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Abstract

As machine learning models are increasingly deployed in production, robust monitoring and detection of concept and covariate drift
become critical. This paper addresses the gap in the widespread adoption of drift detection techniques by proposing a serverless-
based approach for batch covariate drift detection in ML systems. Leveraging the open-source OSCAR framework and the open-
source Frouros drift detection library, we develop a set of services that enable parallel execution of two key components: the ML
inference pipeline and the batch covariate drift detection pipeline. To this end, our proposal takes advantage of the elasticity and
efficiency of serverless computing for ML pipelines, including scalability, cost-effectiveness, and seamless integration with existing
infrastructure. We evaluate this approach through an edge ML use case, showcasing its operation on a simulated batch covariate
drift scenario. Our research highlights the importance of integrating drift detection as a fundamental requirement in developing
robust and trustworthy AI systems and encourages the adoption of these techniques in ML deployment pipelines. In this way,
organizations can proactively identify and mitigate the adverse effects of covariate drift while capitalizing on the benefits offered
by serverless computing.
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1. Introduction

Nowadays, deploying a machine learning (ML) model in
production is a straightforward task, thanks to the existence of a
large number of tools aimed to make the process easier. Frame-
works such as KServe [1], Kubeflow [2], MLflow [3], BentoML
[4], or OSCAR [5] have been released, making it possible to
deploy, operate, scale, and monitor ML models. In parallel, a
field called MLOps (ML Operations) [6] has emerged to trans-
fer some of the best practices from the DevOps (Development
Operations) field to ML. Apart from the well-known Continu-
ous Integration/Continuous Delivery (CI/CD) processes, some
of these best practices include monitoring models at inference
time to detect as soon as possible if model performance is de-
caying or if the data being used differs significantly from the
data used at training time. Generally speaking, this process
is known as drift detection [7] and can be defined as the pro-
cess of detecting if there is a significant change in the concept
learned from an ML model (concept drift), or if there is a rele-
vant change related to the feature distributions (covariate shift)
concerning a reference dataset, which in real-world problems
sometimes is the dataset used to train the model of study.

A common mistake when deploying and using an ML model
in production is to make the assumption (either consciously or
not) that the data that was used to train the model and the data
being used to feed the model at inference time belong to the
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same distribution (i.e., data is stationary). However, in real-
world ML applications, this is not always the case: rapidly
changing environments (like in the Internet of Things area),
incomplete training data, poorly calibrated sensors over time
(providing inaccurate measurements), or a methodology change
in data collection may happen, to cite some issues that can make
data non-stationary. In these cases, and many more, drift de-
tectors allow monitoring either the model performance or the
feature distributions so that ML model users can detect devia-
tions leading to a model performance decay or even the model
malfunctioning. If such a situation is detected, an ML model
operator can decide to decommission that model, to replace it
with a more accurate one, or to warn about the model potential
performance decay, aspects that are fundamental to ensure hu-
man oversight and technical robustness and safety of artificial
intelligence and ML systems, a key requirement of Trustworthy
Artificial Intelligence (AI) systems [8] as exposed by the High-
Level Expert Group on Artificial Intelligence set up by the Eu-
ropean Commission. Model monitoring through drift detectors
should be one of the following requirements when building ML
systems.

However, despite the obvious benefits of providing drift de-
tection as a key part of any ML system, these techniques are
not yet widespread among researchers, machine learning engi-
neers, and data scientists, not to mention the final users. This
work aims to fill this gap by proposing a serverless-based ap-
proach to detect covariate drift in production ML systems that
process data in batch mode. To achieve this, we will exploit the
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OSCAR framework in combination with the Frouros drift de-
tection library [9], building a comprehensive service for batch
covariate drift detection. This approach enables more robust
predictions without incurring penalties at inference time. The
main contributions of our work are as follows:

• We review the background in drift detection for ML pro-
duction systems, with a special focus on serverless com-
puting.

• We propose an approach following the serverless com-
puting model for ML systems, incorporating covariate
drift detection methods that process data in batch mode
to provide more robust predictions and results.

• We evaluate the proposed approach by employing an edge
ML use-case where covariate drift is intentionally induced
on three different datasets.

The remainder of this article is structured as follows. Sec-
tion 2 introduces the background and related work in server-
less computing for machine learning and drift detection areas.
Section 3 describes our proposed approach, which we further
evaluate in Section 4 through the study of a use case. Finally,
conclusions and future work are laid out in Section 5.

2. Background and Related Work

2.1. Drift Detection in ML Systems

Once an ML model has been trained for a specific prob-
lem (either regression or classification), it can be deployed in a
production system to provide inference results with real-world
data, which the model has not seen before. However, when us-
ing an ML model to deliver predictions over unseen data, both
the user and developer should consider several critical questions
that may directly impact the model’s performance: Will new
data come from the same distribution (i.e., is the data station-
ary)? If not, how can we detect such situations to prevent per-
formance degradation? Will the concept learned by the model
change over time?

Providing answers to these questions leads us directly to
the field of drift detection. In the scientific literature, various
definitions of different types of drift exist, as noted by Moreno
et al. in [10]. In our work, we will adhere to the real concept
drift terminology given by Gama et al. in [11] for concept drift,
in combination with the one used by Shimodaira in [12] for
detecting covariate shift1 using only the feature or covariate
distributions.

Concept drift is often associated with detecting changes over
an infinite data stream, where individual data samples are pro-
cessed as soon as they arrive, in a streaming or online man-
ner [13, 14]. However, offline or batch methods for detecting
concept drift have also been well-documented in the literature

1Henceforth, we adopt the term covariate drift in place of covariate shift to
ensure consistency with the terminology of concept drift.

[15, 16]. Similarly, covariate drift detection methods can op-
erate both in a streaming/online mode [17] and through two-
sample tests in a batch/offline approach [18].

As briefly stated in the introduction of this work (cf. Sec-
tion 1), drift detection in ML systems can be defined as a method
to detect when either of the following two situations, which can
harm the performance of a model, materializes:

• There is a significant change in the concept previously
learned by an ML model, known as concept drift.

• There is a significant change related to the feature or co-
variate distributions used to fit the ML model, known as
covariate drift.

The existence of these deviations (in the concept or covari-
ates) may result in a performance degradation of the model,
leading to a loss in its classification, prediction, or decision-
making capabilities. This is especially important when building
robust and secure ML systems. If a drift situation occurs unno-
ticed, the system’s reliability may be compromised, delivering
misleading or inaccurate results.

Detecting drift in an ML model is of paramount importance
for any ML stakeholder (developer, operator, user) so they can
decide on the appropriate actions (e.g., stopping the inference
process, refitting the model to the new data, etc.). There is a
considerable body of work applying drift detection techniques
[19] across a variety of domains, such as predictive mainte-
nance [20], the Internet of Things (IoT) [21], social big data
[22], and fake online reviews [23].

In recent years, multiple libraries that implement drift de-
tection methods have emerged, such as Alibi Detect [24], MOA
[25], River [26], and Frouros2 [9]. Among these, Frouros stands
out as the open-source Python library that implements the high-
est number of different drift detection methods. Additionally,
it is designed to be used with any ML framework, making it
framework-agnostic.

2.2. Serverless Computing
Serverless computing has emerged over the last years as a

paradigm for event-driven computing on services where the ser-
vice provider manages the resource allocation. In particular, the
Functions as a Service (FaaS) model, exemplified by services
such as AWS Lambda, allows users to define functions that ex-
ecute in response to certain events to perform event-driven pro-
cessing on the massively scalable platform managed by AWS.
This has become an appropriate computing and programming
paradigm for scientific applications, as exemplified in the work
by Pérez et al. [27], where AWS Lambda is employed to exe-
cute deep learning frameworks and video processing tools.

AWS Lambda provides highly-elastic capabilities, where up
to 3000 parallel invocations of a function can run concurrently,
with up to 10 GB of RAM for each, including the automated
mount of distributed filesystems shared among the multiple in-
vocations. This has unlocked the ability to perform serverless

2Frouros - https://frouros.readthedocs.io
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distributed ML training without the need to pre-provision in-
frastructure.

However, to mitigate the lock-in and support, to some ex-
tent, a similar computational paradigm on existing hardware,
and on-premises serverless platforms have also appeared in the
last years, such as Knative, OpenFaaS, or OpenWhisk. As
an illustrative example, [28] leverages OpenWhisk to provide
serverless endpoints for the inference of machine learning mod-
els via a REST API [29]. In this line, OSCAR3 [5] is an open-
source platform to support the event-driven serverless paradigm
to execute applications along the computing continuum. This
leverages the ability to run on elastic Kubernetes clusters, which
provide seamless resource provisioning for containerized user
workloads. OSCAR can run on low-power devices such as
Raspberry Pis, on-premises, and public Clouds and it is in-
tegrated with the open-source SCAR4 [27] framework to cre-
ate data-driven workflows from the edge of the network until
FaaS platforms such as AWS Lambda. OSCAR is the frame-
work adopted in this work to support event-driven serverless
computing both for scalable inference of AI models and exe-
cution of services for drift detection. An OSCAR service can
be triggered asynchronously by uploading a file to an object-
storage system, such as MinIO, which creates a Kubernetes job
that is executed in the underlying cluster, which can option-
ally grow and shrink in terms of the number of nodes. It can
also be triggered synchronously, allowing a certain number of
containers to be up and running, thanks to Knative, to mitigate
the cold start problem (i.e., increased latency for the first invo-
cations, due to resource provisioning). An OSCAR service is
defined by a Docker image, stored in an image container reg-
istry (e.g., Docker Hub or GitHub Container Registry); a shell
script that will be executed in a container dynamically created
from the Docker image; a set of computing requirements, in
terms of CPUs, RAM, GPUs, etc., and, optionally, the input
bucket in the object-storage system that will trigger the service
and where the output data should be stored from the supported
storage back-ends (MinIO, dCache, Onedata, etc.).

In [30], Naranjo et al. present a framework where the in-
ference of machine learning models can be executed in a public
cloud or on-premises clouds following a serverless approach
based on the aforementioned tools, where computational re-
sources are dynamically provisioned according to the inference
workloads.

2.3. Related Work
Regarding existing systems or approaches for drift detec-

tion using serverless computing, Rausch et al. [31] propose a
serverless platform focused on edge AI that can monitor con-
cept drift over certain metrics through a concept they call qual-
ity gates. In the work of Muthusamy et al. [32], feature vec-
tors (covariate distributions) are used to detect covariate drift,
but they rely only on algorithms that group features to detect
anomalous inputs, such as K-means, and not on common co-
variate drift methods like those found in the libraries mentioned

3OSCAR - https://oscar.grycap.net
4SCAR - https://github.com/grycap/scar

in Section 2. This approach can be combined with what is pro-
posed by the same authors in [33] to adapt it to use serverless
computing. The work by Thinakaran et al. [34] introduces a
covariate drift 5 monitor to trigger model retraining at required
intervals to reduce the accuracy gap. For this, serverless func-
tions that run on AWS Lambda are employed to develop a cost-
efficient continuous learning framework. The work by Zhang et
al. [35] describes a serverless cloud-fog platform for video an-
alytics with incremental learning. They tackle the issue of drift
detection through limited human feedback into the system.

Setting aside serverless computing and considering existing
systems for drift detection, Wang et al. [36] propose a recom-
mendation system for cloud services API selection that is con-
cept drift aware. In this work, they implement a detector based
on the Jensen–Shannon distance and present the predicted re-
sults and the detected drift together. In [37], the authors present
an experimental approach to handle concept drift in predictive
process monitoring, in which the forecasting model adapts to
concept drift automatically. An edge MLOps framework that
employs multiple pipelines to establish a complete lifecycle for
Artificial Intelligence of Things (AIoT) is proposed in [38].
One notable feature within these pipelines is the inclusion of
a mechanism to address model drift (which may be caused by
concept or covariate drift) but relies solely on the model error
without using a drift detector. The authors of [39] propose an
adaptive ML system for data analytics that is composed of an
ensemble of an ML model and a drift detector for Internet of
Things (IoT) online data streams, named Optimized Adaptive
and Sliding Windowing (OASWW), making it possible to pro-
cess online IoT data streams by adapting to potential concept
drift. Similarly, Matchmaker is a solution proposed in [40] to
handle a mix of drifts (concept drift and covariate shift) simul-
taneously for large-scale ML production systems. This solution
adapts to drift by having multiple models, each trained on a dif-
ferent batch of data, which allows redirecting the test sample to
the most similar model at inference time.

However, to our knowledge, none of these approaches pro-
pose an agnostic covariate drift detection system (from the de-
tector’s point of view) that processes data in batch mode fol-
lows the serverless architectural pattern and can run on multiple
cloud back-ends using state-of-the-art covariate drift detectors.

3. Proposed Approach

To address the batch processing needs for detecting covari-
ate drift while leveraging the benefits of serverless computing,
we propose deploying an ML inference service pipeline in par-
allel with a covariate drift detection service pipeline, as de-
picted in Figure 1. Although both systems are coupled (i.e.,
the drift detection and the inference services are related), they
can be used independently to avoid introducing a penalty in the
inference process.

Each service will feature an input object-storage system (e.g.,
a bucket in MinIO) that will trigger the invocation of the ser-
vice upon a file upload. The output result of each service can

5They refer to covariate drift as data drift.
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be uploaded into the input object-storage system of another ser-
vice, effectively creating an event-driven pipeline. For simplic-
ity, these object-storage systems are omitted in Figure 1 but are
shown in detail in Figure 2, which describes the use case pre-
sented in Section 4.

These services will be run on a serverless platform to bene-
fit from event-driven execution and the scalability of automated
resource provisioning from the underlying computing platform.
It is important to note that these services do not exchange infor-
mation via direct API calls. Function chaining via direct API
calls is considered an anti-pattern according to the Serverless
trilemma [41], as it would incur double-billing when using a
FaaS (Functions as a Service) serverless service from a public
cloud provider.

The different services are described as follows.

3.1. ML Inference Service (MLIS)

This service comprises a pre-trained ML model. Hence, its
responsibility is to receive a single sample x ∈ Rm, where m
is the number of features, and perform inference to obtain a
prediction ŷ ∈ R in the case of a regression problem or ŷ ∈ Rc,
where c is the number of classes, in a classification scenario.

In the specific scenario outlined in this manuscript, as we
assess the approach using computer vision datasets detailed in
Section 4.1.1, the MLIS receives image uploads through an ob-
ject storage system to initiate the inference process. The ser-
vice is triggered for each uploaded image. The rate of image
upload determines the frequency of service invocation. Sub-
sequently, the inference output is fed as input into the drift
detection pipeline, with the Dimensionality Reduction Service
(DRS) serving as its initial stage.

3.2. Dimensionality Reduction Service (DRS)

To address the curse of dimensionality problem [42], we in-
troduce a service that takes an input sample x ∈ Rm and trans-
forms it to x̂ ∈ Rk, where k ≪ m.

To accomplish this task, commonly used methods such as
Uniform Manifold Approximation and Projection (UMAP) [43],
Random Projection [44], Principal Component Analysis (PCA)
[45], Kernel Principal Component Analysis (Kernel PCA) [46],
or Autoencoders [47] can be employed.

Regardless of the chosen technique, a subset of samples is
typically extracted from the data to fit the dimensional reduc-
tion method. This service receives the same image that triggers
an inference process and performs the chosen dimension reduc-
tion technique. Therefore, the DRS is invoked as images are
uploaded, depositing the embeddings resulting from the service
execution in the storage system that will trigger the next step,
the Embedding Matrix Generator (EMG).

3.3. Embedding Matrix Generator (EMG)

The Drift Detection Service (DDS) component (as will be
explained in Section 3.4) requires a batch of n samples, where
n > 1, to perform the covariate drift detection process. There-
fore, the purpose of the EMG is to generate such input. This

batch is built by concatenating the embedding vectors previ-
ously generated by the DRS, resulting in a x̂ ∈ Rn×k matrix.
The EMG is, therefore, an intermediate internal service that is
executed in response to the events produced by the output of
the DRS. It is configured with a specific threshold N, where
N ≥ n, corresponds to the minimum batch size of samples
needed to trigger the detection. Consequently, EMG waits un-
til the threshold of N has been reached to build the embedding
matrix and provide the DDS with the expected input to perform
the final drift detection.

The input bucket of the service contains the embeddings
resulting from the DRS component. From the moment the em-
beddings are deposited, the EMG services are executed. When
N embeddings are found in the input bucket, a new object con-
taining a vector with N embeddings is created and deposited in
the output bucket. Once this new file is created, all files in the
input bucket that triggered the EMG are deleted to ensure the
proper functioning of future system executions.

3.4. Drift Detection Service (DDS)

The last pipeline step is the Drift Detection Service (DDS),
the final service that checks if covariate drift occurs. This ser-
vice contains a covariate drift detector fitted with samples from
a reference distribution used to train the model.

Covariate drift detectors can be categorized into those based
on distance and those using statistical tests. The former calcu-
lates the distance between a reference dataset and a data sample
to determine if covariate drift is taking place based on a p-value
[48], typically established using permutation tests [49]. Com-
mon methods in this category include Maximum Mean Dis-
crepancy (MMD) [50], Earth Mover’s Distance (EMD) [51],
Bhattacharyya Distance [52], Hellinger Distance [53], Popu-
lation Stability Index (PSI) [54], Jensen-Shannon Divergence
[55], Kullback-Leibler Divergence [56], and Histogram Inter-
section [57]. On the other hand, statistical hypothesis tests [58]
directly compute the p-value, including Kolmogorov–Smirnov
test [59], Anderson-Darling test [60], Cramér-von Mises test
[61], Mann-Whitney U test [62], Welch’s t-test [63], and χ2 test
[64].

Regardless of the detector used, the service receives a batch
of samples from the EMG and then compares them against the
reference samples using the significance level, denoted by α,
required for the statistical hypothesis test. In addition, it outputs
a boolean value indicating whether drift is occurring, along with
the corresponding p-value.

Once the vector with the N embeddings is in the input bucket,
the service is invoked, and the result of the drift detection is
stored in two output buckets: one within the cluster itself and
another where the inference was triggered. This ensures that the
user has all the final results of the process in the same cluster,
as shown in Figure 2.

4. Evaluation and Results

To evaluate the proposed approach, we established a use-
case illustrated in Figure 2 that simulates covariate drift in an
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Figure 1: Composition of different serverless functions to provide an ML inference and drift detection service.

edge ML scenario for a classification dataset. On one hand,
images can be uploaded to a MinIO bucket to obtain predic-
tions coming from multiple users/clients. These predictions are
generated using an edge cluster containing a pre-trained and de-
ployed ML model (MLIS). On the other hand, another cluster
is responsible for running the drift detection workflow that re-
duces the dimensionality (DRS), generates the embedding ma-
trix (EMG), and applies the drift detection method (DDS). This
way, we demonstrate the ability of the proposed approach based
on the OSCAR framework to span across the edge-to-cloud
continuum, including computing resources at the edge of the
network (e.g., low-powered devices such as Raspberry Pis) and
from Infrastructure as a Service (IaaS) Clouds. Additionally,
it involves the combined usage of multiple computer architec-
tures (e.g., arm64 for the edge devices and amd64 for the cloud
resources).

4.1. Experimental Setup

This section describes the experimental setup used to eval-
uate the proposed approach.

4.1.1. Datasets
We use three popular classification datasets for computer vi-

sion tasks in the field of machine learning: MNIST [65], Fash-
ion MNIST [66] and CIFAR-10 [67]. Where all of them have
10 different classes or categories.

• MNIST: This dataset consists of 28 × 28 grayscale im-
ages (1 channel), with a training set of 60,000 images
and a test set of 10,000 images. We split the original
training images into subsets: 36,000 and 6,000 images
for training and validation of the ML model, 9,000 and
3,000 images for training and validation of the dimen-
sionality reduction model, and 6,000 images as the ref-
erence distribution for fitting the covariate drift detector.
The remaining 10,000 testing images are used for infer-
ence, either with induced covariate drift or without any
transformations.

• Fashion MNIST: Similar to the MNIST dataset, Fash-
ion MNIST contains 28 × 28 grayscale images (1 chan-
nel). The splitting process follows the same scheme as
described for the MNIST dataset.

• CIFAR-10: This dataset originally contains 32×32 color
images, but we resized them to 28 × 28, preserving the
color (3 channels). This enables us to use the same ML
model architecture described in Sections 4.1.3 and 4.1.4
for the dimensionality reduction model. The splitting
scheme follows a similar approach to MNIST and Fash-
ion MNIST, with subsets of 30,000 and 5,000 images for
training and validation of the ML model, 7,500 and 2,500
images for training and validation of the dimensionality
reduction model, and 5,000 images as the reference dis-
tribution for fitting the covariate drift detector. As with
MNIST and Fashion MNIST, the remaining 10,000 orig-
inal testing images are used for inference.

4.1.2. Transformations
To simulate covariate drift, certain transformations are ap-

plied to the images in each of the described datasets. Three
transformations, available in TorchVision [68], are used:

• GaussianBlur: This transformation blurs the image us-
ing a randomly generated Gaussian blur kernel. The blur-
ring intensity is controlled by the σ parameter, which in-
dicates the standard deviation of the Gaussian kernel.

• ElasticTransform: Utilizing displacement vectors based
on random offsets, this transformation applies elastic dis-
tortions to the image. The strength of the distortions is
controlled by the α parameter, while the smoothness of
the distortion field is determined by the σ parameter.

• ColorJitter: This transformation randomly adjusts the
brightness (b), contrast (c), saturation (s), and hue (h) of
the image to introduce color variations.

For the MNIST and Fashion MNIST datasets, only Gaus-
sianBlur and ElasticTransform are applied, as they consist of
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grayscale images. However, all three transformations are ap-
plied to the CIFAR-10 dataset, which contains color images
suitable for ColorJitter.

It is essential to emphasize that these transformations are
applied solely to simulate covariate drift compared to the orig-
inal dataset. In real-world scenarios, such transformations are
not performed, and the data are processed as is.

Each test set contains 10,000 images, as mentioned in Sec-
tion 4.1.1. These images are either non-transformed (Refer-
ence) or have specific transformations applied. For the Gaus-
sianBlur transformation test sets, a fixed kernel size of (5, 9)
is used, and σ takes values in the range {0.25, 0.5, 1.0, 2.0, 4.0}
to vary the degree of blurriness. ElasticTransform uses a fixed
σ of 5.0, with α ranging from {12.5, 25.0, 50.0, 100.0, 200.0}.
For ColorJitter, brightness (b), contrast (c), and saturation (s)
vary in the range {0.1, 0.2, 0.4, 0.8, 1.6}, while hue (h) does so
in {0.025, 0.05, 0.1, 0.2, 0.4}.

4.1.3. ML Model
The MLIS component deploys the same model architecture

for inference across all three datasets: MNIST, Fashion MNIST,
and CIFAR-10. The architecture consists of a Convolutional
Neural Network (CNN) comprising two convolutional layers
followed by a Max Pooling operation after each convolutional
layer. The output of the CNN is fed into a fully connected layer
that outputs predictions for 10 classes. A more detailed view
of the architecture is depicted in Figure A.9, and Table A.4
presents the hyperparameter values.

The model is trained for 50 epochs using the AdamW opti-
mizer [69] with a learning rate of 1 × 10−3. The learning rate
is reduced by a factor of 0.1 every 5 epochs if there is no im-
provement in the validation loss. We retain the weights of the
epoch that achieves the best performance on the validation set.

For a comprehensive understanding of the training and val-
idation stages, Figures B.11a, B.12a, and B.13a display the loss
curves for MNIST, Fashion MNIST, and CIFAR-10 datasets,
respectively.

4.1.4. Dimensionality Reduction Model
To reduce the dimensionality of the input samples, an au-

toencoder architecture is employed, as explained in Section 3.2.
The autoencoder comprises an encoder and a decoder. The en-
coder consists of three convolutional layers followed by two
fully connected layers, reducing the dimensionality to a latent
space or embedding of 2 dimensions. Thus, the original image
x ∈ R28×28×1 for MNIST and Fashion MNIST, and x ∈ R28×28×3

for CIFAR-10, is transformed into a vector x̂ ∈ R2. Conversely,
the decoder, composed of two fully connected layers and three
transposed convolutional layers, reverses the encoding phase to
restore the original dimensionality. Both architecture compo-
nents comprising the autoencoder are detailed in Figure A.10.

Similar to the training phase of the ML model, as explained
in Section 4.1.3, the autoencoder is trained for 50 epochs using
the same optimizer, learning rate, and learning rate decay strat-
egy. The final weights are obtained using the epoch with the
lowest loss on the validation set.

Figures B.11b, B.12b, and B.13b depict the training and val-
idation stages for MNIST, Fashion MNIST, and CIFAR-10, re-
spectively.

4.1.5. Covariate Drift Detector
DDS employs the Maximum Mean Discrepancy (MMD)

method [50], a popular technique for multivariate statistical hy-
pothesis testing in two-sample tests [18], along with a Radial
Basis Function Kernel (RBF) [70]. Both the detector and the
kernel are utilized through the Frouros drift detection library
[9]. This detector, in combination with 100 permutations in a
permutation test, serves as the multivariate detector responsible
for conducting the necessary operations to determine, through
p-values, whether the incoming images of the corresponding
dataset are experiencing covariate drift or not. To assess the oc-
currence of covariate drift, a significance level of α6 = 0.01 is
used for each hypothesis test.

4.1.6. Hardware
Two different OSCAR clusters are employed, one utilizing

low-powered devices for the edge, and another running on an
on-premises Cloud:

• Edge cluster: Comprised of four Raspberry Pi 4 model
B units, each equipped with 4 GB of RAM and a SoC
Broadcom BCM2711, Quad-core Cortex-A72 (ARM v8)
64-bit processor clocked at 1.5 GHz. The k3s minified
distribution of Kubernetes is utilized to operate the OS-
CAR cluster, with one node designated as the front-end
and the remaining Raspberry Pis configured as working
nodes.

• On-premises Cloud cluster: Deployed on an on-premises
IaaS (Infrastructure as a Service) Cloud based on Open-
Stack. The underlying infrastructure consists of 14 In-
tel Skylake Gold 6130 processors, each with 14 cores,
5.25 TB of RAM, and 2 x 10GbE ports, and 1 Infiniband
port per node. A virtual Kubernetes cluster is config-
ured with an interface and a working node, each equipped
with eight vCPUs and 32 GB of RAM. This cluster is
dynamically provisioned via the Infrastructure Manager
(IM)7[71], an open-source Infrastructure as Code (IaC)
tool capable of seamlessly provisioning complex virtual-
ized infrastructure, such as an OSCAR cluster, on mul-
tiple Cloud back-ends. The OSCAR cluster comprises a
front node with 2 CPUs and 3.7 GB of memory and a
working node with 4 CPUs and 3.7 GB of memory.

These cluster configurations provide an efficient and scal-
able working environment. The on-premises Cloud cluster of-
fers flexibility, allowing the number of nodes to be dynamically
adjusted, either manually by the user, through the IM, or by
leveraging the underlying elasticity manager in OSCAR. This

6Note: This α denotes the significance level of the hypothesis test and is
different from the transformation parameter α used in ElasticTransform.

7Infrastructure Manager (IM) - https://im.egi.eu
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manager automatically adds or removes nodes (i.e., virtual ma-
chines) based on workload fluctuations, within a range defined
by the user at deployment time.

4.2. Covariate Drift Detection

4.2.1. MNIST
The performance of different transformation values on the

MNIST test set is compared against a reference test set with-
out any transformation applied. Table 1 presents the results of
detecting covariate drift after applying GaussianBlur and Elas-
ticTransform transformations on all MNIST test set images.

For GaussianBlur transformations, the accuracy starts to de-
crease with σ = 1.0, and significantly deteriorates for σ = 4.0,
resulting in an accuracy of 0.7448. Drift is detected for all
GaussianBlur tests, except for σ = 0.25, where the transfor-
mation is insufficient to impact the model’s performance.

In the case of ElasticTransform, different α values result in
varying levels of performance loss. From minimal performance
reduction with α = 12.5 to significant impact with α = 200.0,
resulting in an accuracy of 0.3799. Drift is detected for each
value, except for α = 12.5, which undergoes the slightest trans-
formation.

Examples of GaussianBlur transformations are depicted in
Figure 3b, where σ = 2.0 leads to a decrease in accuracy of
more than 4%. Similarly, for ElasticTransform with α = 100.0,
Figure 3c displays samples with a drop in accuracy of over 15%.

In general, as images undergo more severe transformations
(higher values of σ for GaussianBlur and α for ElasticTrans-
form), the model’s performance is affected to varying degrees.

4.2.2. Fashion MNIST
Table 2 presents the performance of GaussianBlur and Elas-

ticTransform modifications on the Fashion MNIST test set com-
pared to the reference test set. Similarly to the MNIST dataset,
the accuracy of GaussianBlur transformations shows a decreas-
ing trend, losing almost 30% in accuracy for σ = 4.0, reaching
0.6211. Figure 4b illustrates an example of the transformation
for σ = 2.0, where the accuracy drops to 0.6868. The detector
detects covariate drift starting from σ = 1.0, where the accu-
racy drops more than 6%. Notably, the detector does not detect
covariate drift for σ = 0.25, indicating no significant perfor-
mance loss, and for σ = 0.5, where the loss in accuracy is less
than 0.5%.

For ElasticTransform, the first two transformations with α =
12.5 and α = 25.0 are not detected by the detector. The former
experiences a 1% drop in accuracy, while the latter loses more
than 3%, though it is close to being detected with a p-value of
0.02. The remaining values of α result in a performance decay,
leading to an accuracy of 0.6115 for α = 100.0 (Figure 4c).
Finally, almost 60% in accuracy is lost when α = 200.0.

4.2.3. CIFAR-10
Table 3 presents the results for GaussianBlur, ElasticTrans-

form, and ColorJitter transformations applied to the CIFAR-10
test set, comparing them to the reference test set.

For GaussianBlur, none of its variants are detected as co-
variate drift, as the distance remains relatively constant, rang-
ing from 20.19 × 10−5 to 22.31 × 10−5. However, the accuracy
decreases progressively from σ = 0.5 with a 1% loss, to over
30% for σ = 4.0, as depicted in Figure 5b.

Conversely, all ElasticTransform transformations are detected
as covariate drift. Even the mildest transformation with α =
12.5 results in over a 3% loss in accuracy. Notably, for α =
100.0, the accuracy drops by 27%, and for α = 200.0, the
model’s performance decreases by more than 40%, as illus-
trated in Figure 5c.

In contrast to the grayscale images of MNIST and Fashion
MNIST, CIFAR-10’s color images undergo ColorJitter transfor-
mations. Except for the least invasive case with b = 0.1, c =
0.1, s = 0.1, h = 0.025, which is not detected as covariate
drift and involves less than a 0.5% loss in accuracy, all other
transformations are detected. They result in accuracy reduc-
tions ranging from 1% to 30% for the most severe case with
b = 1.6, c = 1.6, s = 1.6, h = 0.4. As an example, Figure 5d dis-
plays the transformation for b = 0.4, c = 0.4, s = 0.4, h = 0.1,
which involves an accuracy reduction of almost 5%.

4.3. Service Deployment and Execution Time

The services were deployed on each of the OSCAR clus-
ters using the oscar-cli tool8. To create a serverless data-driven
pipeline, the input buckets of the intermediate services are set as
the output buckets of the preceding services, as defined in the
Functions Definition Language (FDL) file. An excerpt of the
FDL file used to deploy the DRS service in OSCAR is shown
in Figure 6. Refer to Section 4.4 for access to all the files for
reproducibility.

Once all services are deployed, a Python script is responsi-
ble for obtaining images from the dataset and uploading them
to the MinIO bucket in the Edge cluster, which serves as the
entry point to the inference/drift detection system. The upload
frequency can be modified in the script.

To simplify experimentation, the dataset tested in Table 1,
initially containing 10,000 images per execution method, was
reduced to a single test with 100 images (corresponding to a
single MNIST digit). The images were uploaded to the input
bucket from a computer in another network at a rate of 15 im-
ages per minute, taking 6 minutes and 40 seconds for the upload
process. At the end of the upload process, 62 MLIS invocations
were in pending status due to the Edge cluster’s low computing
capabilities with Raspberry Pis.

An analysis of the logs for each invocation revealed the ex-
ecution times of the MLIS service, as shown in Figure 7. The
fairly similar time values across invocations indicate minimal
variation in the input image. Figure 8 displays the execution
times for the drift detection process (DRS and EMG). The last
execution of the EMG service stands out, lasting 2 minutes and
21 seconds, due to its involvement in reading all embeddings,
creating an array with all data, and deleting all files from the

8https://github.com/grycap/oscar-cli
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Figure 2: Proposed approach mapped to an edge ML problem. MNIST [65] images are uploaded to a MinIO bucket to perform inference on a Raspberry Pis cluster
managed by OSCAR. The dimensionality reduction, embedding concatenation, and covariate drift detection are performed on a different OSCAR cluster.

Method Parameters Distance (×10−5) p-value Covariate drift (exist./detect.) Accuracy
Reference - 7.35 0.16 False/False 0.9897
GaussianBlur σ = 0.25 7.38 0.16 True/False 0.9897
GaussianBlur σ = 0.5 25.88 ≤ 0.01 True/True 0.9897
GaussianBlur σ = 1.0 200.25 ≤ 0.01 True/True 0.9863
GaussianBlur σ = 2.0 949.75 ≤ 0.01 True/True 0.9467
GaussianBlur σ = 4.0 1955.71 ≤ 0.01 True/True 0.7448
ElasticTransform α = 12.5 18.93 0.02 True/False 0.9886
ElasticTransform α = 25.0 28.87 ≤ 0.01 True/True 0.9847
ElasticTransform α = 50.0 130.34 ≤ 0.01 True/True 0.9724
ElasticTransform α = 100.0 740.73 ≤ 0.01 True/True 0.8328
ElasticTransform α = 200.0 2622.89 ≤ 0.01 True/True 0.3799

Table 1: Results of detecting covariate drift after applying GaussianBlur and ElasticTransform transformations on all MNIST test set images. Appendix Figures
C.14 and C.15 show samples for each class after each transformation has been applied respectively.

bucket. The DDS service, invoked only once, requires 13 sec-
onds.

Similar tests were conducted with Fashion MNIST and CIFAR-
10 datasets, yielding comparable results. For Fashion MNIST
images, the MLIS service averaged 9.57 seconds, and the DRS
service averaged 6.15 seconds. For CIFAR-10 images, the MLIS
service averaged 9.57 seconds, and the DRS service averaged
6.21 seconds. The EMG service execution did not significantly
differ across datasets, as it is independent of image characteris-
tics.

4.4. Reproducibility
To facilitate the replication of the described use cases and

reproduce the obtained results, we have made available a GitHub
repository9 containing all the necessary code. This repository
includes detailed instructions on setting up the environment and
executing the code to replicate the experiments precisely.

9https://github.com/IFCA-Advanced-Computing/

serverless-covariate-drift-detection

5. Conclusions and Future Work

This paper presents a serverless approach for detecting co-
variate drift in machine learning (ML) models by processing
data in batch mode, demonstrating its effectiveness in an edge
ML use case for the edge-to-cloud continuum. The approach
has shown that it can efficiently detect covariate drift, ensur-
ing robust system performance and reliable predictions through
seamless resource provisioning. The successful deployment
and operation in an edge ML scenario underscore its potential
for broader applicability.

The key contributions of this work include the introduction
of a serverless approach to handle batch covariate drift detec-
tion, thereby minimizing interference between ML inference
and drift detection tasks. This separation ensures that both
workflows can be executed efficiently, maintaining the accuracy
and reliability of the system.

Future research should extend this approach to handle stream-
ing data. Streaming data presents unique challenges, such as
the need for real-time processing and managing data that ar-
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Method Parameters Distance (×10−5) p-value Covariate drift (exist./detect.) Accuracy
Reference - -4.96 0.72 False/False 0.9104
GaussianBlur σ = 0.25 −4.99 0.72 True/False 0.9104
GaussianBlur σ = 0.5 −5.08 0.74 True/False 0.9069
GaussianBlur σ = 1.0 13.08 ≤ 0.01 True/True 0.8474
GaussianBlur σ = 2.0 61.59 ≤ 0.01 True/True 0.6868
GaussianBlur σ = 4.0 102.31 ≤ 0.01 True/True 0.6211
ElasticTransform α = 12.5 −4.41 0.67 True/False 0.9004
ElasticTransform α = 25.0 22.17 0.02 True/False 0.8755
ElasticTransform α = 50.0 188.31 ≤ 0.01 True/True 0.8124
ElasticTransform α = 100.0 1141.39 ≤ 0.01 True/True 0.6115
ElasticTransform α = 200.0 3730.88 ≤ 0.01 True/True 0.3143

Table 2: Results of detecting covariate drift after applying GaussianBlur and ElasticTransform transformations on all Fashion MNIST test set images. Appendix
Figures C.16 and C.17 show samples for each class after each transformation has been applied respectively.

Method Parameters Distance (×10−5) p-value Covariate drift (exist./detect.) Accuracy
Reference - 20.19 0.02 False/False 0.6568
GaussianBlur σ = 0.25 20.19 0.02 True/False 0.6568
GaussianBlur σ = 0.5 19.56 0.02 True/False 0.6465
GaussianBlur σ = 1.0 18.17 0.04 True/False 0.5635
GaussianBlur σ = 2.0 18.36 0.04 True/False 0.4112
GaussianBlur σ = 4.0 22.31 0.02 True/False 0.3483
ElasticTransform α = 12.5 110.94 ≤ 0.01 True/True 0.6205
ElasticTransform α = 25.0 426.86 ≤ 0.01 True/True 0.5811
ElasticTransform α = 50.0 1378.72 ≤ 0.01 True/True 0.5101
ElasticTransform α = 100.0 4900.34 ≤ 0.01 True/True 0.3851
ElasticTransform α = 200.0 13511.72 ≤ 0.01 True/True 0.2415
ColorJitter b = 0.1, c = 0.1, s = 0.1, h = 0.025 5.82 0.24 True/False 0.6547
ColorJitter b = 0.2, c = 0.2, s = 0.2, h = 0.05 38.6 ≤ 0.01 True/True 0.6448
ColorJitter b = 0.4, c = 0.4, s = 0.4, h = 0.1 988.57 ≤ 0.01 True/True 0.6096
ColorJitter b = 0.8, c = 0.8, s = 0.8, h = 0.2 9990.66 ≤ 0.01 True/True 0.4616
ColorJitter b = 1.6, c = 1.6, s = 1.6, h = 0.4 17519.42 ≤ 0.01 True/True 0.3508

Table 3: Results of detecting covariate drift after applying GaussianBlur, ElasticTransform, and ColorJitter transformations on all CIFAR-10 test set images.
Appendix Figures C.18C.19 and C.20 show samples for each class after each transformation has been applied respectively.

rives continuously and without bounds. Adapting the server-
less approach to accommodate these requirements will enable
continuous monitoring and covariate drift detection in dynamic,
real-time environments, thereby expanding its applicability to a
wider range of real-world scenarios.

Another promising direction for future work is to explore
the broader applicability of the serverless approach in various
aspects of ML model monitoring and management. Beyond co-
variate drift detection, serverless approach can be advantageous
for performance monitoring, model versioning, and anomaly
detection. Extending the current approach to encompass these
areas will provide a more comprehensive solution for the life-
cycle management of ML models.

Furthermore, integrating explainability and interpretability
features into the serverless approach can significantly enhance
model accountability and trustworthiness. By developing tech-
niques to explain the causes of detected drift instances and pro-
vide interpretable insights, users can better understand and ad-
dress the underlying issues. This will not only improve the
usability of the system but also facilitate informed decision-

making by providing deeper insights into the behavior of ML
models.
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(a) Reference (b) GaussianBlur (σ = 2.0)

(c) ElasticTransform (α = 100.0)

Figure 3: Sample images for each MNIST class. Figure 3a shows a sample
without applying any transformation. Figures 3b and 3c apply GaussianBlur
and ElasticTransform, respectively, to induce covariate drift.

(a) Reference (b) GaussianBlur (σ = 2.0)

(c) ElasticTransform (α = 100.0)

Figure 4: Sample images for each Fashion MNIST class. Figure 4a shows a
sample without applying any transformation. Figures 4b and 4c apply Gaus-
sianBlur and ElasticTransform respectively to induce covariate drift.

Data Availability

The data is public and its information is included in the pa-
per text.
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[29] Álvaro López Garcı́a, Deepaas api: a rest api for machine learning and
deep learning models, Journal of Open Source Software 4 (42) (2019)
1517. doi:10.21105/joss.01517.
URL https://doi.org/10.21105/joss.01517

11

https://data.europa.eu/doi/10.2759/346720
https://www.sciencedirect.com/science/article/pii/S2352711024001043
https://www.sciencedirect.com/science/article/pii/S2352711024001043
https://doi.org/https://doi.org/10.1016/j.softx.2024.101733
https://doi.org/https://doi.org/10.1016/j.softx.2024.101733
https://www.sciencedirect.com/science/article/pii/S2352711024001043
https://www.sciencedirect.com/science/article/pii/S2352711024001043
https://www.sciencedirect.com/science/article/pii/S0378375800001154
https://www.sciencedirect.com/science/article/pii/S0378375800001154
https://doi.org/https://doi.org/10.1016/S0378-3758(00)00115-4
https://doi.org/https://doi.org/10.1016/S0378-3758(00)00115-4
https://www.sciencedirect.com/science/article/pii/S0378375800001154
https://www.sciencedirect.com/science/article/pii/S0378375800001154
https://www.sciencedirect.com/science/article/pii/S1319157821003062
https://www.sciencedirect.com/science/article/pii/S1319157821003062
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.11.006
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.11.006
https://www.sciencedirect.com/science/article/pii/S1319157821003062
https://www.sciencedirect.com/science/article/pii/S1319157821003062
https://doi.org/10.1109/UKCI.2014.6930161
https://doi.org/10.1109/UKCI.2014.6930161
https://www.sciencedirect.com/science/article/pii/S1566253518308066
https://www.sciencedirect.com/science/article/pii/S1566253518308066
https://doi.org/10.1016/j.inffus.2019.03.006
https://www.sciencedirect.com/science/article/pii/S1566253518308066
https://www.sciencedirect.com/science/article/pii/S1566253518308066
https://www.sciencedirect.com/science/article/pii/S0360835219304905
https://www.sciencedirect.com/science/article/pii/S0360835219304905
https://doi.org/https://doi.org/10.1016/j.cie.2019.106031
https://doi.org/https://doi.org/10.1016/j.cie.2019.106031
https://www.sciencedirect.com/science/article/pii/S0360835219304905
https://www.sciencedirect.com/science/article/pii/S0360835219304905
https://doi.org/10.1109/ACCESS.2019.2912631
https://doi.org/10.1109/ACCESS.2019.2912631
https://doi.org/10.1109/ACCESS.2021.3076264
https://doi.org/10.1109/ACCESS.2021.3076264
https://doi.org/10.1007/978-981-19-1610-6_63
https://github.com/SeldonIO/alibi-detect
https://github.com/SeldonIO/alibi-detect
https://github.com/SeldonIO/alibi-detect
http://jmlr.org/papers/v22/20-1380.html
http://jmlr.org/papers/v22/20-1380.html
http://jmlr.org/papers/v22/20-1380.html
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485
https://doi.org/10.1016/j.future.2018.01.022
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485
https://doi.org/10.1109/ACCESS.2020.2964386
https://doi.org/10.21105/joss.01517
https://doi.org/10.21105/joss.01517
https://doi.org/10.21105/joss.01517
https://doi.org/10.21105/joss.01517


[30] D. M. Naranjo, S. Risco, G. Moltó, I. Blanquer, A serverless gateway
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populations, Sankhyā: the indian journal of statistics (1946) 401–406.

[53] E. Hellinger, Neue begründung der theorie quadratischer formen von
unendlichvielen veränderlichen., Journal für die reine und angewandte
Mathematik 1909 (136) (1909) 210–271.

[54] D. Wu, D. L. Olson, Enterprise risk management: coping with model risk
in a large bank, Journal of the Operational Research Society 61 (2) (2010)
179–190.

[55] J. Lin, Divergence measures based on the shannon entropy, IEEE Trans-
actions on Information theory 37 (1) (1991) 145–151.

[56] S. Kullback, R. A. Leibler, On information and sufficiency, The annals of
mathematical statistics 22 (1) (1951) 79–86.

[57] M. J. Swain, D. H. Ballard, Color indexing, International journal of com-
puter vision 7 (1) (1991) 11–32.

[58] J. Neyman, E. S. Pearson, Ix. on the problem of the most efficient tests
of statistical hypotheses, Philosophical Transactions of the Royal Society
of London. Series A, Containing Papers of a Mathematical or Physical
Character 231 (694-706) (1933) 289–337.

[59] F. J. Massey Jr, The kolmogorov-smirnov test for goodness of fit, Journal
of the American statistical Association 46 (253) (1951) 68–78.

[60] F. W. Scholz, M. A. Stephens, K-sample anderson–darling tests, Journal
of the American Statistical Association 82 (399) (1987) 918–924.

[61] H. Cramér, On the composition of elementary errors: First paper: Mathe-
matical deductions, Scandinavian Actuarial Journal 1928 (1) (1928) 13–
74.

[62] H. B. Mann, D. R. Whitney, On a test of whether one of two random vari-
ables is stochastically larger than the other, The annals of mathematical
statistics (1947) 50–60.

[63] B. L. Welch, The generalization of ‘student’s’problem when several dif-
ferent population varlances are involved, Biometrika 34 (1-2) (1947) 28–
35.

[64] K. Pearson, X. on the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that
it can be reasonably supposed to have arisen from random sampling, The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 50 (302) (1900) 157–175.

[65] Y. LeCun, The mnist database of handwritten digits,
http://yann.lecun.com/exdb/mnist/ (1998).

[66] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms, arXiv preprint
arXiv:1708.07747 (2017).

[67] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from
tiny images (2009).

[68] TorchVision maintainers and contributors, TorchVision: PyTorch’s Com-
puter Vision library (Nov. 2016).
URL https://github.com/pytorch/vision

[69] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, arXiv
preprint arXiv:1711.05101 (2017).

[70] B. E. Boser, I. M. Guyon, V. N. Vapnik, A training algorithm for opti-
mal margin classifiers, in: Proceedings of the fifth annual workshop on
Computational learning theory, 1992, pp. 144–152.
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Appendix A. Neural Network Architectures

Appendix A.1. Convolutional Neural Network (Model)

batch_size×10

input

Conv

Relu

MaxPool

Conv

Relu

MaxPool

Shape

Gather

Unsqueeze

Concat

Reshape

Gemm

output

Figure A.9: Convolutional neural network architecture diagram.

Appendix A.2. Autoencoder (Dimensionality Reduction)

Appendix B. Training and Validation

Appendix B.1. MNIST

Appendix B.2. Fashion MNIST

Appendix B.3. CIFAR-10

Appendix C. Dataset Transformations

Appendix C.1. MNIST

Appendix C.2. Fashion MNIST

Appendix C.3. CIFAR-10

Hyperparameter Value

Input Size [28, 28]
Batch Size 64

Convolutional Layer 1
In Channels 1 (grayscale), 3 (color)
Out Channels 16
Kernel Size 5 × 5
Stride 1
Padding 2
Parameters # 416 (grayscale), 1216 (color)
Activation ReLU

Max Pooling 1
Kernel Size 2 × 2

Convolutional Layer 2
In Channels 16
Out Channels 32
Kernel Size 5 × 5
Stride 1
Padding 2
Parameters # 12832
Activation ReLU

Max Pooling 2
Kernel Size 2 × 2

FC Layer
Input Size 1568
Output Size 10
Parameters # 15690
Activation Softmax

Table A.4: Convolutional neural network architecture hyperparameters.
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(a) Encoder

batch_size×2

embedding
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Figure A.10: Autoencoder diagram used for the dimensionality reduction,
which consists of an Encoder and a Decoder, depicted in Figures A.10a and
A.10b respectively.

Hyperparameter Value

Input Size [28, 28]
Batch Size 64

Convolutional Layer 1
In Channels 1 (grayscale), 3 (color)
Out Channels 8
Kernel Size 3 × 3
Stride 2
Padding 1
Parameters # 80 (grayscale), 220 (color)
Activation ReLU

Convolutional Layer 2
In Channels 8
Out Channels 16
Kernel Size 3 × 3
Stride 2
Padding 1
Parameters # 1168
Activation ReLU

Batch Normalization
In Channels 16
Parameters # 32

Convolutional Layer 3
In Channels 16
Out Channels 32
Kernel Size 3 × 3
Stride 2
Padding 0
Parameters # 4640
Activation ReLU

FC Layer 1
Input Size 288
Output Size 128
Parameters # 36992
Activation ReLU

FC Layer 2
Input Size 128
Output Size 2
Parameters # 258
Activation Linear

Table A.5: Encoder architecture hyperparameters.
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Hyperparameter Value

Input Size [2]
Batch Size 64

FC Layer 1
Input Size 2
Output Size 128
Parameters # 384
Activation ReLU

FC Layer 2
Input Size 128
Output Size 288
Parameters # 37152
Activation ReLU

Convolutional
Transpose Layer 1

In Channels 32
Out Channels 16
Kernel Size 3 × 3
Stride 2
Padding 0
Output Padding 0
Parameters # 4624
Activation ReLU

Batch Normalization 1
In Channels 16
Parameters # 32

Convolutional
Transpose Layer 2

In Channels 16
Out Channels 8
Kernel Size 3 × 3
Stride 2
Padding 1
Output Padding 1
Parameters # 1160
Activation ReLU

Batch Normalization 2
In Channels 8
Parameters # 16

Convolutional
Transpose Layer 3

In Channels 8
Out Channels 1 (grayscale), 3 (color)
Kernel Size 3 × 3
Stride 2
Padding 1
Output Padding 1
Parameters # 73 (grayscale), 219 (color)
Activation Sigmoid

Table A.6: Decoder architecture hyperparameters.

(a) Convolutional neural network (Model)

(b) Autoencoder (Dimensionality reduction)

Figure B.11: Training and validation losses for the Convolutional neural net-
work model B.11a and the Autoencoder used for dimensionality reduction
B.11b on MNIST.
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(a) Convolutional neural network (Model)

(b) Autoencoder (Dimensionality reduction)

Figure B.12: Training and validation losses for the Convolutional neural net-
work model B.12a and the Autoencoder used for dimensionality reduction
B.12b on Fashion MNIST.

(a) Convolutional neural network (Model)

(b) Autoencoder (Dimensionality reduction)

Figure B.13: Training and validation losses for the Convolutional neural net-
work model B.13a and the Autoencoder used for dimensionality reduction
B.13b on CIFAR-10.

(a) σ = 0.25 (b) σ = 0.5

(c) σ = 1.0 (d) σ = 2.0

(e) σ = 4.0

Figure C.14: GaussianBlur transformation applied to a sample of MNIST. Each
figure shows a different value of σ.
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(a) α = 12.5 (b) α = 25.0

(c) α = 50.0 (d) α = 100.0

(e) α = 200.0

Figure C.15: ElasticTransform transformation applied to a sample of MNIST.
Each figure shows a different value of α.

(a) σ = 0.25 (b) σ = 0.5

(c) σ = 1.0 (d) σ = 2.0

(e) σ = 4.0

Figure C.16: GaussianBlur transformation applied to a sample of Fashion
MNIST. Each figure shows a different value of σ.

(a) α = 12.5 (b) α = 25.0

(c) α = 50.0 (d) α = 100.0

(e) α = 200.0

Figure C.17: ElasticTransform transformation applied to a sample of Fashion
MNIST. Each figure shows a different value of α.

(a) σ = 0.25 (b) σ = 0.5

(c) σ = 1.0 (d) σ = 2.0

(e) σ = 4.0

Figure C.18: GaussianBlur transformation applied to a sample of CIFAR-10.
Each figure shows a different value of σ.
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(a) α = 12.5 (b) α = 25.0

(c) α = 50.0 (d) α = 100.0

(e) α = 200.0

Figure C.19: ElasticTransform transformation applied to a sample of CIFAR-
10. Each figure shows a different value of α.

(a) b = 0.1, c = 0.1, s = 0.1, h = 0.025 (b) b = 0.2, c = 0.2, s = 0.2, h = 0.05

(c) b = 0.4, c = 0.4, s = 0.4, h = 0.1 (d) b = 0.8, c = 0.8, s = 0.8, h = 0.2

(e) b = 1.6, c = 1.6, s = 1.6, h = 0.4

Figure C.20: ColorJitter transformation applied to a sample of CIFAR-10. Each
figure shows a different value of brightness, contrast, saturation, and hue.
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