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Abstract 

Lidocaine is a class I antiarrhytmic drug that blocks 

the sodium channels. This drug is a tertiary amine and 

exists as an uncharged free amine and cationic 

protonated form at physiologic pH. Experimental data 

have shown that the rate of development and recovery of 

block is slowed at low pH. In this work, a mathematical 

model of lidocaine effects has been developed. This 

model has been incorporated to the Luo Rudy model of 

guinea pig ventricular action potential and we studied the 

effect of lidocaine on maximum upstroke velocity (dV/dt), 

action potential duration (APD), conduction velocity 

(CV) and effective refractory period (ERP) for different 

values of pH and concentrations of lidocaine. This study 

demonstrates that 50 µmol/L of lidocaine reduces the 

dV/dt 36 % and 71 %  as well as the CV a 8 % and 17 % 

for pH  7.4 and 6.4 respectively, while the ERP was 

increased 1.8 % and 0.6 %  for pH of 7.4 and 6.4. The 

APD does not change when pH was modulated. 

1. Introduction 

Class I antiarrhythmic drugs exert at least a part of 

their effect by blockaing the inward sodium current (INa). 

This drug exhibits use-dependent block of Na+ current 

and it is the hallmark of its antiarrhythmic activity, so this 

drug is more effective when the frequency of action 

potentials (AP) is high [1].  

The lidocaine is a tertiary amines and at physiological 

pH exist as uncharged free amine and as cationic 

protanated form. The proportion of each species depends 

on the ambient pH. A number of previous studies in 

nerve, cardiac, and skeletal muscle have shown that the 

kinetics of interaction of these drugs with their receptor is 

critically dependent on pH [2, 3, 4]. It is widely believed 

that the neutral drug form is throught to come and go 

from the receptor via a hydrophobic region of the 

membrane, while the charged form passes via the 

hydrophilic region (the inner channel mouth). The 

hydrophilic pathway is open only when the gates of the 

channel are open [5]. 

An earlier study has found that the kinetics of recovery 

from lidocaine was slowed when the extracellular pH was 

reduced [6, 7, 8]. This effect is generally believed to 

result from increase in the fraction of charged drug at 

receptor site [9, 10]. 

Furthermore, there have been few published reports of 

the quantitative analysis of the pH dependence of the 

recovery from block, but there is only one hypothesis 

proposed by Starmer and Courtney to explain its pH 

dependence. It is an interesting model where they used 

the relatively simple guarded receptor drug–binding 

theory as well incorporating the equations for the drug 

and proton dissociation rates.  The model assumes that 

drugs have a fixed affinity for their receptor sites, but 

access to the binding site is controlled by the voltage-

dependent channel gates [11]. 

A clear understanding of the influence of external pH 

on the blocking action of class I antiarrhythmic drugs in 

cardiac muscle is important for a number a reasons. The 

substantial fall in external pH during myocardial 

ischemia will change the kinetics of drug binding to the 

Na+ channel and may explain the more depressant effect 

of these drugs during myocardial ischemia [12,13]. 

The main goal of this work is to introduce the effect of 

pH in the mathematical model of lidocaine developed 

previously by our group. We used this model for studying 

the effect of different drug concentrations on the 

characteristics of action potentials at different pH.  

 

2. Methods 

In this work, the mathematical model of the cardiac 

action potential developed by Luo and Rudy (phase II) 
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was used in order to simulate the guinea pig ventricular 

action potential. The sodium current is expressed as: 

 

  ( )NaNaNa EVjhmgI −⋅⋅⋅⋅=
3

  (1) 

 

Where Nag  is the maximum conductance, m3,h and j 

are channel gates, V  is the membrane potential and ENa is 

the reversal potential [14]. 

In order to model the effect of lidocaine we have used 

the model proposed by Starmer and Courtney to solve the 

equations for the drug and proton dissociation [11].This 

model is based in the guarded receptor hypothesis (GRH) 

and the binding and unbinding process is viewed as a 

hydrophobic process, a hydrophilic process, and a 

coupling of charged and neutral blocked channels with a 

proton exchange process.  

 In our model, we have assumed that the binding and 

unbinding of charged drug form is controlled by the 

activation gate, whereas the neutral drug form can bind 

and unbind in all states of the sodium channel. We 

assume that the charged form is responsible for the slow 

component of the block, in agreement with experimental 

observations [15, 16]. Figure 1 shows the scheme of the 

interaction of lidocaine and the sodium channel. 

  

 

Figure 1. Block diagram for lidocaine in guinea pig 

ventricular 

 

The association and dissociation rate constants were 

roughly estimated on the basis of experimental data [9] 

and subsequently optimized by means of repeated 

simulations using a genetic algorithm. The process of 

optimization was run for 400 generations.  

The uni-dimensional tissue used in this study is 

composed of 200 cells. The excitation was applied to cell 

# 0, and the action potential characteristics were 

measured in the centre of the strand when the steady-state 

was reached as shown in figure 2. We tested the effect of 

different lidocaine concentrations on the maximum 

upstroke velocity (dV/dt), the action potential duration 

(APD), the conduction velocity (CV) and the effective 

refractory period (ERP). The ERP was obtained to 

shorten progressively the coupling interval (CI) until the 

extrastimuli could produce an action potential.  

  

 

Figure 2. Schematic of the unidimensional tissue and the 

protocol of stimulation.  

3. Results and discussion 

In the first place, we measured the effect of different 

concentrations of lidocaine and pH on the dV/dt; APD; 

CV and ERP. We have used the same basic cycle length 

(BCL) of 500 ms. In our results we obtained a dV/dt 

reduction of 36 %, 49 % and 71 % for the pH of 7.4; 6.9 

and 6.4 when the steady state was reached and with a 50 

µmol/L of lidocaine. We can observe this effect in the 

figure 3. 
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Figure 3. Effect of 50 µmol/L lidocaine on the dV/dt in 

different pH for a BCL of 500 ms. (pH of 7.4 ズ; 6.9 ﾐ; 

6.4 ﾒ). 
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The values of the time constant (k) observed in the 

presence of lidocaine are similar to those previously 

reported by other authors.   

The APD was unaffected by lidocaine when pH was 

changed using lidocaine 50 µmol/L and a BCL of 200 ms, 

thus for pH of 6.4 the value of APD was 115 ms while for 

a pH 7.4 the APD was 112 ms. In table 1, we can observe 

the effect of lidocaine when the pH and the BCL were 

changed. Thus, we can say that the APD was not changed 

when the pH was decreased one unit.  

 

 

APD 

pH BCL 200 ms BCL 500 ms BCL 1000 ms 

7,4 112,8 151 163,8 

6,9 114 151 163,6 

6,4 115,9 151 163 

Table 1. Effects of the pH on the duration action potential 

 

In order to validate our model, we have to compare our 

results with experimental data. Broughton [6] evaluated 

the effect of 15 µmol/L of lidocaine in different pH (6.95 

and 7.4). In figure 4, we show the comparison of the 

experimental data and our results.  
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Figure 4. Comparison of the computer predicted values 

(solid line) and experimental data (data points) for dV/dt  

(ﾒ) and APD (ﾐ) obtained in the different pH. For BCL 

1000 msec and 15 µmol/L of lidocaine 

 

In table 2 we can observe the relative error found. We 

have compared the experimental data found by 

Broughton [6] and our results for the dV/dt and the APD 

in the different pH and obtained a maximum relative 

error of 3.8 %.  

 

Relative error 

pH dV/dt APD 

6.95 2,2 3.8 

7.4 -1,1 3.7 

 

Table 2. Relative error obtained when we compared the 

experimental data with our results. 

 

Furthermore, in our simulation, we have found that in 

absence of lidocaine, the pH does not influence the CV 

whereas in presence of lidocaine the CV was reduced 

from 0.30 m/s (without drug) to 0.26 m/s in the highest 

concentration tested for a pH of 7.4. If we diminished the 

pH one unit, the CV was decreased from 0.30 m/s 

(without drug) to 0.23 m/s for the same concentration of 

lidocaine. We have concluded that if we decrease the pH, 

the effect of lidocaine on CV is raised.  
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Figure 5. Effect of different concentrations of lidocaine 

for different pH. In absence of drug (ズ); 20 µmol/L (ﾒ); 

50 µmol/L (ﾐ); 100 µmol/L (ﾔ). 

 

Additionally, the effect of lidocaine on ERP was 

determined during control and different concentrations of 

lidocaine and pH. In the absence of the drug and with a 

pH of 7.4, the ERP was 122 ms, when we increased the 

concentration of lidocaine, it went up to 2.5 % and 5 % 

for 50 and 100 µmol/L of lidocaine respectively, for a 

BCL of 200 ms. In the pH of 6.4, the ERP increased only 

0.8 % for the highest concentration tested for the same 

conditions. Table 3 shows the effect of lidocaine on the 

ERP in different concentrations, BCLs and pH. Our 

results suggest that the effect of lidocaine on the ERP is 

not influenced by changes in the pH. 
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ERP (ms) 

pH Lidocaine 

(µmol/L) 

BCL 200 ms BCL 500 ms 

0 122 158 

50 125 161 

7.4 

100 128 163 

0 122 158 

50 123 161 

6.9 

100 124 163 

0 122 158 

50 122 159 

6.4 

100 123 159 

 

Table 3 Values for ERP in different concentrations of 

lidocaine, BCLs and pH. 

4. Conclusions 

In the present study, we have proposed a model to 

characterize the influence of pH on the effect of 

lidocaine. Additionally, we validated our results with 

experimental observations.  

Furthermore, the simulation has shown that lidocaine 

increases its effect on the dV/dt and the CV when the pH 

is decreased, whereas the effect of lidocaine on the ERP 

is increased when the pH is raised. The APD does not 

change its value when the pH is modulated.  
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