.apache.org
https://linuxcontainers.org/
https://www.docker.com/
http://kubernetes.io/


[29] Deis. Deis. https://deis.com/. [Online; accessed April-2018].
[30] The Apache Software Foundation. Apache mesos. http://mesos.apache.org/. [Online; accessed

April-2018].
[31] Inc. Mesosphere. Chronos. https://mesos.github.io/chronos/. [Online; accessed April-2018].
[32] Inc. Mesosphere. Marathon. http://mesosphere.github.io/marathon/. [Online; accessed April-

2018].
[33] Amazon. Aws auto scaling. https://aws.amazon.com/es/autoscaling/. [Online; accessed March-

2018].
[34] Paul Marshall, Kate Keahey, and Tim Freeman. Elastic site: Using clouds to elastically extend site

resources. In CCGrid 2010 - 10th IEEE/ACM International Conference on Cluster, Cloud, and
Grid Computing, pages 43–52, 2010.

[35] Paul Marshall, Henry Tufo, Kate Keahey, David La Bissoniere, and Matthew Woitaszek. Archi-
tecting a large-scale elastic environment: Recontextualization and adaptive cloud services for sci-
entific computing. In ICSOFT 2012 - Proceedings of the 7th International Conference on Software
Paradigm Trends, pages 409–418, 2012.

[36] Massachusetts Institute of Technology. Starcluster. http://web.mit.edu/stardev/cluster/. [On-
line; accessed April-2018].

[37] Massachusetts Institute of Technology. Starcluster elastic load balancer. http://web.mit.edu/

stardev/cluster/docs/0.92rc2/manual/load_balancer.html. [Online; accessed April-2018].
[38] Nikolaos Chalvantzis, Ioannis Konstantinou, and Nektarios Kozyris. BBQ: Elastic MapReduce over

cloud platforms. In Proceedings - 2017 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGRID 2017, pages 766–771, 2017.

[39] Amanda Calatrava, Eloy Romero, Germán Moltó, Miguel Caballer, and Jose Miguel Alonso. Self-
managed cost-efficient virtual elastic clusters on hybrid Cloud infrastructures. Future Generation
Computer Systems, 61:13–25, 2016.

[40] Carlos De Alfonso, Miguel Caballer, Fernando Alvarruiz, and Vicente Hernández. An energy man-
agement system for cluster infrastructures. In Computers and Electrical Engineering, volume 39,
pages 2579–2590, 2013.

[41] Z Shen, S Subbiah, X Gu, and J Wilkes. CloudScale: elastic resource scaling for multi-tenant cloud
systems. Proceedings of the 2nd Symposium on Cloud Computing, pages 5:1—-5:14, 2011.

[42] EUBra-BIGSEA. Deliverable d3.4: Qos infrastructure services intermediate version. https:

//www.eubra-bigsea.eu/sites/default/files/D3.4%20EUBra-BIGSEA%20QoS%20infrastructure%

20services.pdf. [Online; accessed April-2018].
[43] Germán Moltó, Miguel Caballer, and Carlos De Alfonso. Automatic memory-based vertical elas-

ticity and oversubscription on cloud platforms. Future Generation Computer Systems, 56:1–10,
2016.

[44] Soodeh Farokhi, Pooyan Jamshidi, Ewnetu Bayuh Lakew, Ivona Brandic, and Erik Elmroth. A
hybrid cloud controller for vertical memory elasticity: A control-theoretic approach. Future Gen-
eration Computer Systems, 65:57–72, 2016.

[45] Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle. Autonomic Vertical Elas-
ticity of Docker Containers with ELASTICDOCKER. In IEEE International Conference on Cloud
Computing, CLOUD, volume 2017-June, pages 472–479, 2017.

[46] Chao Zheng, Ben Tovar, and Douglas Thain. Deploying high throughput scientific workflows on con-
tainer schedulers with makeflow and mesos. In Proceedings - 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017, pages 130–139, 2017.

[47] DC/OS. Autoscaling with marathon. https://dcos.io/docs/1.7/usage/tutorials/autoscaling/.
[Online; accessed April-2018].

[48] Google. Google cloud. https://cloud.google.com/. [Online; accessed April-2018].
[49] Microsoft. Azure. https://azure.microsoft.com. [Online; accessed April-2018].
[50] Monasca. Monasca. http://monasca.io/. [Online; accessed April-2018].
[51] Apache Software Foundation. Apache kafka. https://kafka.apache.org/. [Online; accessed April-

2018].
[52] Apache Software Foundation. Apache storm. http://storm.apache.org/. [Online; accessed April-

2018].
[53] Inc InfluxData. Influxdb. https://www.influxdata.com/. [Online; accessed April-2018].
[54] Grafana Labs. Grafana. https://grafana.com/. [Online; accessed April-2018].
[55] OpenStack. Openstack keystone. https://wiki.openstack.org/wiki/Keystone. [Online; accessed

April-2018].
[56] Virtuozzo. Criu. https://criu.org/Main_Page. [Online; accessed April-2018].

24

https://deis.com/
http://mesos.apache.org/
https://mesos.github.io/chronos/
http://mesosphere.github.io/marathon/
https://aws.amazon.com/es/autoscaling/
http://web.mit.edu/stardev/cluster/
http://web.mit.edu/stardev/cluster/docs/0.92rc2/manual/load_balancer.html
http://web.mit.edu/stardev/cluster/docs/0.92rc2/manual/load_balancer.html
https://www.eubra-bigsea.eu/sites/default/files/D3.4%20EUBra-BIGSEA%20QoS%20infrastructure%20services.pdf
https://www.eubra-bigsea.eu/sites/default/files/D3.4%20EUBra-BIGSEA%20QoS%20infrastructure%20services.pdf
https://www.eubra-bigsea.eu/sites/default/files/D3.4%20EUBra-BIGSEA%20QoS%20infrastructure%20services.pdf
https://dcos.io/docs/1.7/usage/tutorials/autoscaling/
https://cloud.google.com/
https://azure.microsoft.com
http://monasca.io/
https://kafka.apache.org/
http://storm.apache.org/
https://www.influxdata.com/
https://grafana.com/
https://wiki.openstack.org/wiki/Keystone
https://criu.org/Main_Page


[57] weaveworks. Weave. https://www.weave.works/. [Online; accessed April-2018].

25

https://www.weave.works/

	Introduction
	Requirements & State of the art
	Requirements
	Cloud Orchestration
	Cloud-based Data analytics
	Elastic Clusters

	Architecture Design
	General Architecture
	Vertical scaling
	Description of the components

	Results
	Deployment metrics
	Horizontal Elasticity
	Vertical elasticity

	Discussion
	Conclusions

