
Infrastructure Manager: A TOSCA-based

Orchestrator for the Computing Continuum

Miguel Caballer1*, Germán Moltó1, Amanda Calatrava1,
Ignacio Blanquer1

1Instituto de Instrumentación para Imagen Molecular (I3M). Centro
mixto CSIC - Universitat Politècnica de València.

*Corresponding author(s). E-mail(s): micafer1@upv.es;
Contributing authors: gmolto@dsic.upv.es; amcaar@i3m.upv.es;

iblanque@dsic.upv.es;

Abstract

The edge-to-cloud continuum involves heterogeneous computing resources,
including low-power physical devices, Virtual Machines (VMs) in cloud manage-
ment platforms and serverless computing services based on the FaaS (Functions
as a Service) model. This requires novel strategies to describe and efficiently
deploy complex applications that execute across the computing continuum. To
this end, this paper introduces the developments in the Infrastructure Man-
ager (IM), an open-source TOSCA-based orchestrator to provision and configure
virtualized computing resources from a wide range of cloud platforms. By sup-
plementing TOSCA with additional types, the IM can also provision from FaaS
platforms across the computing continuum by leveraging public cloud services
such as AWS Lambda and on-premises serverless platforms, such as OSCAR.
This allows event-driven data-processing applications across multiple comput-
ing platforms and architectures. The evolution of the Infrastructure Manager
is described to accommodate the definition in TOSCA of complex applications
that span across the computing continuum and their automated provisioning and
configuration using Infrastructure as Code (IaC) approaches. Its effectiveness is
assessed through a real use case involving a machine-learning classifier appli-
cation for assisting in the early diagnosis of Rheumatic Heart Disease (RHD).
The results show that the new developments enable the IM to efficiently deploy
complete application architectures described in TOSCA across the computing
continuum, from VMs to FaaS services.

Keywords: Cloud Computing, Computing continuum, TOSCA, Virtual Infrastructures

1

1 Introduction

In the quest for reduced latency and increasing security and privacy, processing data as
close as possible to where it was generated paved the way for edge computing, in which
typically low-powered devices are responsible for gathering data at the edge of the net-
work to perform specific data processing activity [1]. However, the reduced computing
capacity of these devices and sensors, together with the requirements of workflow-
based processing, requires the ability of data processing delegation across upper layers
of the computing continuum. Indeed, suppose the resources of an OpenStack-based
on-premises Cloud fail to satisfy the computing requirements of an application. In
that case, a typical scenario includes cloud bursting, where a public cloud provider is
employed to dynamically provision the required computing resources.

The approach of combining multiple computing layers (edge, on-premises Cloud
and public Cloud) encompasses an execution flow among disparate distributed com-
puting infrastructures, commonly known as the edge-to-cloud computing continuum
[2]. Allowing data to be processed both at the edge and in the cloud, depending on
the specific needs and design of the application, can enable more flexible and efficient
data processing. Indeed, some tasks may be better suited for processing at the edge.
In contrast, others may require more powerful capabilities from a public cloud. This
scenario arises in Artificial Intelligence (AI), where applications can use pre-trained
AI models to analyze and process data coming from sensors in real time using edge
computing [3]. However, model training can be performed in the cloud, where more
powerful computing resources are available.

In this scenario, orchestrating and managing the underlying computing resource
pool is not trivial. Cloud computing features several service models, such as Infrastruc-
ture as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).
However, the increased trend of abstracting away from the developers the details of
resource allocation and provisioning from public Cloud infrastructures, failure man-
agement together with fine-grained pay-per-use approaches, supported the rise of the
Functions as a Service (FaaS) service model, an approach to implement serverless
computing [4]. Indeed, serverless computing allows event-driven execution of man-
aged services where the Cloud provider allocates the computing and storage resources,
which are triggered in response to certain events happening in the infrastructure (such
as a file upload into a storage system or an invocation of an HTTP-based request).

The serverless computational paradigm has permeated in recent years through
different domains such as astronomy [5], agriculture [6] and genomics [7]. The ability
to execute functions in response to events, scale quickly and efficiently, and minimize
operational overhead allows scientific applications to process large amounts of data
and perform complex simulations, making FaaS a versatile and powerful computing
model. Event-driven executions across the computing continuum allow supporting
multiple uses cases that can benefit from: i) reduced latency by partially processing
data close to where it is generated; ii) delegating additional processing into a more
powerful computing platform managed by an organization to comply with specific
privacy requirements and iii) cloud bursting into a public cloud platform to profit from
the highly-elastic capabilities of serverless services.

2

In a previous work [8], we created the Functions Definition Language (FDL) to
define data-driven serverless computing workflows for the OSCAR [9] and the SCAR
[10] serverless frameworks. However, this required the computing resources needed
to develop and execute the functions to be already deployed and configured before-
hand. This paper introduces the new developments performed in the Infrastructure
Manager (IM) [11] to support the definition and automated deployment of complex
application architectures in TOSCA [12] that need to be executed across the comput-
ing continuum using the frameworks above. By using Infrastructure as Code (IaC) and
application deployment procedures based on DevOps tools such as Ansible, together
with container orchestration platforms such as Kubernetes, the Infrastructure Man-
ager has evolved into a turnkey solution for standards-based application architecture
description and deployment in the computing continuum. This new functionality has
been made available in the production-ready IM instance1 available in EGI, the largest
international federation in Europe delivering open solutions for advanced computing
and data analytics in research and innovation.

After the introduction, the remainder of the paper is structured as follows. First,
section 2 reviews and analyzes the related work in the area. Next, section 3 presents the
proposed architecture of the IM orchestration tool, together with its key components.
Then, section 4 shows the extension made in the IM for the edge-to-cloud continuum
support. Next, section 5 evaluates the proposed solution through the execution of a
real use case involving a machine-learning classifier application for assisting in the
early diagnosis of Rheumatic Heart Disease (RHD. Finally, section 6 summarizes the
main achievements and points to the future actions and improvements of the proposed
solution.

2 Related Work

One of the most popular Infrastructure as Code (IaC) tools is Terraform, an
open-source software to safely and predictably change and improve infrastructure.
However, Terraform does not support the OASIS TOSCA (Topology and Orchestra-
tion Specification for Cloud Applications). Using open specifications introduces easier
extensibility and portability across different TOSCA runtime engines. In addition, the
European Code of Conduct for Research Integrity [13] advocates for the usage of stan-
dards of the discipline to facilitate verification and reproducibility. Authors such as
Santana-Perez et al. [14] mention using TOSCA to recreate execution environments
for enhanced reproducibility.

As presented in Table 1, there are different TOSCA-compliant runtime engines,
such as Cloudify, which offers some of the functionality for free (an integration with
Terraform, to access several cloud providers). It also has support for serverless com-
puting through a plugin2. Still, a pricing plan is required to unlock the support for
other technologies, such as Kubernetes. Puccini3 is a cloud topology management and
deployment tool based on TOSCA. It is mainly a TOSCA processor supporting several
TOSCA compilations (TOSCA 2.0 support is in progress) with connection with some

1Infrastructure Manager (IM) - https://im.egi.eu
2Cloudify serverless plugin - https://github.com/cloudify-incubator/cloudify-serverless-plugin/
3Puccini - https://puccini.cloud

3

https://im.egi.eu
https://github.com/cloudify-incubator/cloudify-serverless-plugin/
https://puccini.cloud

Cloudify Puccini xOpera Yorc MiCADO IM
Open Source Partially Yes Yes Yes Yes Yes

GUI Yes No Yes
Yes

(Alien4Cloud)
Yes Yes

Clouds

OpenStack,
vCloud, Azure,
vSphere, AWS,
Google Cloud,
Terraform

OpenStack, Ansible Ansible
AWS, Google,
OpenStack

OpenStack,
Azure, AWS,

Google, Oracle,
CloudSigma,
CloudBroker

OpenNebula,
AWS, Google,
Azure, OTC,

Orange, Linode,
OpenStack, FogBow,
EGI Cloud Compute.

FaaS Yes No Yes No No Yes

TOSCA compliance
Uses its own version

schema:
cloudify dsl 1 X

TOSCA 2.0*
TOSCA 1.3

TOSCA 1.3 TOSCA 1.2 TOSCA 1.3 TOSCA 1.0

Publicly available
as a service

Yes (pay-per-use) Demo No No No Yes

GitHub Stars 139 83 34 60 18 54

Table 1 Comparative of different TOSCA-compliant runtime engines with our IM solution.

orchestrators, such as Kubernetes and OpenStack. xOpera4 is a lightweight TOSCA
orchestrator used in the RADON, SODALITE and PIACERE projects. It features a
CLI, API and a web-based GUI. In xOpera all templates are translated to Ansible to
access several cloud providers and even allows to define functions as a service, but this
requires creating the corresponding Ansible playbooks. Yorc5 is a hybrid Cloud/HPC
TOSCA orchestrator, used in Alien4Cloud6, a visual composition tool for TOSCA,
which is no longer maintained. Finally, MiCADO [15] is an application-level cloud
orchestrator designed to work in a cloud-to-edge computing continuum environment.
Their system is based on KubeEdge as the orchestrator, a Kubernetes solution for the
execution of containerised applications in non-cloud workers. Thanks to the integra-
tion with Terraform and Occopus, the tool can access several cloud providers. However,
they do not take advantage of public serverless platforms such as AWS Lambda, as
opposed to our approach.

It is essential to point out that most of the TOSCA-compliant runtimes use specific
node types to define the resources in each cloud provider, and, moreover, none of them
supports abstract node types. This approach facilitates the translation from TOSCA
to the particular cloud provider but makes TOSCA templates specific for a cloud
provider. This prevents the TOSCA descriptions, using concrete types, from being
cloud agnostic and, therefore, a concrete TOSCA description with enough details to
fully describe user requirements cannot be used to deploy the same infrastructure in
different providers. Instead, the IM uses a different approach; it uses generic types,
“Compute”, “Storage”, etc., to specify the topologies in a cloud-agnostic way, and it
is in charge of translating them into particular cloud provider API calls.

The work of Tusa and Clayman [16] proposes the concept of end-to-end slices, a
graph-based model for dynamic resource discovery, selection and mapping through
algorithms and optimisation goals as the foundation for the dynamic allocation of
compute and network resources and services in a cloud-to-edge continuum scenario.
Rather than extending existing cloud orchestration solutions towards the edge, the
authors propose a new orchestration strategy based on the concept of these slices
that allow the separation of concerns between resource orchestration, in charge of

4xOpera - https://github.com/xlab-si/xopera-opera
5York - https://github.com/ystia/yorc
6Alien4Cloud - https://alien4cloud.github.io

4

https://github.com/xlab-si/xopera-opera
https://github.com/ystia/yorc
https://alien4cloud.github.io

the selection, configuration and management of compute and network resources and
service orchestration, that is, the life-cycle management of the distributed components
that deliver a service. The paper presents the formal definition of this concept and
proves its effectiveness through experiments. Further developments are needed to test
this proposal on a real scenario with a real implementation of the orchestration strategy
in a geographically distributed scenario.

There also exist in the literature previous works to introduce serverless computing
support in TOSCA. This is the case of the work by Wurster et al. [17], which intro-
duces an event-driven deployment modeling approach using TOSCA that supports
the standard lifecycle to provision and manage multi-cloud serverless applications.
Also, the work by Yussupov et al. [18] presents a toolchain to model serverless func-
tion orchestrations in BPMN, enacting their deployment. The work by Dehury et al.
[19] proposes an extension of the TOSCA standard for modeling data pipeline-based
cloud applications, including serverless platforms, as done in the RADON project.
Also, the Emerging Compute Models: Recommendations and Sample Profile Version
1.0 document provides an approach to extend the TOSCA specification with support
for serverless computing and other computing paradigms. Their approach is based on
RADON TOSCA, introducing a new type hierarchy.

Concerning our previous work, the Infrastructure Manager (IM), as initially
described in the work by Caballer et al. [11] is an open-source7 TOSCA-based service
that simplifies the provisioning and configuration of complex cloud-based application
architectures on multiple cloud back-ends using cloud agnostic TOSCA templates.
The IM has been extensively developed in the framework of multiple European
projects (e.g. INDIGO-DataCloud, EOSC-Hub, DEEP Hybrid-DataCloud, EGI-ACE,
AI-SPRINT, DT-GEO, InterTwin, AI4EOSC, etc.) to achieve TRL 88, which refers
to systems demonstrated in an operational environment, which involve rigorous test-
ing and validation to ensure that the technology functions as expected. It is currently
being used in production in EGI9 to provide users with the ability to self-deploy, in
a simple way, complex computing infrastructures and services (e.g. Galaxy portals,
Kubernetes clusters, SLURM-based clusters, etc.). This paper introduces novel devel-
opments in the IM to orchestrate the deployment of complex application architectures
across the edge-to-cloud continuum. By supplementing TOSCA with additional cus-
tom types, the IM supports the definition of application architectures that include
FaaS-based applications that can be deployed using open-source serverless platforms
such as SCAR10 [10], which uses AWS Lambda and AWS Batch, and OSCAR11 [8],
a serverless platform which uses Kubernetes and Knative for event-driven data pro-
cessing. Together, they provide an open solution for the standards-based definition of
application architectures for the computing continuum and its automated deployment
across multiple Clouds, platforms, and even different computer architectures.

7IM Server - https://github.com/grycap/im
8Technology Readiness Levels - https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014

2015/annexes/h2020-wp1415-annex-g-trl en.pdf
9EGI - https://www.egi.eu/
10SCAR - https://github.com/grycap/scar
11OSCAR - https://oscar.grycap.net

5

https://github.com/grycap/im
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://www.egi.eu/
https://github.com/grycap/scar
https://oscar.grycap.net

3 Infrastructure Manager: Architecture and
Components

The Infrastructure Manager (IM)12 [11][20] is an open-source TOSCA-based orches-
trator that has been developed throughout the last decade to support the deployment
of complex application architectures across a myriad of IaaS Cloud back-ends, which
include the most popular public Cloud Platforms (Amazon Web Services, Microsoft
Azure, Google Cloud Platform) as well as European public providers such as Open
Telekom Cloud, Cloud & Heat and Orange Cloud, European federated platforms like
EGI Cloud Compute and on-premises platforms like OpenStack or OpenNebula.

Since 2017 EGI has provided users with a web portal to deploy virtual infras-
tructures named the Virtual Machine Operations (VMOps) dashboard. The VMOps
dashboard provides graphical interfaces and high-level services for users to manage
Virtual Machines and Virtualised Appliances on federated cloud infrastructures, par-
ticularly on the EGI Federated Cloud and community-specific cloud federations (e.g.
the ELIXIR Competence Centre Cloud Federation). In this context, the IM was
adopted as the communication layer (initially OCCI and currently OpenStack), in
charge of deploying and configuring the resources needed by the users [21]. Therefore
the IM has been running in production for more than five years in EGI Cloud Com-
pute13, where it is the preferred solution to deploy complex infrastructures in the cloud.
In fact, it is offered as the Cloud orchestration solution in EGI14, thus being available
to any user approaching the EGI Federation to provision virtual infrastructures. It is
also part of the EOSC (European Open Science Cloud)15, an environment for hosting
and processing research data to support EU science. Also, the IM is in charge of inter-
acting with the Cloud Management Frameworks to deploy and configure the resources
in the sites selected by the INDIGO PaaS Orchestrator [22], a component to provi-
sion virtualized compute and storage resources in Clouds and to run Docker-based
long-running jobs on Apache Mesos and Kubernetes clusters, used in several Euro-
pean projects such as INDIGO-DataCloud and C-SCALE. Finally, PROMINENCE
[23] is a platform that allows users to exploit idle cloud resources for running scien-
tific workloads with a simple batch system-style interface. From a user’s perspective,
PROMINENCE appears like a standard batch system, but jobs can be run from any-
where in the world on clouds anywhere in the world. All infrastructure provisioning is
handled completely automatically and is invisible to the user by means of the IM.

Fig. 1 shows the architecture of the IM: The IM internal components are shown
with a green background; the internal components that interact with either client apps
or cloud providers are shown in blue; finally, in red are shown the external components
that are used or use the IM to get enhanced functionality. IM provides two different
APIs: XML-RPC and REST, which follows the OpenAPI standard specification16.
Two main interfaces are available for the user: the IM Dashboard17 and the IM CLI

12Infrastructure Manager (IM) - https://www.grycap.upv.es/im
13EGI Cloud Compute - https://www.egi.eu/service/cloud-compute/
14https://www.egi.eu/service/infrastructure-manager/
15IM in the EOSC Marketplace - https://marketplace.eosc-portal.eu/services/eosc.egi-fed.infrastructure

manager
16IM REST API - https://app.swaggerhub.com/apis-docs/grycap/InfrastructureManager/
17IM Dashboard - https://github.com/grycap/im-dashboard

6

https://www.grycap.upv.es/im
https://www.egi.eu/service/cloud-compute/
https://www.egi.eu/service/infrastructure-manager/
https://marketplace.eosc-portal.eu/services/eosc.egi-fed.infrastructure_manager
https://marketplace.eosc-portal.eu/services/eosc.egi-fed.infrastructure_manager
https://app.swaggerhub.com/apis-docs/grycap/InfrastructureManager/
https://github.com/grycap/im-dashboard

VMRC

REST API XML-RPC

IM Dashboard IM CLI

Conf Manager

Cloud Connectors

Public / FederatedOn-Premises

Edge
Devices

Edge
Nodes

Cloud

Computing Continuum

Low-power devices

(e.g. Raspberry Pis)

+

* Playbooks
* Roles
* Collections

VM Image
Selector

IM Core

Cloud
Credentials
Storage

EGI AppDB

Serverless

Direct Connectors LibCloud Boto SCAR

CLUES
Elasticity
Management

AWS Lambda
OSCAR K3s

Fig. 1 Infrastructure Manager (IM) Architecture.

(command-line interface)18. The IM Dashboard is an easy-to-use web interface for
non-advanced users to deploy predefined TOSCA templates that can be customized
by specifying a set of input values. The IM Client is a Python-based command line
tool and library that supports the entire functionality provided by the IM.

These APIs natively use the Resource and Application Description Language
(RADL) [11] to describe the virtual infrastructure requirements and return the current
infrastructure state. It addresses hardware (CPU number, CPU architecture, RAM
size, etc.) and software requirements (applications, libraries, database systems, etc.).
It includes all the configuration details needed for a fully functional and configured
VM using Ansible’s contextualization language.

The OASIS Topology and Orchestration Specification for Cloud Applications
(TOSCA) simple YAML standard [12] is also supported by the IM to describe the
topologies of the applications to be deployed. The usage of this standard provides
several advantages because it is platform agnostic, independent of any specific cloud
platform or technology, which reduces the risk of vendor lock-in in a public cloud sce-
nario. Moreover, it provides reusability and interoperability of the produced templates,
simplifying their maintenance.

The following sections provide more details about the main components of the
Infrastructure Manager shown in Fig. 1. Each section gives a brief overview of the

18IM CLI - https://github.com/grycap/im-client

7

https://github.com/grycap/im-client

component and summarizes the recent enhancements made in each. The components
of the platform, including the IM, are open-source. The IM documentation19 provides
a comprehensive description of the service. Finally, the external components used are
also briefly described for the sake of completeness.

3.1 VM Image Selector

The Virtual Machine Image (VMI), which contains a virtual disk with a bootable oper-
ating system and certain applications, is required to deploy a VM. The VMI Selector
helps the users find and set the desired image. To this end, it relies on third-party
information systems where the VMIs are registered with some additional metadata
for enhanced search capabilities. The IM initially supported our development, Virtual
Machine Image Repository and Catalog (VMRC), and support for the AppDB infor-
mation system has been recently added. As described in the work by Caballer et al.
[11], a URI naming convention was defined to enable the definition of VM images. A
new type of URI has been defined to point to VM images in EGI Cloud Compute so
that users can choose specific images from the AppDB. Internally, these will be con-
verted into the OpenStack VMI identified that will be used to launch the VM in the
particular EGI Cloud provider. In this format, the protocol is set to “appdb”, the
address field is used to specify the site name, the path field is used to set the VMI name
(as defined in AppDB) and, finally, the query part of the URI is used to specify the VO
name. For example, the URI appdb://SCAI/egi.ubuntu.22.04?vo.access.egi.eu
refers to the EGI Ubuntu 22.04 image20 in the SCAI site21 used for the EGI Access
VO (Virtual Organization). The address field is optional, so the IM will return the
specified VMI in all the EGI sites with support to the specific VO.

3.2 Configuration Manager

The Configuration Manager (CM) configures the provisioned infrastructure to satisfy
the user’s requirements by deploying the precise runtime environment, application
software, and configuration, commonly known as contextualization.

Ansible is employed as the underlying DevOps framework to enable contextual-
ization. Therefore, the users must define the configuration of their applications using
Ansible playbooks. In the case of RADL, they can be embedded in the recipe, and
with TOSCA, they have mainly been described as URLs to the playbook YAML files.

The IM enables, by design, the deployment of hybrid infrastructures (with VMs
in different Cloud providers, see the work by Caballer et al. [24] for more details).
This increases the variety of configuration issues, as there are different administration
domains and network configurations. Therefore, the IM has added a set of features
to enable contextualization in some configurations where the security rules do not
enable having public IPs in all the involved sites or sites requiring the usage of an SSH
proxy/bastion host to access the VMs. The first one is addressed by enabling reverse
SSH tunnels among all the VMs and the front-end node, thus enabling this node as
an Ansible control node to configure all the involved VMs without requiring them

19IM Documentation - https://imdocs.readthedocs.io/
20https://appdb.egi.eu/store/vappliance/egi.ubuntu.22.04
21https://appdb.egi.eu/store/site/scai

8

https://imdocs.readthedocs.io/
https://appdb.egi.eu/store/vappliance/egi.ubuntu.22.04
https://appdb.egi.eu/store/site/scai

network private_net (
proxy_host = ’user@proxy.host.com’ and
proxy_key = ’-----BEGIN RSA PRIVATE KEY-----

...
-----END RSA PRIVATE KEY-----’
)

priv_network:
type: tosca.nodes.indigo.network.Network
properties:

network_type: private
proxy_host: proxy.host.com
proxy_credential:

user: user
token_type: private_key
token: |

-----BEGIN RSA PRIVATE KEY-----
...
-----END RSA PRIVATE KEY-----

Table 2 How to specify an SSH Proxy host in RADL (left) and TOSCA (right).

system node (
...
disk.0.applications contains (

name="ansible.collections.community.crypto"
) and
disk.0.applications contains (

name="ansible.roles.grycap.kubernetes"
)

)

software:
type: tosca.nodes.SoftwareComponent
artifacts:

crypto_collection:
file: community.crypto
type: tosca.artifacts.AnsibleGalaxy.collection

kubernetes_role:
file: grycap.kubernetes
type: tosca.artifacts.AnsibleGalaxy.role

Table 3 How to specify Ansible Roles and Collections in RADL (left) and TOSCA (right).

to have public IP addresses. The second one is addressed by introducing the support
for specifying an SSH proxy/bastion host. In this case, the user has to specify it in
the infrastructure description. In particular, the network definition describes that this
network can only be accessed using the specified host. Table 2 shows how to describe
it in RADL and TOSCA.

Ansible Roles and Collections allow to distribute contributions from various
Ansible Developers. To help include them in the playbooks used in the infras-
tructure description, the IM has introduced a new way to specify the roles or
collections needed, and it will be in charge of installing them before the play-
book execution. In the case of roles, a special application requirement must be
added, starting with: ansible.roles as shown in the following examples. Sim-
ilarly, ansible.collections enable the specification of collections. In the same
way, they can be set using TOSCA to define the cloud topology. In this case, two
new artifact types have been defined: tosca.artifacts.AnsibleGalaxy.role and
tosca.artifacts.AnsibleGalaxy.collection that can be added to any node type
reflecting the need to use the specified role/collections. In the examples shown in Table
3, the Ansible Galaxy role is called grycap.kubernetes (to deploy a Kubernetes clus-
ter) and the community.crypto (with a set of modules to help in SSL certificate
management) collection is specified.

9

3.3 Cloud Connector

The Cloud Connector layer provides a homogeneous interface to provision the VMs
in the cloud providers. It has been designed using a plug-in scheme to ease its exten-
sion. We currently provide plug-ins for on-premises Cloud Management Platforms
(e.g. OpenNebula, OpenStack and CloudStack); public Cloud providers (e.g. Amazon
EC2, Microsoft Azure, Google Cloud, Linode, Orange, Open Telekom Cloud, Cloud &
Heat); federated environments such as EGI Cloud Compute or FogBow, and serverless
providers/platforms such as AWS Lambda or OSCAR.

This layer was initially designed with a simple API with six functions (as shown in
Caballer et al. [11]) to provide the basic functionality needed by the IM: Launch a VM,
Terminate a VM, Get VM information, Stop a VM, Resume a VM and Modify VM.
The implementation of these functions depends on the underlying Cloud. For example,
connectors have been implemented from scratch to access the APIs of OpenNebula and
OSCAR. Other connectors use some existing Python SDKs such as Boto (for Amazon
EC2) or SCAR22 (for AWS Lambda), and others use the Apache Libcloud library to
facilitate the development of the connector, as is the case of OpenStack and Linode.

The Cloud Connector layer has been extended with some functions to enable the
management of VMI snapshots (create and delete). They are used in some tools such
as EC3 (Elastic Cloud Compute Cluster) [25] to create snapshots of the VMI once it
has been fully configured to use it as a base image for future deployments of the same
VM in order to reduce the time required to configure subsequent infrastructures. It
has also been extended with additional functions required for federated Clouds (e.g.
EGI Cloud Service) to enable querying cloud sites to gather information about the
available images and quotas. They are used by the IM Dashboard to help the user select
the VMI to deploy their infrastructures and to choose the cloud provider considering
the available quotas, thus avoiding the deployment of application architectures in
overloaded cloud sites.

3.4 External Components

3.4.1 Ansible

Ansible is an open-source software suite that enables software provisioning, configu-
ration management, and application deployment functionality. It uses an agent-less
solution based on OpenSSH for transport (with other transports and pull modes as
alternatives) and a human-readable YAML language to describe the configuration
steps. It has the concept of a control node and a managed node. The control node is
where Ansible is executed from, for example, where a user runs the ansible-playbook
command. Managed nodes are the devices being automated. The control node must
be a Linux-compatible node, but the managed nodes can be almost any operating sys-
tem with Python installed. This includes Red Hat Linux, Debian, Ubuntu, macOS,
FreeBSD, Microsoft Windows, and more.

Furthermore, it offers Ansible Galaxy, Ansible’s official hub for sharing Ansible
content: roles and collections. Galaxy provides pre-packaged units of work known

22SCAR - https://github.com/grycap/scar

10

https://github.com/grycap/scar

to Ansible as Roles and Collections. Roles can be referenced from Ansible Play-
Books. There are roles for provisioning infrastructure, deploying applications, and
other common tasks. The new Collection format provides a comprehensive package of
automation that may include multiple playbooks, roles, modules, and plugins.

3.4.2 Virtual Machine Image Catalogs

Virtual Machine Image Repository and Catalog (VMRC)
VMRC23 is a catalog of Virtual Machine Images (VMIs) that enables users (and/or

Cloud administrators) to index the VMIs of the different Cloud Management Plat-
forms (such as OpenNebula or OpenStack) or on public Clouds (such as Amazon Web
Services) together with the appropriate metadata that describes their hardware and
software features.

Applications Database (AppDB)
AppDB24, a central service that stores and provides public information about

software solutions, publications, etc., is also used to index the images used by the EGI
Cloud Compute service, thus facilitating the integration with the EOSC ecosystem.

AppDB is divided into two main sections: the Software Marketplace and the Cloud
Marketplace. On the one hand, the Software Marketplace allows to register any kind
of software, namely applications, tools, workflow frameworks and instances, science
gateways, middleware products, etc., and it uses the repository-related capabilities
offered for delivering and distributing binary software artifacts. On the other hand,
the Cloud Marketplace allows users to register and publish Virtual Appliances (VA),
search for software that is available as a complete solution in the form of a VA, and
select VAs and make them available to the EGI Cloud Compute sites and resource
providers that support their VO, for users granted with the role of ‘VO manager’.

3.4.3 Cloud Credentials Storage

Cloud credentials are sensitive data that must be managed carefully. These are sent
to the IM service in the authorization header using secure HTTPS calls. However, the
IM can also directly retrieve these credentials from an external secrets storage such as
Hashicorp Vault.

Vault25 is an identity-based secrets and encryption management system. A secret
is anything that requires tightly controlled access, such as API encryption keys,
passwords, and certificates. Vault provides encryption services that are gated by
authentication and authorization methods. Using Vault’s UI, CLI, or HTTP API,
access to secrets and other sensitive data can be securely stored and managed, tightly
controlled (restricted), and audited.

Vault provides centralized key management to simplify encrypting data in transit
and stored across clouds and data centers. It can encrypt/decrypt data stored else-
where, essentially allowing applications to encrypt their data while storing it in the
primary data store.

23VMRC - https://www.grycap.upv.es/vmrc
24AppDB https://appdb.egi.eu/
25Vault - https://www.vaultproject.io/

11

https://www.grycap.upv.es/vmrc
https://appdb.egi.eu/
https://www.vaultproject.io/

The Vault service must be configured to enable the JWT authentication method
used by the EGI Check-in OIDC provider, thus enabling any EGI Check-in user to
store their credentials. EGI Check-in is a proxy service that is a central hub connecting
federated Identity Providers (IdPs). Since EGI Check-In interfaces with the major
academic/social IdPs, there is no entry barrier to access the service, which can be
freely used without requiring a specific registration beforehand.

Any authenticated user can directly access the Vault service to manage their cre-
dentials. But the IM Dashboard also allows the user to add these credentials using
the UI, facilitating the process and hiding the internal format of the credentials. It
accesses the Vault service on behalf of the user that has logged in to the IM Dash-
board. Similarly, the IM service can get user credentials from a Vault server. In this
case, the user must provide the IM with the Vault endpoint and a valid EGI Check-in
access token in the authentication header of the requests.

3.4.4 CLUES Elasticity Management

The IM supports multi-level elasticity management. On the one hand, horizontal elas-
ticity allows adding or removing VMs to an infrastructure. On the other hand, vertical
elasticity allows modifying the features of an individual VM, mainly in terms of CPUs,
RAM and disk). The IM exposes these features to external frameworks such as CLUES
or PROMINENCE, which provide the needed monitoring and decision-making systems
to trigger the elasticity.

In particular, CLUES [26]26 is an open-source elasticity management system devel-
oped by our team, initially aimed for High-Performance Computing (HPC) clusters
(either physical or virtual) but later extended to cloud-native systems such as container
management platforms. The primary function of the system is to remove internal clus-
ter nodes when they are not being used (scale in) and, conversely, to deploy them when
they are needed (scale out). CLUES system integrates with the cluster management
middleware, such as batch-queuing systems (e.g. Local Resource Management Systems
such as SLURM) or container management platforms (e.g. Kubernetes or Nomad)
using different connectors. It enables the creation of elastic cluster-like infrastruc-
tures that automatically scale in and out, in terms of the number of nodes, depending
on the system workload. This creates the illusion of a real cluster without requiring
investment beyond the actual usage. Therefore, this approach aims at delivering a
cost-effective elastic Cluster as a Service on top of an IaaS Cloud.

3.4.5 SCAR

SCAR [10] is an open-source framework for transparently executing containers out of
Docker images in both AWS Lambda and AWS Batch. It supports a High Throughput
Computing Programming Model to create highly-parallel event-driven file-processing
serverless applications that execute on customized runtime environments provided by
Docker containers run on AWS Lambda. SCAR is integrated with API Gateway to
expose an application via a highly-available HTTP-based REST API that supports
synchronous and asynchronous invocations. It is also integrated with AWS Batch, a

26CLUES - https://www.grycap.upv.es/clues

12

https://www.grycap.upv.es/clues

managed service for elastic cluster-based computing. This way, the highly elastic capa-
bilities of AWS Lambda can be used for the execution of large bursts of short requests.
In particular, Lambda functions can support up to 3000 concurrent invocations, up
to 10 GB of RAM, and up to 10 GB of ephemeral storage. Resource orchestration is
delegated into AWS, even if provisioned concurrency can be pre-defined by the user to
mitigate the first-invocation delay (cold start) at the expense of increasing the cost. In
contrast, long-running executions are delegated to AWS Batch for their execution on
virtual computing clusters, even with GPU support. These clusters can dynamically
scale depending on the number of pending jobs, from a set of user-defined elasticity
rules that can be pre-defined by SCAR. SCAR pioneered the introduction of container
runtime support in AWS Lambda in 2017, years before AWS Lambda introduced the
native support for the Docker runtime. With more than 585 stars in GitHub, SCAR
is featured in the CNCF Cloud Native Interactive Landscape27. SCAR has been used
to support the scalable inference from pre-trained AI models in AWS Lambda in both
the DEEP Hybrid-DataCloud and AI-SPRINT European projects.

3.4.6 OSCAR

OSCAR [9] is an open-source platform to support the serverless computing model for
event-driven data-processing applications. The IM automatically deploys and config-
ures this component on multiple Cloud back-ends to create highly-parallel event-driven
data-processing serverless applications that execute on customized runtime environ-
ments provided by Docker containers that run on an elastic Kubernetes cluster. With
the ability to deploy OSCAR clusters in minified Kubernetes distributions such as
K3s, event-driven workflows across the computing continuum can be executed since
they can also run on constrained devices such as Raspberry Pis. While OSCAR can
be configured on an existing Kubernetes cluster via Helm charts28, it can be easily
deployed via the IM, which provisions the Virtual Machines on behalf of the user and
uses Ansible Roles to configure them as an OSCAR cluster.

With OSCAR, users upload files to MinIO29, an object storage server with an Ama-
zon S3-compatible API that acts as a data storage back-end. This action automatically
triggers the execution of parallel invocations to a service responsible for processing
each file. Output files are delivered into a data storage back-end for the user’s conve-
nience. The user only specifies the Docker image and the script to be executed inside
a container created out of that image to process a file that will be automatically
made available to the container. The deployment of the computing infrastructure and
its scalability is abstracted away from the user. OSCAR also allows deploying scal-
able services invoked via HTTP-based synchronous requests to perform low-latency
requests. These are handled by Knative, which orchestrates the requests into a set
of pods whose number can automatically scale or always be available depending on
a user-defined configuration. OSCAR is used for scalable inference across the contin-
uum in the AI-SPRINT and AI4EOSC European projects. OSCAR provides similar
event-driven data-processing capabilities of SCAR, but instead of running on AWS

27SCAR in the CNCF Cloud Native Interactive Landscape - https://landscape.cncf.io/serverless?
selected=scar

28OSCAR Helm charts - https://github.com/grycap/helm-charts/tree/master/oscar
29MinIO - https://min.io/

13

https://landscape.cncf.io/serverless?selected=scar
https://landscape.cncf.io/serverless?selected=scar
https://github.com/grycap/helm-charts/tree/master/oscar
https://min.io/

tosca.nodes.indigo.OSCAR

tosca.nodes.indigo.LRMS.FrontEnd.Kubernetes tosca.nodes.indigo.LRMS.WorkerNode.Kubernetes

tosca.nodes.aisprint.FaaS.Function

tosca.nodes.indigo.Computetosca.nodes.indigo.Compute

HostedOn

HostedOn

HostedOn HostedOn

front_ip

tosca.nodes.BlockStorage

AttachesTo

Fig. 2 TOSCA model to describe an OSCAR Function/Service running on a Kubernetes cluster.

Lambda, it runs on scalable Kubernetes clusters, which can be provisioned on any
Cloud platform/provider, thus being Cloud-agnostic.

3.4.7 FDL

To support the deployment of data-driven workflows of serverless functions that require
complex data processing in OSCAR and SCAR a YAML-based Functions Definition
Language (FDL)30 [8] was defined to specify the requirements for each function and
how they are linked. It defines the functions to be dynamically created across the
computing continuum. Two top-level resources are defined in an FDL document:

• Functions/Services, which are created in a Cloud provider and are assigned a name,
a certain amount of computing resources together with a shell script that will be
executed, as part of the function invocation, inside a container, created out of a
specific Docker image that may available in a container registry such as Docker
Hub or GitHub Container Registry. The function will be triggered whenever a file
is uploaded to a specific folder within a storage provider, and the shell script will
process the data file.

• Storage Providers become sources of events for input data processing and store the
output data results from a function invocation. Using the input storage provider
from another function as output from a function, a precedence relationship is
established among them, and a data-driven link is created.

4 Extending the IM for the Computing continuum

The IM has been extended to support the deployment through TOSCA templates
of FaaS services across the computing continuum. For this, we have relied on the
serverless capabilities of the two open-source developments from our research group,
described in the previous section OSCAR (for on-premises FaaS solutions) and SCAR
(to interact with FaaS public providers).

30FDL - https://docs.oscar.grycap.net/fdl/

14

https://docs.oscar.grycap.net/fdl/

4.1 Supplementing TOSCA for the Computing Continuum

The TOSCA standard enables the definition of new custom types, thus supporting
adding new components to the templates. Using this feature of TOSCA, we have
defined new custom types for FaaS services to translate FDL concepts to TOSCA.
Fig. 2 shows an object diagram of the full FaaS TOSCA template:

The FaaS function is deployed on (HostedOn relation) top of the OSCAR plat-
form, which is also “HostedOn” a Kubernetes cluster. It is composed of one front-end
node and a set of worker nodes configured to connect with the front-end node IP.
All the Kubernetes nodes are “HostedOn” a Compute node and, in particular, the
front-end node, has also attached a BlockStorage that is used by the persistent vol-
umes. Notice that the namespaces used in the figure correspond to the research
projects where these custom types are currently being used. For example, in the
tosca.nodes.aisprint.FaaS.Function box, the aisprint namespace directly refers
to the AI-SPRINT project31. Since the original FDL uses the YAML format, the trans-
lation into TOSCA is straightforward. The full definition of this node type and all the
associated data types can be found in the custom types definition32. As an example,
Listing 1 shows the definition of the anonymisation function used as the first step of
the workflow specified in the use case described in section 5.

Edge devices are managed via OSCAR clusters. For example, a cluster of Raspberry
PIs would be managed by an OSCAR cluster and services can be deployed on top,
which are dynamically deployed by the Infrastructure Manager, as described in the
TOSCA template.

Listing 1 Anonymisation Function in TOSCA

anon s e rv i c e :
type : to sca . nodes . a i s p r i n t . FaaS . Function
p r op e r t i e s :

name : radiomicsanon
memory : 128 MB
cpu : 1 . 0
image : grycap/ rad iomics : anonymise arm64
s c r i p t : |

FILE NAME=$ (basename $INPUT FILE PATH)
OUTPUT FILE=$TMP OUTPUT DIR/A $FILE NAME
python anonymise . py − i $INPUT FILE PATH −o $OUTPUT FILE

input :
− s t o r a g e p r ov i d e r : minio . d e f au l t

path : rad iomic s in
output :

− s t o r a g e p r ov i d e r : minio . oscar−rad iomics
path : rad iomic s in

s t o r a g e p r ov i d e r s :
minio :

oscar−rad iomics :
a c c e s s k ey : minio

31AI-SPRINT - https://www.ai-sprint-project.eu/
32https://github.com/grycap/ec3/blob/tosca/tosca/custom types.yaml

15

https://www.ai-sprint-project.eu/
https://github.com/grycap/ec3/blob/tosca/tosca/custom_types.yaml

Function

OSCAR

Kubernetes

Server

Cloud

Deploy1 2 3 4

SCAR

Fig. 3 Computing Continuum Scenarios.

endpoint :
concat :

− ’ ht tps : // minio . ’
− ge t i nput : c lus te r name
− ’ . ’
− ge t i nput : domain name

reg i on : us−east−1
s e c r e t k e y : { ge t i nput : minio password }

requi rements :
− dependency : p r e p s e r v i c e

As shown in previous sections, the FDL enables the definition of FaaS services
together with their relationship to create data-driven serverless computing workflows.
But this requires the OSCAR clusters to be previously deployed and properly config-
ured. We have also defined new TOSCA custom types to include FaaS services in a
TOSCA cloud topology for the user to define not only the FaaS services but also all the
underlying software and infrastructure using TOSCA, that is, the OSCAR clusters.
Furthermore, the IM service has been extended to support these new custom types,
thus enabling the FaaS deployment in the computing continuum. IM is responsible for
translating these new TOSCA custom types into the correct API calls to OSCAR to
create the services with the defined features or contact AWS Lambda using SCAR to
translate FDL concepts to AWS Lamba API calls.

Notice how the expressivity of the newly created TOSCA custom types is related
to the functionality exposed by the underlying execution engines employed, in this
case, OSCAR and SCAR. Using OSCAR facilitates not only the execution along the
computing continuum, where different OSCAR clusters can be deployed but also the
migration among different Clouds since the deployment of the functions is not directly
performed in a managed service from the underlying Cloud provider.

The IM supports four different computing continuum scenarios (see Fig. 3):

16

1. An already existing OSCAR cluster: This is the typical scenario of a set of edge
devices (e.g. a Raspberry Pi cluster) or computers where OSCAR has been installed
and configured on top of a minified version of Kubernetes (i.e. K3s, Kind, microk8s,
etc.). In this case, only the FaaS services must be defined in the TOSCA topology,
and the OSCAR API endpoint and the credentials must be provided to the IM,
enabling the deployment of the FaaS service.

2. A set of nodes is already deployed (virtual or physical) with a base OS: This is the
case of a set of edge computers (also known as fog nodes in the OpenFog Refer-
ence Architecture for Fog Computing [27]) or edge devices with a plain base OS
with an SSH connection available. In this case, not only the FaaS service must be
declared in the TOSCA topology but also the OSCAR and Kubernetes node types.
Therefore, the IM will orchestrate the installation and configuration of Kubernetes
and OSCAR (using Ansible roles and playbooks assigned by the TOSCA custom
types) and finally deploy the FaaS services. SSH connection details must be pro-
vided to enable the IM to access the nodes and perform the software installation.
It will obtain the OSCAR endpoint and credentials from the installation process
to finally deploy the OSCAR services.

3. IaaS Cloud provider: In this case, regardless of the cloud provider chosen, the
TOSCA topology must specify all the components depicted in Fig. 2, from the FaaS
service to the VMs to deploy. Thus, the IM will be in charge of orchestrating the
deployment of the full stack of components on the Cloud, which involves mainly
three phases: i) create the Cloud resources, including VMs, storage, networks, and
any kind of resource requested by the user/application, by contacting directly with
the cloud provider (on-premises or public); ii) install and configure Kubernetes in
all the VMs and then deploy OSCAR on top of Kubernetes by means of Ansible;
and iii) create the FaaS services interacting directly with the OSCAR API.

4. FaaS Cloud provider: As in the first case, only deploying the FaaS service directly
in AWS Lambda is required. Because this service allows users to abstract from
the underlying computing infrastructure, only the FaaS services are defined in the
TOSCA topology, and AWS Lambda credentials are specified in the authorization
data sent to the IM, allowing the IM to create the Lambda functions on behalf of
the user.

In these scenarios, function placement is defined statically in the TOSCA document
(with the “HostedOn” relation) in cases 2 and 3. In cases 1 and 4, function placement
is made by the IM, at deployment time, using the same approach defined in [11] based
on the Cloud providers list sent by the user to create a topology.

5 Evaluation and Use Case

This section performs an assessment of the IM as a general-purpose TOSCA-based
orchestrator. First, a performance analysis has been carried out to evaluate the time
required to provision popular infrastructures, such as Kubernetes clusters, including
elasticity capabilities to add and remove additional nodes. Second, a use case involving
the use of AI/ML techniques for Rheumatic Heart Disease classification involving
data pre-processing, preparation and analysis across the computing continuum. The

17

TOSCA document with the full description of the topology used in this use case can
be found in the examples folder of the IM GitHub repository33.

5.1 Assessment of Deployment Time

We performed an updated performance analysis of the IM, similar to the one included
in the work by Caballer et al. [11], to assess the deployment time on multiple Cloud
providers/frameworks. However, in this case, a Kubernetes cluster has been used as
the deployed infrastructure, since it is the most popular platform deployed through
the IM in the EGI Cloud Service. This section shows the time needed to deploy a set
of small or medium-sized Kubernetes clusters on several IaaS Clouds: OpenNebula
(ONE), EGI Cloud Compute and Amazon Web Services (AWS). It also shows the
ability to manage the elasticity provided by the IM and the time needed to add and
remove working nodes (Virtual Machines) of the cluster. For the sake of reproducibility,
the description of the complete performance assessment results and the underlying
computing platforms have been made available in Zenodo34. The time needed to deploy
the infrastructure is decomposed into the following steps:

• VMs accessible: Time elapsed until the SSH server is accessible in the master VM.
This step requires the VM to be created and start running and the OS of the VMs
to boot and start the SSH server.

• Ansible configured : After the VM is accessible, this is the time needed to install
and configure Ansible in the master node. This is a relatively simple process that
involves downloading the software and a small list of requirements, installing them,
and copying all the recipes needed to configure the infrastructure.

• Fully configured : After Ansible is configured, this process involves the installation
of all the needed software packages to install Kubernetes in all the nodes and the
whole configuration process. It also applies a set of YAML files to configure a set
of basic applications into the Kubernetes cluster (ingress controller, metrics-server,
nfs-client-provisioner, ...). This process is made simultaneously in all the nodes, so
it may cause some bottlenecks in the network or in the disk access. Also, certain
synchronization is needed among the master and the worker nodes: e.g., the worker
nodes cannot join the master node until it is properly initialized.

The VM Addition test includes the time needed to create the VM, the booting
process to have the SSH server active, the configuration of the added node, and the
reconfiguration of the rest of the nodes. In the rest of the nodes, Ansible playbooks
are executed again, but since the Ansible modules are idempotent, they only check
that the current configuration is correct, thus making no changes or just minor ones
(e.g. adding new node IP in /etc/hosts file) without any significant overhead. The VM
Removal test includes the time needed to terminate the VM and the reconfiguration
of the rest of the nodes. As in the previous case, this implies no changes or just minor
ones without significant overhead.

Table 4 shows the time needed in each individual step. These times are the average
values of three tests performed in each case. As shown in the results, the average

33https://github.com/grycap/im/blob/master/examples/tosca radiomics.yaml
34IM Evaluation - https://zenodo.org/record/7426579

18

https://github.com/grycap/im/blob/master/examples/tosca_radiomics.yaml
https://zenodo.org/record/7426579

5 Nodes 5 Nodes 5 Nodes 10 Nodes 10 Nodes 20 Nodes 30 Nodes
(ONE) (EGI) (AWS) (ONE) (AWS) (ONE) (ONE)

VMs Accessible 1:06 1:10 1:02 2:16 1:09 2:34 1:50
Ansible Conf. 2:01 1:44 1:56 2:00 1:58 2:16 2:27
Fully Conf. 7:42 6:44 7:04 10:15 9:16 9:59 14:19
Total Time 10:49 9:38 10:02 14:31 12:23 14:49 18:36
VM Addition 5:38 4:26 6:55 5:54 6:50 7:07 6:18
VM Removal 2:06 2:27 3:15 2:41 4:00 4:31 7:27

Table 4 Deployment time (in minutes) for the Infrastructure Manager to provision a
Kubernetes cluster of several sizes in different Clouds.

time needed to deploy a small or medium-sized fully-functional Kubernetes cluster is
between 10 or 20 minutes and the most time-consuming step is the configuration since
it requires to install a relatively large list of packages in every node and performs the
Kubernetes configuration. The time required to add a new node is slightly lower since
just one node must be totally configured, and the other nodes just need to add the new
one to the configuration. The reconfiguration of the rest of the nodes may require a
longer time in the case of larger infrastructures. However, in this case, the results show
that the time needed to add a VM for 30 nodes infrastructure is slightly lower than
the smaller ones (10 and 20). It is not the expected behavior and can be explained by
an unusual saturation of the cloud platform during the tests. Finally, node removal is
the quickest operation since terminating a VM can be done very quickly, and it only
needs to remove the node from the configuration of the other nodes. The results show
that the VM removal operation time increases a bit when the size of the infrastructure
grows. This is caused by the reconfiguration made to the rest of the nodes, and the
larger the number of nodes, the longer it is needed to reconfigure them.

The time needed to add a node to the virtual infrastructure is reasonably long.
If deployment time is an issue (e.g., dealing with an unpredicted workload), the con-
figuration process could be reduced by using a pre-configured Virtual Machine Image
(VMI) with some (or most) of the software requirements.

5.2 Use Case: Deployment Across the Computing Continuum

To demonstrate and validate the new IM capabilities for deployment across the com-
puting continuum, we have chosen a real use case involving a pilot application on
Medical Imaging Biomarkers based on artificial intelligence and machine learning tech-
niques. This application (described in detail in the work by Blanquer et al. [28]) focuses
on the early diagnosis of Rheumatic Heart Disease (RHD). Nowadays, RHD is the
most frequent cardiovascular disease in children and young adults under 25 years old.
An early diagnosis of the disease has proven to be relevant for improving the patient’s
quality of life. Screening programs can detect this disease in children, but early detec-
tion is currently limited since no single test accurately provides an early diagnosis of
RHD. Therefore, RHD remains the leading cause of heart valve disease in the devel-
oping world. The usage of machine learning classifiers for assisting in the screening
of RHD images can facilitate early diagnosis and treatment of such diseases, reduc-
ing morbidity and treatment costs and, at the same time, improving patient outcomes
and quality of life.

19

The application utilizes texture analysis and filtering techniques to identify frames
with significant data from medical imaging videos. These frames are then processed
to extract relevant image features that can be used to classify rheumatic heart disease
into normal, definite, or borderline categories. The application workflow35 comprises
the following steps:

• Frame Splitting and Anonymization: an essential action when using sensitive data
like medical data. In this step, the frames are extracted from the videos during the
anonymization process, and a black mask is applied in the right-upper corner to hide
any sensitive data. Also, an automatic classification into Doppler and anatomical
images is made in this step.

• View Classification: Not all the frames have the same weight for the final screening.
Only the frames that relate to the parasternal long-axis view have proven to be rel-
evant for accurate classification. Since there is no annotation on the view metadata,
this should be estimated through an automatic classifier based on CNNs (Convo-
luted Neural Networks), previously trained for this purpose. This step uses tools
such as Keras or TensorFlow that can be configured to use GPU to accelerate the
computation.

• Colour-based Segmentation: To obtain trustworthy information from Doppler
images, it is necessary to analyze only the color distribution and avoid any potential
source of noise. For this purpose, color-based segmentation is performed through
k-means clustering to extract a mask containing only the color information.

• Texture Analysis: Afterwards, key features must be extracted from the images to
be fed into the classifier. For that purpose, first and second-order texture analyzes
are applied to characterize the images by their spatial variation of pixel intensities.
First-order analysis extracts features such as the mean, median, variance, kurtosis
or skewness of the pixel distribution along the image. Second-order provides charac-
teristics such as contrast, dissimilarity, homogeneity, or correlation, among others.
Besides these features, blood velocity information is also obtained by processing the
color distribution in the Doppler images.

• Features Classification: Finally, a classifier has been built through machine learning
techniques using all the information extracted in the previous steps. This classifier
has been trained according to the instructions previously described and can provide
a classification (normal, definite or borderline RHD) for each patient’s video.

After analyzing the application, we can identify three different computing scenarios
to cover the whole pipeline. Thus, these steps have been grouped into three phases to
be executed in different layers of the computing continuum (Fig. 4):

• Phase 1. Data pre-processing (anonymization): this phase involves Frame Splitting
and Anonymization and it needs to be executed in the edge device (close to where
the data are generated) to allow a secure process of the original data with sensitive
information. Moreover, sensitive data cannot typically cross the boundaries of the
organization to comply with regulations like the GDPR (General Data Protection

35https://github.com/eubr-atmosphere/radiomics

20

https://github.com/eubr-atmosphere/radiomics

Color-Based
Masks

View
Classification

Color-Based
Segmentation

Data Preparation

Texture
Analysis

Features
Classification

Parasternal Long Axis

Data Analysis

Frame
Splitting

Anonymization

Data Pre-process

Anonymized

Input Data

RHD
classification

Output Data

Doppler

Edge
Raspberry Pi

On-premises
OpenStack

Public
AWS Lambda

SCAR

Fig. 4 Use case phases and the associated computing platform.

Regulation)36. Once the images are anonymized, they can be moved to the next
phases that can be executed outside the boundaries of the data owner.

• Phase 2. Data preparation: This phase groups the View Classification and the
Colour-based Segmentation steps. These steps enable the speedup of the execution
using GPUs, so it will be executed in the on-premises cloud where flavors with GPUs
are available.

• Phase 3. Data analysis: This phase includes Texture Analysis and Features Classi-
fication. The application used in this final phase does not support using GPUs, and
it will be executed in AWS Lambda to profit from its high level of parallelism.

The next subsections specify the details of the platform used and the data involved
in the experiment and present the results of the execution of this application.

5.2.1 Platform specification

As described previously, three main phases were identified where each one is more
appropriate to be executed in a specific layer of the edge-to-cloud computing contin-
uum, as depicted in Fig. 4. To this end, we have set up three different computing
platforms distributed across this continuum:

• Raspberry Pi cluster: composed of one front-end and three worker nodes, all of them
using the Raspberry Pi 4 model B (with 4 cores and 4 GB of RAM). This platform is
pre-configured with K3s (a minimalistic Kubernetes distribution) and OSCAR. It is
in charge of executing the first phase of the use case, performing the first phase, i.e.
data pre-processing, including frame splitting and the anonymization of the videos,
close to the origin of the data.

• OpenStack on-premises cloud platform: used to deploy a virtual cluster involving five
VMs, with one front-end (4 CPUs and 4 GB of RAM) and four worker nodes (8 CPUs
and 8 GB of RAM). All of the nodes use an Ubuntu 20.04 vanilla image. The IM

36GDPR - https://gdpr-info.eu/

21

https://gdpr-info.eu/

automatically deploys all the cloud resources and configures the required software:
Kubernetes and all the components of the OSCAR stack. This infrastructure is in
charge of executing the second phase of the application, i.e. the data preparation
that includes the view classification and color-based segmentation. The hardware
resources have been empirically estimated through basic application performance
profiling.

• AWS Lambda: we also involve the usage of a FaaS provider to perform the third
phase of the use case, i.e., the data analysis which includes texture analysis and
features classification. We have used AWS Lambda with functions configured with
1 GB of RAM, all of them deployed in the North Virginia (us-east-1) region. The
run-time has been set up for using a container image previously prepared37 and
uploaded to AWS Elastic Container Registry (ECR) to make it available in the
Lambda environment.

Although we have involved three different computing platforms, the Raspberry
PI cluster was physically located in the same data center as the OpenStack infras-
tructure, and the virtual cluster deployed on top of it, for the sake of reproducibility
during the execution of the case study. However, this does not affect the results and
validation performed, since spreading the first two computing platforms across dis-
tributed infrastructures would only affect the network latency. OSCAR is being used
both in the Raspberry Pi cluster (where it was installed beforehand) and the Open-
Stack on-premises cloud (where it was dynamically deployed beforehand), while SCAR
is employed to facilitate the usage of AWS Lambda.

5.2.2 Data

The data used in these tests is a subset of 100 exams from the ones used in the
work of Blanquer et al. [28]. The data comes from the Program of Rheumatic Valve
Disease Screening (PROVAR - Programa de Rastreamento da VAlvopatia Reumática)
initiative. PROVAR [29] is a collaboration between the Universidade Federal de Minas
Gerais and the Telehealth Network of Minas Gerais, in Belo Horizonte, Brazil, and
the Children’s National Health System, in Washington DC, USA. The PROVAR team
conducted a prospective cross-sectional study in Brazilian primary and secondary
schools between October 2014 and December 2015 [30].

These 100 exams have an average of 14 videos each, with a total of 1,379 videos,
from which:

• 90 exams are classified as normal (with a total of 1,217 videos);
• 5 exams are classified as borderline RHD (with a total of 82 videos); and,
• 5 exams are classified as definite RHD (with a total of 80 videos).

The video length ranges from 1 to 3 seconds, with a rate between 13 frames/second
(Doppler videos) and 20 frames/second (anatomical videos).

37https://scar.readthedocs.io/en/latest/image env usage.html#use-already-prepared-ecr-images

22

https://scar.readthedocs.io/en/latest/image_env_usage.html#use-already-prepared-ecr-images

00:00,0

02:00,0

04:00,0

06:00,0

08:00,0

10:00,0

12:00,0

14:00,0

Job 1

Job 3

Job 5

Job 7

Job 9

Job 11

Job 13

Job 15

Job 17

Job 19

Job 21

Job 23

Job 25

Job 27

Job 29

Job 31

Job 33

Job 35

Job 37

Job 39

Job 41

Job 43

Job 45

Job 47

Job 49

Job 51

Job 53

Job 55

Job 57

Job 59

Job 61

Job 63

Job 65

Job 67

Job 69

Job 71

Job 73

Job 75

Job 77

Job 79

Job 81

Job 83

Job 85

Job 87

Job 89

Job 91

Job 93

Job 95

Job 97

Job 99

Execution time

Anon Wait Anonymization Prep Wait Data preparation Analysis Wait Data analysis

Fig. 5 Execution time of the use case. TheX axis represents each executed job. The Y axis represents
the elapsed time in each phase (format ’mm:ss,0’).

5.2.3 Results

This section shows the results obtained after executing the 100 exams described above
in the computing continuum scenario presented in subsection 5.2.1.

In the first step, we deployed and properly configured the whole infrastructure.
This process has taken 12 min 3 s in total, including the creation of the VMs in
the cloud provider (OpenStack) and the configuration of the OSCAR FaaS platform.
The time needed to deploy the OSCAR service in the Raspberry Pi cluster and the
Lambda function in AWS are not shown since they are done in parallel with the cluster
creation, and the time required is considerably lower (less than a minute). Specifically,
the time needed for each configuration step is the following:

• Create and wait for the VMs to boot in the OpenStack cloud provider (2 min 20 s).
• Configure Ansible in the front-end node (1 min 10 s).
• Configure the infrastructure (9 min), which involves:

– Initial general configuration (1 min 15 s).
– Install and Configure Kubernetes (5 min 5 s).
– Install and Configure OSCAR (1 min 20 s).
– Create OSCAR services (1 min 20 s).

23

Once the infrastructure is ready, we can start the execution of the use case appli-
cation. As depicted in Fig. 4 the execution starts uploading the input files to a MinIO
bucket deployed in the Raspberry Pi cluster that automatically triggers the execution
of the full workflow. Fig. 5 shows the execution time of the total use case where 100
jobs (one job per exam, which involves an average of 14 videos to be processed) have
been submitted and executed in parallel on the computing platform. One can also
observe the time spent by each job in each one of the three phases of the execution.
As labeled in the graph legend, we have represented in orange the first phase (data
pre-processing, i.e., anonymization), which involves frame splitting and anonymization
executed in the Raspberry Pi cluster; in green, the second phase (data preparation),
which performs the view classification and the color-based segmentation steps on top of
the virtual cluster deployed in OpenStack; and finally in yellow, we have depicted the
third phase (data analysis), which involves texture analysis and features classification,
that is executed in AWS Lambda.

Moreover, since the computing resources are limited, especially in the infrastructure
used for running the first phase of anonymization, which represents the devices on the
edge, Fig. 5 also shows the waiting time of each job. In light blue we see the waiting
time of the jobs executing Phase 1; in grey, the waiting time for the jobs in Phase 2;
and in dark blue, the waiting time in Phase 3 for each job. These times appear due
to insufficient resources to process all the incoming jobs. In the case of the Raspberry
Pi cluster, 12 parallel jobs (4 per node) are supported. In the case of the OpenStack
OSCAR cluster, this is a total of 32 jobs (8 per node). Finally, in the case of AWS
Lambda, the parallelism is large enough to execute all the incoming jobs (a peak of
31 simultaneous jobs), so the waiting time is minimal and barely appreciated in the
figure.

Table 5 analyzes the whole execution of the use case, presenting the average, stan-
dard deviation (SD), maximum, minimum, and accumulated time for each phase,
separating the execution time from the waiting time. The total execution time of the
use case is set by the last finished job (in the graph, Job 35), which is 13 min 55,1
sec. Considering a scenario in which these jobs are executed sequentially, one after
another, this would ideally require 7 h 31 min 53 s (the accum. execution time in
Table 5), without considering any waiting time. Thanks to the concurrency supported
by the FaaS platforms, the execution time was reduced to less than 14 min. From the
results, we can also confirm that the most limiting phase is the first one, executed in
the edge, due to the low computing capacity of these devices. The second phase is the
most compute-intensive one, and its performance may vary depending on the number
of nodes that compose the cluster and the computing capacity of the nodes (which
can be specified in the TOSCA file). In the third phase, AWS guarantees a timely exe-
cution without significant delays, as long as the number of jobs does not exceed the
default Lamba concurrency limit of 3000 executions38. The variability in the duration
of each job, which can be noticed in Fig. 5, is determined by both the execution time,
since the number of videos that compose the job, as well as their duration and number

38https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

24

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

Waiting Time
Avg SD Max Min Accum.

1-Anonymization 1min 31,9s 56,3s 3min 12,1s 0s 2h 33min 7,4s
2-Data preparation 1min 8,2s 1min 35s 4min 44,1s 1,4s 1h 53min 39,9s
3-Data analysis 1,5s 0,7s 3,2s 0,4s 2min 25,1s

Total 4h 29min 12s
Execution Time

Avg SD Max Min Accum.
1-Anonymization 16,4s 5,4s 34,3s 6,1s 27min 21,1s
2-Data preparation 2min 9,5s 46,2s 4min 42,2s 51,2s 3h 35min 49,5s
3-Data analysis 2min 5,2s 39s 4min 57,6s 10,7s 3h 28min 42,8s

Total 7h 31min 53s

Table 5 Analysis of the use case time results.

of frames, affect this value, and the waiting time, which directly depends on the work-
load of the underlying computing infrastructure, as seen in the Standard Deviation
(SD) values in Table 5.

Finally, it can be noticed that the Kubernetes scheduler follows a random selection
of queued jobs, where some jobs that arrived at the cluster at the end of the execution
(i.e. Job 94) are scheduled earlier than other previous jobs (i.e. Job 35). This has
no impact on the final results, but it is not the standard behavior in other resource
management platforms where the default job selection strategy used is FIFO (First
In, First Out), as is the case of SLURM.

Notice that the whole execution starts when the video that the user wants to
analyze is uploaded to the MinIO storage system in the OSCAR cluster of Raspberry
Pis. After that, the execution is performed without the user needing to interact with
the application or the infrastructure during the execution process. The execution is
automatically orchestrated by OSCAR on top of the resources previously configured
by the IM, allowing the integrated solution to deploy and execute applications in the
computing continuum.

The ability to combine resources from multiple heterogeneous platforms (IaaS on-
premises Cloud, public FaaS services) and disparate computer architectures (amd64
and arm64) allows to efficiently accommodate the execution of data-driven server-
less workflows across the computing continuum thanks to the use of SCAR and
OSCAR. Using the Infrastructure Manager to perform the automated provisioning of
the OSCAR clusters and the dynamic deployment of both the OSCAR services and
the Lambda functions via SCAR simplifies the process for the user.

6 Conclusions

This paper has introduced the new developments in the Infrastructure Manager (IM).
This TOSCA-based orchestrator provides a unified management approach for appli-
cation deployment, management, and scaling in a cloud-to-edge computing continuum
scenario. These extensions have supported the deployment through TOSCA templates
across the computing continuum of both on-premises FaaS services via OSCAR and
public FaaS services such as AWS Lambda via SCAR. The IM leverages the TOSCA
standard to provide a flexible and scalable runtime orchestrator that can handle the

25

heterogeneity of edge devices and the dynamic nature of edge computing environ-
ments. We have validated the IM effectiveness with an actual use case focused on the
early diagnosis of Rheumatic Heart Disease (RHD), showing that it abstracts the exe-
cutions of applications in the computing continuum regarding deployment, resource
configuration, and orchestration, maximizing application performance. Thus, we have
proven the benefits of using the IM in cloud and edge computing environments, such as
improved application performance (due to the use of FaaS in the continuum to exploit
greater parallelism), reduced deployment costs, and enhanced support for data-driven
serverless workflows across the computing continuum.

Future work includes extending the IM to interact with additional resource
providers, especially additional FaaS services such as Google Functions or Microsoft
Azure Functions. Moreover, with the uptake of TOSCA 2.0, additional alignments are
expected to be developed in the IM to accommodate the changes introduced in newer
versions of the specifications. Finally, re-configuration of dynamically provisioned
infrastructure across the computing continuum opens up new avenues for research,
which requires integration with QoS-aware mechanisms that trigger the reconfigu-
ration process depending on the state of certain metrics such as workload increase,
etc. For example, data ingestion at the edge of the network may require local pre-
processing. This can be eventually supplemented with computing from an external
Cloud to cope with temporary increased data processing requirements at the expense
of an increased economic cost. This is the case, for example, in Agriculture 4.0 sce-
narios that require foliage analysis for decision-making on fully-connected tractors (a
use case from the AI-SPRINT project).

Acknowledgements

Grant PID2020-113126RB-I00 funded by MCIN/AEI/10.13039/501100011033. Also,
Project PDC2021-120844-I00 funded by MCIN/AEI/10.13039/501100011033 and by
the European Union NextGenerationEU/PRTR. This work was partially supported
by the project AI-SPRINT “AI in Secure Privacy-Preserving Computing Continuum”
which has received funding from the European Union’s Horizon 2020 Research and
Innovation Programme under Grant 101016577 and by the AI4EOSC “Artificial Intel-
ligence for the European Open Science Cloud” that has received funding from the
European Union’s Horizon Europe Research and Innovation Programme under Grant
101058593. Finally, Amanda wants to thank the support received by the Universitat
Politècnica de València for the project “Extensión de modelos de computaciń en cloud
en entornos confiables y altamente distribuidos”, from the PAID-10-20 postdoctoral
program.

References

[1] Ren, J., Yu, G., He, Y., Li, G.Y.: Collaborative cloud and edge computing for
latency minimization. IEEE Transactions on Vehicular Technology 68(5), 5031–
5044 (2019)

26

[2] Jansen, M., Al-Dulaimy, A., Papadopoulos, A.V., Trivedi, A., Iosup, A.:
The SPEC-RG Reference Architecture for the Compute Continuum. arXiv
(2022). https://doi.org/10.48550/ARXIV.2207.04159 . https://arxiv.org/abs/
2207.04159

[3] Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., Zomaya, A.Y.: Edge intelli-
gence: The confluence of edge computing and artificial intelligence. IEEE Internet
of Things Journal 7(8), 7457–7469 (2020)

[4] Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J., Yadwadkar, N.J.,
Popa, R.A., Gonzalez, J.E., Stoica, I., Patterson, D.A.: What serverless comput-
ing is and should become: The next phase of cloud computing. Communications
of the ACM 64(5), 76–84 (2021)

[5] Momcheva, I.: Working with the hubble space telescope public data on amazon
web services. Astronomical Data Analysis Software and Systems XXVII 523, 671
(2019)

[6] Muhammad, W., Esposito, F., Maimaitijiang, M., Sagan, V., Bonaiuti, E.: Polly:
A tool for rapid data integration and analysis in support of agricultural research
and education. Internet of Things 9, 100141 (2020) https://doi.org/10.1016/j.iot.
2019.100141

[7] Cinaglia, P., Vázquez-Poletti, J.L., Cannataro, M.: Serverless computing for rna-
seq data analysis. In: 2022 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pp. 2175–2181 (2022). IEEE

[8] Risco, S., Moltó, G., Blanquer, I.: Serverless workflows for containerised appli-
cations in the cloud continuum. Journal of Grid Computing 19(3) (2021) https:
//doi.org/10.1007/s10723-021-09570-2

[9] Pérez, A., Risco, S., Naranjo, D.M., Caballer, M., Moltó, G.: On-premises server-
less computing for event-driven data processing applications. In: 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD), pp. 414–421 (2019).
https://doi.org/10.1109/CLOUD.2019.00073

[10] Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Serverless computing for
container-based architectures. Future Generation Computer Systems 83, 50–59
(2018) https://doi.org/10.1016/j.future.2018.01.022

[11] Caballer, M., Blanquer, I., Moltó, G., Alfonso, C.: Dynamic management of
virtual infrastructures. Journal of Grid Computing 13(1), 53–70 (2015) https:
//doi.org/10.1007/s10723-014-9296-5

[12] Palma, D., Rutkowski, M., Spatzier, T.: Tosca simple profile in yaml version 1.0.
OASIS Committee Specification 1, 20 (2016)

27

https://doi.org/10.48550/ARXIV.2207.04159
https://arxiv.org/abs/2207.04159
https://arxiv.org/abs/2207.04159
https://doi.org/10.1016/j.iot.2019.100141
https://doi.org/10.1016/j.iot.2019.100141
https://doi.org/10.1007/s10723-021-09570-2
https://doi.org/10.1007/s10723-021-09570-2
https://doi.org/10.1109/CLOUD.2019.00073
https://doi.org/10.1016/j.future.2018.01.022
https://doi.org/10.1007/s10723-014-9296-5
https://doi.org/10.1007/s10723-014-9296-5

[13] Foundation, E.S., Academies, A.E.: The European Code of Conduct for Research
Integrity. European Science Foundation, Berlin, Germany (2011)

[14] Santana-Perez, I., Silva, R.F., Rynge, M., Deelman, E., Pérez-Hernández, M.S.,
Corcho, O.: Reproducibility of execution environments in computational science
using semantics and clouds. Future Generation Computer Systems 67, 354–367
(2017)

[15] Ullah, A., Dagdeviren, H., Ariyattu, R.C., DesLauriers, J., Kiss, T., Bowden,
J.: Micado-edge: Towards an application-level orchestrator for the cloud-to-edge
computing continuum. Journal of Grid Computing 19(4), 1–28 (2021)

[16] Tusa, F., Clayman, S.: End-to-end slices to orchestrate resources and services in
the cloud-to-edge continuum. Future Generation Computer Systems 141, 473–488
(2023) https://doi.org/10.1016/j.future.2022.11.026

[17] Wurster, M., Breitenbücher, U., Képes, K., Leymann, F., Yussupov, V.: Modeling
and automated deployment of serverless applications using tosca. In: 2018 IEEE
11th Conference on Service-oriented Computing and Applications (SOCA), pp.
73–80 (2018). IEEE

[18] Yussupov, V., Soldani, J., Breitenbücher, U., Leymann, F.: Standards-based mod-
eling and deployment of serverless function orchestrations using bpmn and tosca.
Software: Practice and Experience 52(6), 1454–1495 (2022)

[19] Dehury, C.K., Jakovits, P., Srirama, S.N., Giotis, G., Garg, G.: Toscadata: Mod-
eling data pipeline applications in tosca. Journal of Systems and Software 186,
111164 (2022)

[20] Caballer, M., Antonacci, M., Šustr, Z., Perniola, M., Moltó, G.: Deployment of
elastic virtual hybrid clusters across cloud sites. Journal of Grid Computing 19,
4 (2021) https://doi.org/10.1007/s10723-021-09543-5

[21] Caballer, M., Chatziangelou, M., Calatrava, A., Moltó, G., Pérez, A.: IM inte-
gration in the EGI VMOps Dashboard. In: EGI Conference 2017 and INDIGO
Summit 2017 (2017). https://indico.egi.eu/event/3249/contributions/7473/

[22] Salomoni, D., Campos, I., Gaido, L., Lucas, J.M., Solagna, P., Gomes, J.,
Matyska, L., Fuhrman, P., Hardt, M., Donvito, G., et al.: Indigo-datacloud:
A platform to facilitate seamless access to e-infrastructures. Journal of Grid
Computing 16, 381–408 (2018)

[23] Lahiff, A., Witt, S., Caballer, M., La Rocca, G., Pamela, S., Coster, D.: Running
htc and hpc applications opportunistically across private, academic and public
clouds. In: EPJ Web of Conferences, vol. 245, p. 07032 (2020). EDP Sciences

[24] Caballer, M., Antonacci, M., Šustr, Z., Perniola, M., Moltó, G.: Deployment of

28

https://doi.org/10.1016/j.future.2022.11.026
https://doi.org/10.1007/s10723-021-09543-5
https://indico.egi.eu/event/3249/contributions/7473/

elastic virtual hybrid clusters across cloud sites. Journal of Grid Computing 19(1),
4 (2021)

[25] Caballer, M., de Alfonso, C., Alvarruiz, F., Moltó, G.: Ec3: Elastic cloud comput-
ing cluster. Journal of Computer and System Sciences 79(8), 1341–1351 (2013)
https://doi.org/10.1016/j.jcss.2013.06.005

[26] Alvarruiz, F., Alfonso, C., Caballer, M., Hern’ndez, V.: An energy manager for
high performance computer clusters. In: 2012 IEEE 10th International Sym-
posium on Parallel and Distributed Processing with Applications, pp. 231–238
(2012). https://doi.org/10.1109/ISPA.2012.38

[27] OpenFog Consortium Architecture Working Group, A., et al.: Openfog reference
architecture for fog computing. OPFRA001 20817, 162 (2017)

[28] Blanquer, I., Brasileiro, F., Brito, A., Calatrava, A., Carvalho, A., Fetzer, C.,
Figueiredo, F., Guimarães, R.P., Marinho, L., Meira, W., Silva, A., Alberich-
Bayarri, Camacho-Ramos, E., Jimenez-Pastor, A., Ribeiro, A.L.L., Nascimento,
B.R., Silva, F.: Federated and secure cloud services for building medical image
classifiers on an intercontinental infrastructure. Future Generation Computer
Systems 110, 119–134 (2020) https://doi.org/10.1016/j.future.2020.04.012

[29] Lopes, E.L., Beaton, A.Z., Nascimento, B.R., Tompsett, A., Dos Santos, J.P.,
Perlman, L., Diamantino, A.C., Oliveira, K.K., Oliveira, C.M., Nunes, M.d.C.P.,
et al.: Telehealth solutions to enable global collaboration in rheumatic heart
disease screening. Journal of telemedicine and telecare 24(2), 101–109 (2018)

[30] Nascimento, B.R., Beaton, A.Z., Nunes, M.C.P., Diamantino, A.C., Carmo,
G.A., Oliveira, K.K., Oliveira, C.M., Meira, Z.M.A., Castilho, S.R.T., Lopes,
E.L., et al.: Echocardiographic prevalence of rheumatic heart disease in brazilian
schoolchildren: Data from the provar study. International journal of cardiology
219, 439–445 (2016)

29

https://doi.org/10.1016/j.jcss.2013.06.005
https://doi.org/10.1109/ISPA.2012.38
https://doi.org/10.1016/j.future.2020.04.012

	Introduction
	Related Work
	Infrastructure Manager: Architecture and Components
	VM Image Selector
	Configuration Manager
	Cloud Connector
	External Components
	Ansible
	Virtual Machine Image Catalogs
	Cloud Credentials Storage
	CLUES Elasticity Management
	SCAR
	OSCAR
	FDL

	Extending the IM for the Computing continuum
	Supplementing TOSCA for the Computing Continuum

	Evaluation and Use Case
	Assessment of Deployment Time
	Use Case: Deployment Across the Computing Continuum
	Platform specification
	Data
	Results

	Conclusions

