Software Quality Assurance as a Service: Encompassing the Quality Assessment of
Software and Services

Samuel Bernardo?, Pablo Orviz?, Mario David?, J orge Gomes®, David Arce®, Diana Naranjo®, Ignacio Blanquer®, Isabel Camposb,
German Molt6°, Joao Pina?

“Laboratory of Instrumentation and Particles - LIP, Av. Prof. Gama Pinto, 2, Lisbon, 1649-003, Portugal
b Institute of Physics of Cantabria - CSIC - UC, Av. de los Castros s/n, Santander, 39005, Spain
CInstituto de Instrumentacion para Imagen Molecular (I3M). CSIC — Universitat Politécnica de Valéncia. Camino de Vera S/N, Valencia, 46022, Spain

Abstract

This paper introduces the Software Quality Assurance as a Service (SQAaaS) concept and it describes an open-source imple-
mentation of a comprehensive platform that supports the automated assessment of specific quality metrics for software and services,
defined as a set of baseline requirements. The platform is openly accessible, focuses on research software and open science, and
promotes best practices by awarding standards-based digital badges to software and services. It provides an easy-to-use web-based
graphical user interface which facilitates the interaction with server-side components in charge of automatically creating CI/CD
(Continuous Integration / Continuous Delivery) pipelines for automated testing of the baseline criteria. The service is in production

and has performed over 2800 assessments, awarding more than 125 digital badges across several scientific disciplines.

Keywords:

Software quality Software Sustainability, Digital badges, Open science

PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

Software quality understood as reliability, sustainability, -
and reusability, is a fundamental aspect both for industry and
research [1]. In particular, quality assurance is an essential trait
of software development. It allows users and managers to have
higher trust that the software and related services will work as
supposed, provide the expected results and meet their require-
ments. Furthermore, it also contributes to sustainability and
facilitates collaboration between software developers.

Our focus is on research software development, i.e. broadly
speaking, software developed with the purpose to be used in sci-
entific environments: from simulation to analysis software, as
well as middleware software used to deploy services supporting
advanced scientific computing.

As stated in the work of Axelsson et al. [2], the quality of a
software product stands for the fulfilment of the needs and re-
quirements defined by the stakeholders. In this sense, quality in
research software is not the same as quality in industry-oriented
software, the latter being much more structured around “pro-
cesses”, while the first crucially relies on creative evolution,
and less on standard development processes. In the world of re-
search, discussions on the long-term maintenance effort for the
software are often pushed aside for well-known reasons such as:
lack of time and resources, development done by PhD students
and postdocs moving to other jobs, availability of key people,
or insufficient recognition in the career path as in the case of
early career researchers. However, research software still needs

Preprint submitted to Future Generation Computer Systems

to be “fit for purpose”.

There is a broad consensus on the necessity to encourage
the general adoption of best practices around research software
development. We want to stress that the current problems of
software sustainability in research, far from wearing off, will
become more acute due to the increasing dependency of Sci-
ence on software. Therefore, the development processes in Sci-
ence must become more sustainable. One important premise
of our work is that there are key points behind Industrial Soft-
ware Quality which should be transmitted to the development of
research software, notably the concepts of “Maintenance” and
“Return on Investment”. To this aim, quality assurance repre-
sents the activities carried out towards achieving and validating
the desired level of quality [3].

In this paper, we describe the architecture and practical im-
plementation of a platform to facilitate software and services
quality assessment, which we have named Software Quality As-
surance as a Service (SQAaaS)T} We follow a fully structured
approach encompassing the quality of software and services,
which constitutes one of the main novelties of the developments
described here. As it will be noted, our decision-making and ar-
chitectural choices are strongly influenced towards supporting
the Open Science paradigm [4]. Our developments are, how-
ever applicable to general software development and service
testing and deployment processes in science and engineering
and is based on three pillars:

1SQAaa$ - https://sqaaas.eosc-synergy.eu

February 19, 2024

https://sqaaas.eosc-synergy.eu

(a) Identification and adoption of best practices for software
development, and related services operation establishing
quality criteria that are both open and technology agnos-
tic. These criteria are based on widely adopted best prac-
tices that have been collected and successfully applied in
many environments both in academia and industry.

(b) Development of libraries, tools and a Quality Assurance
platform following DevOps principles and exploiting a
Continuous Integration and Continuous Delivery (CI/CD)
process to enable automated verification of the quality
criteria identified in (a). These developments are usable
both programatically through APIs for advanced usage

and more easily through a web interface.

(c) The level of adherence of the software, services and data
repositories towards best practices identified by (b) will
be rewarded through verifiable, shareable and portable
quality badges following the Open Badges specification
[5]. These badges highlight the achievements to both pro-
mote adherence to quality and make the quality achieve-

ments explicitly visible to the users, therefore raising aware-

ness.

After the introduction, the remainder of the paper is struc-
tured as follows. First, section 2] summarizes the state of the
art and motivation as well as the rationale behind the software
and services maturity baselines. Then, section E] describes the
strategy of using digital badges to recognize software and ser-
vices developed according to quality criteria. Next, section [4]
describes the architecture of the Software Quality Assurance as
a Service (SQAaaS) framework developed, whereas its high-
level functionalities are described in section[3] After that, sec-
tion 6] discusses the technical decisions and development of the
core components of the platform. Later, section [7]describes the
user interface developed to facilitate its usage. Finally, section|§]
provides business logic examples while section [T0] summarizes
the main achievements and concludes with the current status
and future work.

2. Quality Assessment in Software

Quality assessment is an important trait for software and for
services. It allows users and managers to have higher trust that,
during its use and operation, the software and related services
will work as supposed, give the expected results and meet their
requirements. Furthermore, it also contributes to the maintain-
ability, stability and sustainability of the software and services.
Finally, it facilitates the collaboration between software devel-
opers and promotes good software development practices.

2.1. State of the Art

The most relevant quality model [6] is the standard defined
in the "ISO/IEC 25010:2011(en) Systems and software engi-
neering - Systems and software Quality Requirements and Eval-
uation (SQuaRE) - System and software quality models" [7]. It
replaces the ISO/IEC 9126-1:2001. The ISO/IEC 25010:2011(en)
defines the following two models:

e A Quality in Use model composed of five character-
istics (some of which are further subdivided into sub-
characteristics) that relate to the outcome of interaction
when a product is used in a particular context of use: 1)
Effectiveness, 2) Efficiency, 3) Satisfaction, 4) Freedom
from risk and 5) Context coverage.

o A Product Quality model composed of eight character-
istics (which are further subdivided into sub-characteristics)
that relate to static properties of software and dynamic
properties of the computer system: 1) Functional suit-
ability, 2) Performance efficiency, 3) Compatibility, 4)
Usability, 5) Reliability, 6) Security, 7) Maintainability
and 8) Portability.

The Quality in Use model seeks to quantify the “usabil-

ity” (effectiveness, efficiency and satisfaction) of the applica-

tion, when specific users attempt to meet their specified goals.

The quantification of the characteristics of this model, are user
based. The Product Quality model characteristics are of more

interest to the developers of the product (or Software compo-
nent). The implementation and documentation of plans to quan-
tify and verify each of the characteristics, are the responsibility
of the developers or supplier of the product.

On the one hand both the Quality in Use and the Prod-
uct Quality models only tackle external quality and require the
Software in execution within a given environment. On the other

hand, only some of the Product Quality model characteristics

are appropriate for automation.

The basis for the standard was connected to Commercial
Off The Shelf (COTS) software. The Open Source Software
(OSS) has characteristics that are not present in COTS, such as

public access to the source code and participation of commu-
nity members (both the development and user side) [8]. Several

such models are reviewed in [9]. Some have their origin in

the ISO/IEC 9126-1:2001, some are hierarchical and some are
based on a Maturity model. The metrics corresponding to the

assessment of the quality, are in general based on a given algo-

rithm implemented in tools that automate the assessment of the
quality.

The DevOps approach links development and operations for
software components, through the use of a Continuous Inte-
gration and Continuous Delivery pipeline. The CAMS model
stands for Culture, Automation, Measurement and Sharing, which
are named as the four-fundamental dimensions to enable De-
vOps [10]. It does not have a single standard but takes the best

practices from several standards. The authors of [11] propose a

Quality model based on DevOps, while it reviews some of the
other Quality models. The metrics are based on several sources
and are posed as questions. These questions/metrics focus on

the number of features delivered, the time a feature needs to
be delivered or the number of releases to deliver these features.
They also map most of the metrics with the Product Quality

model of the ISO/IEC 25010:2011 [7].

In our work, in order to encompass the requirements of soft-
ware development, we follow the DevOps approach that links
development and operations through the use of Continuous In-

tegration and Continuous Delivery pipelines, building on best
practices from several standards.

We have defined two Quality Models, one for software [12]]
and one for services [13], establishing the pragmatic minimum
set of principles to attain and assess quality. The Quality Mod-
els define the attributes for the Software Quality Assurance as
a Service (SQAaaS) platform, aiming to make quality verifi-
cation and assessment easily accessible to software developers
and service integrators.

2.2. Software Quality Assurance baseline

The software quality baseline is focused on software de-
velopment. It is based on first-hand experiences and widely
adopted best practices in industry and research, which have

been collected and successfully applied in several research projects [[14}

15]]. The definition of quality baselines benefits from the input
of software developers and, therefore is a process in continu-
ous evolution. In the context of this work, we gathered addi-
tional criteria from research software developers in the areas of
Environment, Earth Observation, Astrophysics, and Life Sci-
ences [16] and feedback from the EOSC Task Force on Re-
search Software Infrastructures [[17].

The set of minimum software quality criteria follows the
spirit of enhancing visibility, accessibility and distribution of
the source code through the alignment to the Open Source Def-
inition [18], in particular promoting code style standards to de-
liver good quality source code emphasizing its readability and
re-usability.

In our approach, DevOps principles improve the quality and
reliability of software by covering different testing methods at
the development and pre-production stages. Following this, we
propose a change-based driven scenario where all new updates
in the source code are continuously validated by the automated
execution of the relevant tests. The minimum set of quality
attributes also encourages secure coding practices and Static
Application Security Testing (SAST) at the development phase
while providing recommendations on external security assess-
ment.

. \ N
Code handling: Static testing - White box testing
Source code management
p — > Linting Unit test Test Hamess
Code Workflow in git Pull from git ‘ ‘ ‘ i |
{ Qc.Wor J { Qc.Ace (@csty | QCUni J| QCHar
‘lssue tracker and pRs‘ Test-Driven Development Secur SAST
QC.Man _ Qc.Tdd Qc.sec)

-
Files and documents }

License | Metadata | [Documentation|
ac.lic | ac.Met QC.Doc

L L

A,

Code handling:

Code release Delivery

Deployment ‘

‘ Auto delivery Auto deployment
QC.Del QC.Dep

[‘'Semantic Versioning | { Code Review
L QC.Ver J [___QCRev

uust | [smoutn) [v

SHALL | | RECOMMENDED | Color legend

Figure 1: Software Quality Assurance workflow.

This section provides a high-level summary of the software
quality criteria baseline. A full description including sub-criteria

can be found in “A set of Common Software Quality Assur-
ance Baseline Criteria for Research Projects’ [19]. The logical
workflow of the Software Quality Assurance process is depicted
in Figure E} The keywords MUST, SHOULD, MAY, SHALL
and RECOMMENDED are to be interpreted as described in
RFC 2119 [20].

There are five main blocks involved in the workflow for the
quality model.

e Code handling - Source code management, includes
the criteria for code accessibility, workflow and manage-
ment. In the quality model, software must be open and
publicly available to promote adoption and augment the
visibility of the developments. As such, it must adhere to
an open-source license. An issue tracking system, includ-
ing a system to pull or merge requests are also considered
best practice to review and discuss the proposed changes.
Each individual software product must also comply with
community-driven or de-facto code style standards for
the programming languages being used. Documentation
must exist and be accessible. Metadata for the software
component provides a way to achieve full identification,
thus making software citable [21]]. A metadata file should
exist alongside the code, included in the version control
system. The specifically required files (license, metadata,
and documentation) are included in the block of files and
documents. Documentation and License are a "must” to
have a basic quality level.

o Static testing - White box testing, includes code style
checking and testing. Unit testing evaluates all the possi-
ble flows of the code so that its fit for use can be automat-
ically assessed. Test harness complements the implemen-
tation of Unit testing when stubs and mocks are necessary
to isolate the unit being tested. Test driven development
relies on implementation of tests based on software re-
quirements.

o Code handling - Code release, includes checking of se-
mantic versioning and code review. Code review implies
the informal, non-automated, peer review of any change
in the source code. It appears as the last step in the change
management pipeline and must be done in a peer review
tool previously agreed by the product team.

o Delivery, is the packaging of the Software into an artifact
and publishing in a public repository for such artifacts.

o Deployment, which fetches the artifact from its public
repository and deploys it into a working state.

2.3. Services Quality Assurance baseline

The meaning of service can be regarded from different per-
spectives. From an IT Service Management (ITSM) [22] stand-
point a service is devised as a means to provide value to the cus-
tomer. In the ITSM model a service is an intangible asset that

%see alsohttps://github.com/indigo-dc/sqa-baseline

https://github.com/indigo-dc/sqa-baseline

also includes additional activities such as customer engagement
and support. Consequently, is a heavy process that might not be
appropriately applicable for all types of services. The DevOps
model, on the other hand, narrows down the scope to meet the
user expectations by acting exclusively on the quality features
of the service, which is seen as an aggregate of software com-
ponents in operation.

In this work we propose harnessing the capabilities of the
quality factors in the underlying software to lay out the prin-
ciples for attaining quality in the services. According to this
view, service quality is the foundation for shaping user-centric,
reliable and fit-for-purpose services. The quality baseline for
services is therefore designed to favour a pragmatic and system-
atic approach that emphasizes the programmatic assessment of
the quality conventions. To this end, the Service Quality criteria
builds on the preceding Software Quality Assurance baseline, to
outline the good practices that seek the usability and reliability
of services and meet the user expectations regarding functional
requirements.

By leveraging a DevOps approach, the Service Quality base-
line complements the Software Quality Model, with the exist-
ing approaches to assess and assure the quality and maturity of
services, i.e. Technology Readiness Levels (TRLs) and gen-
eral Service Management System (SMS). It builds trust on the
users by strengthening the reliability and stability of the ser-
vices, with a focus on the underlying software, thus ensuring a
proper realization of the verification and validation processes.
The functional suitability of the service is ensured by promot-
ing testing techniques that check the compliance of the user re-
quirements. Examples of services, as conceived in this quality
baseline can be a Web service EL a Web Application E| or a Plat-
formﬂcreated by the aggregation of multiple smaller services.

The logical workflow of the Service Quality Assurance pro-
cess is depicted in Figure[2] In the following we summarize the
quality conventions and best practices that apply to production
service deployment. A more detailed description including sub-
criteria can be found in the work by Orviz et al. [[13]] ﬂ

The Service Quality Model is divided into two main cate-
gories; Automation criteria and Operational criteria. Automa-
tion criteria are fit for execution in a pipeline, while Operational
criteria are to be verified on a service in production.

The automated deployment of services implies the use of
code to install and configure them in the target environment or
infrastructure. Infrastructure as Code (IaC) [23] templates al-
low operations teams to treat service provisioning and deploy-
ment similarly to software code management. Consequently,
IaC enables the paradigm of immutable infrastructure deploy-
ment and maintenance, where services are never updated, but
deprovisioned and redeployed. An immutable infrastructure
simplifies maintenance and enhances repeatability and reliabil-
ity. Therefore it’s a feature that services should have.

3https://techterms.com/definition/web_service

“https://techterms.com/definition/web_application

Shttps://csrc.nist.gov/glossary/term/Service_Composition

%See also https://github.com/EQ0SC-synergy/
service-ga-baseline

-

Automation

Deployment ‘

Auto deployment
SvcQC.Dep

—

v

Dynamic testing - Black box testing }-

[APItesting { Integration testing][Functional tests {Peﬂcrmancelests” Security
SveQC.Fun SveQC.Per SveQC.sec

SveQC.Api SveQC.Int

\ 2

Operational criteria

N

Files and documents
[Documenlation} [

Policies

SvcQC.Pol]

SvecQC.Doc Menitoring and Metrics
s i Monitoring | Metrics
uppol SveQC.Mon |_Svc@C.Met |

Support
SvcQ

[MusT][SHDULD]‘ MAY | Color legend

Figure 2: Service Quality Assurance workflow

The next step of the workflow is the Black box testing,
where API testing, security and integration testing must be per-
formed. API testing assumes the presence of an open API spec-
ification to make possible the validation. The Integration test-
ing refers to the evaluation of the interactions among coupled
services or parts of a system that cooperate to achieve a given
functionality, and is also clearly a must to have. Security as-
sessment is essential for any production service. It focuses on
the runtime analysis of security-related requirements, as part of
the Dynamic Application Security Testing (DAST).

Functional and Performance tests should be considered. Func-

tional testing focuses on the evaluation of the functionality that
the services exposes, leaving apart any internal design analysis
or side-effects to external systems. Performance testing verifies
that the service and the underlying software in execution, meets
the specified performance requirements.

Operational criteria are the next part of the quality work-
flow for services. Obviously documentation is a must as this
is an integral part of any software or service delivery. Policies
are equally important. Policy documents describe what are the
users expected behavior when using the service, how they can
access it and what they can expect regarding privacy of their
data. The documents are: Acceptable Usage Policy (AUP) and
Access Policy (AP) or Terms of Use. Support is the formal
way by which users and operators of the service communicate
with other operators and/or developers of the service, in case of
problems, and it needs to be properly documented.

Monitoring is a periodic testing of the service that needs to
take place. The technology used for the monitoring is left to
the developers of the underlying software to decide eventually
with input from the infrastructure(s), where the service is fore-

https://techterms.com/definition/web_service
https://techterms.com/definition/web_application
https://csrc.nist.gov/glossary/term/Service_Composition
https://github.com/EOSC-synergy/service-qa-baseline
https://github.com/EOSC-synergy/service-qa-baseline

seen to be integrated. In addition, quantifiable metrics should
be defined to track and assess the status of services. Examples
of relevant metrics are the number of users registered in the ser-
vice, or using it actively. Also accounting metrics are important
to track resource usage per user or group of users.

The service quality assurance is designed to test cloud ser-
vices. However this does not hinder its utilization for more
classical systems such as batch oriented processing in HPC sys-
tems using for instance infrastructure orchestrators [[14} 24] to
deploy a batch queue as a service. The process would pass by
requesting the instantiation of a cluster with a pre-installation
of a scheduler such as SLURM.

3. Awarding Recognition through Digital Badges

Issuing digital badges as a result of a successful quality as-
sessment against well established criteria, is not only a visual or
graphical way to show the quality of the software and services
but also a way to recognize and reward compliance to best prac-
tices.

Traditional physical badges have been used as a way to
prove membership or to demonstrate attaining a specific achieve-
ment. However, these types of certificate cannot satisfy the re-
quirements for online sharing, verification, portability and the
inability to be tampered. Instead, digital badges represent vir-
tual certificates that can be easily shared, visualized and verified
online. As is the case of physical badges, a digital badge still
represents an achievement attained by a particular entity and
demonstrates a quality seal for others to compare different enti-
ties on the basis of the quality level determined by the achieved
badge.

We performed a technology scouting in order to identify the
state-of-the-art responsible for issuing digital badges. The goal
was to discern those that could be adopted, or even adapted, to
satisfy the goal of issuing digital badges for software and for
services. We focused the analysis on existing open-source tools
for digital badge issuing, providing two main features: pro-
grammatic badge awarding and recipient identification aligned
with the specific software/service version (e.g. release URL,
commit ID, DOI).

Open Badges is the leading standard for digital credentials,
originally developed by Mozilla and now managed by the IMS
Global Learning Consortiu In practice, an Open Badge is
a PNG or SVG file that has been, by leveraging a DevOps ap-
proach, modified to adhere to the Open Badges Baking Speci-
fication which includes an iTxt section in the PNG file or some
markup section inside the SVG file and can include a JSON
Web Signature (JWS) for assertion.

Open Badges contain detailed metadata about achievements:
who earned a badge, who issued it, and what does it mean. The
data is all contained inside the badge. For each badge awarded,
there is: an Issuer Profile describing the individual or organi-
zation awarding badges; a BadgeClass, the formal description

http://www.imsglobal.org

of a single achievement the Issuer recognizes, with links to de-
tailed criteria for how the badge may be earned; an Assertion,
the record of an individual’s achievement of the badge, with a
link to evidence and expiration date.

Open Badges can be issued through a technology platform
that supports the Open Badges Specification. There are several
existing web-based managed platforms that have been certified
by IMS Global to comply with the Open Badges specification.
Among the most extended ones are Badgr, Blockcerts, Open-
Badges.me, OpenBadgefactory or MyOpenBadge.

We selected Badgﬁ as the underlying platform to issue dig-
ital badges for the following reasons: originated as an open-
source development, it has a fully documented API that can be
used to programatically issue the Badges without any human in-
tervention. Badgr also offers a web-based multi-tenant Graph-
ical User Interface that can be customized and rebranded to fit
the issuer needs. It is flexible in the sense that it offers differ-
ent user roles (administrator vs user) to gain access to advanced
functionality of the platform. Regarding authentication, Badgr
offers OAuth2 Identity Provider functionality to help connected
apps to securely obtain a user-specific API token to use to ac-
cess badges. Finally, it also allows the definition of additional
Badge designs to be tailored for several purposes. A GDPR-
compliant European instance of Badgr is operated by Instruc-
ture as part of their Canvas Badges Europe initiative, which has
been selected to issue and host the awarded badges. An exam-
ple is shown in Figure 3] where the assertion is publicly avail-
ablcﬂ and it can be independently verified via the BadgeCheckET]
platform.

To the best of our knowledge, this is the first initiative on
which the Open Badges specification is being adopted not in
the education field, but to recognise quality best practices for
research software. Additionally the digital badges are share-
able and independently verifiable by en external evaluator. For
instance if multiple teams are contributing to the development
of a given software product the SQAaaS architecture is such
that it keeps a historic record of the series of digital badges that
have been issued for that product. Also, the potential of this
technology for educational purposes, for instance, as a tool to
teach students best practices in programming is very big.

3.1. Mapping between quality criteria and digital badges

We defined three levels of quality that apply separately to
software and services: Gold, Silver and Bronze. Table[T] shows
the mapping between quality features and badge levels.

Code accessibility (QC.Acc), proper licensing (QC.Lic) and

documentation (QC.Doc) are the minimum requirements to achieve

the software bronze level.

One level above, the silver level for software requires addi-
tionally a metadata file describing the software (QC.Met) and
semantic versioning of the releases (QC.Ver).

8Badgr - https://badgr. com

9Gold badge awarded for the Infrastructure Manager (IM)
software: https://eu.badgr.com/public/assertions/
rkXyQHOFR] - EAMPgcczbug

VBadgeCheck - https://badgecheck.io

https://badgr.com
https://eu.badgr.com/public/assertions/rkXyQH9FRj-EAMPgccz5ug
https://eu.badgr.com/public/assertions/rkXyQH9FRj-EAMPgccz5ug
https://badgecheck.io

= synergy-software-gold

Bog ssued on 10mar 2023 3t 120p.1m. Offered by

eoscsynergy.

Awarding the foundational quality criteria for software, according to the
https:/indigo-dc.github.io/sqa-baseline/ guidelines

Q Vv

Re-verify Badge

EARNING CRITERIA Fulfillment of the following software-oriented quality criteria:
Recipents

+ QCAc
- Qclic
+ QCMet
+ QCboc
- Qcsty
 QCsec
+ Qcver

View External Criteria 5>

NARRATIVE
Wht the recipint did to earn s
Bacge

SQAaas assessment results for repository https://github.com/grycap/im 5> (commit:
71778bC1816b4d135690ee7260beS0C0879b1035, branchytag: master)

EVIDENCE 5QAaaSbuild repository

" View Evidence 5

Build page from Jenkins CI

View Evidence 5>

Welssue OpenBadges @ View JSON

Figure 3: An example of gold badge awarded to an open-source research soft-
ware

The gold level is achieved by software that additionally passes

static security tests (QC.Sec) and source code style checks (QC.Sty).

The gold level also foresees criteria that is not yet supported
for automated assessment by the SQAaaS, namely code work-
flow (QC.Wor), unit tests (QC.Uni), and the fulfillment of both
code management (QC.Man) and delivery of software artifacts
(QC.Del). The unit tests criterion is supported by the SQAaaS
but only for the creation of customized CI/CD pipelines as de-
scribed in section [3

Regarding services, the bronze level is achieved by those
fulfilling the quality required in automated service deployment
(SveQC.Del) and documentation (SvcQC.Doc). Additionally,
a positive assessment in functional testing (SvcQC.Fun), dy-
namic security testing (SvcQC.Sec) and API testing (SvcQC.API)
grants the silver level. Successful performance (SvcQc.Per) and
integration testing (SvcQc.Int) brings the gold badge. The ser-
vices criteria currently supported for automated assessment by
the SQAaaS includes deployment, documentation and integra-
tion testing.

4. The architecture of the Software Quality Assurance as a
Service

Delivering guidelines for the accurate development of re-
search software is not enough to engage the interest of the com-
putational scientists. A pragmatic solution for practical qual-
ity assessment needs to be provided as well. This implies the
definition of an architecture, the development of the necessary
core components, high-level functionality modules, and their
deployment as a production service.

The architecture of our solution, which we named Software
Quality Assurance as a Service (SQAaaS) is depicted in Fig-
ure [d]. The ultimate goal of the SQAaaS is to cover as many

Quality Criteria Software Badges Service Badges SQAaaS

Bronze[Silver [Gold Bronze[Silver [Gold Support
Accessibility (QC.Acc) Supported
D ion (QC.Doc) Supported
Licensing (QC.Lic) Supported
Code Metadata (QC.Met) Supported

Versioning (QC.Ver) Supported

Code Style (QC.Sty) Supported

Security Static Analysis (QC.Sec) Supported

Code Management (QC.Man)

Code Workflow (QC.Wor)

Unit Testing (QC.Uni) Partial

Delivery (QC.Del)

Deployment (SvcQC.Dep) Supported

D ion (SveQC.Doc) Supported

Functional Testing (SvcQC.Fun)

Security
(SveQC.Sec)

Dynamic Analysis

API Testing (SveQC.API)

Integration Testing (SvcQC.Int) Supported

Performance Testing (SveQC.Per)

Table 1: Summary of the Software and Services quality badges requirements
per category

criteria from the two QA baselines as possible, as long as they
are suitable to be assessed in an automated fashion. The sup-
port for the criteria is planned to cover progressively the CI and
CD phases of a DevOps pipeline, which match the software
and service criteria, respectively. In particular this architecture
enables developers to automatically check QA criteria, using
CI/CD pipelines, so that each change in the source code is com-
pliant with such practices. We expect this approach to lower the
barriers of adopting such software engineering best practices.

The architecture is designed to support two main usage sce-
narios, or high-level functionalities. These are defined by two
main modules: the Quality Assurance and Awarding (QAA)
module and the Pipeline as a Service module.

The QAA module evaluates the level of compliance of a
given source code repository or running service according to
the previously defined SQA baselines, creates the assessment
report, and awards (in case of successful qualification) quality
badges [ﬂ The Pipelines as a Service module provides addi-
tional flexibility by enabling the composition by the end-user
of custom CI/CD pipelines, based on quality criteria selected
by the user.

The core software components of the SQAaaS are:

e The SQAaaS API, that exposes the features delivered by
the SQAaaS, ready to be consumed by client applica-
tions.

o The SQAaaS web Portal, that facilitates the exploitation
of the SQAaaS capabilities (through the SQAaaS API)
by the end user.

T As a way to lead by example, all the SQAaa$S core components have been
validated by the QAA module

w';-m Run the
pipeline plesiive

1
2 Pipeline as a Service
[X] Provides custom CI/CD pipelines based on the
[quality criteria selected by the user

¢-F =0
<
1]
SQAaaS g JePL o
i i adge
Web (Pipeline Cl system Badg
Interface composer) issuer
iy DY 4 5
Quality Assessment & Awarding
[X} Evaluates the level of compliance of a source code
.’- repository or running service according to the SQA
baseline
1 2 3 4 5
Compose Run the Fetch Issue Create the
the pipeline per-stage badges report
pipeline results

Figure 4: High Level architecture of the Software Quality Assurance as a Ser-
vice

e The CI system, that provides to the platform automatic
provision capabilities of the computing resources, and
execution of the CI/CD pipelines. Jenkins CI is the natu-
ral choice since the Jenkins Pipeline as Code technology
fully addresses the SQAaaS requirements with regards
to the programmatic composition of the CI/CD pipelines
with code. Also, the Jenkins API exposes the functional-
ity needed for the pipeline building management, such as
triggering builds or returning the status of the execution.

e The Jenkins Pipeline Library (JePL), that enables eas-
ier composition of the CI/CD pipelines according to the
quality baselines. These pipelines are then executed by
the Jenkins CI.

e The Badge issuer, implemented by Bagdr, that based on
the QAA module results issues digital badges highlight-
ing the quality achievements of the assessed software or
service.

The following sections describe in greater detail the high-
level capabilities of the platform and the development of the
core software components.

5. High Level functionalities of the SQAaaS

The SQAaaS platform provides the tools that facilitate the
adoption of good software development practices. Hence, qual-
ity is considered starting at the code level, and validated when-
ever any change is done through the execution of workflows
that encompass a series of checks, which are commonly known
as CI/CD pipelines. There are two main high level capabilities
arising from the architecture: Quality Assessment and Award-
ing (QAA), and Pipeline as a Service.

5.1. Quality Assessment and Awarding module

The SQAaaS platform analyzes the level of compliance of
a given code repository with the set of quality baselines as de-
scribed in section@ Following this assessment, it also certifies
the results obtained by issuing digital badges when a minimum
set of quality achievements is reached. With this information
the QAA module produces two main outcomes:

e A quality report where the results of the assessment are
described for all the supported quality criteria. The valid-
ity of each quality criterion is computed according to the
outputs provided by the tools employed to do the assess-
ment of each criteria.

e A digital badge highlighting the quality achievements of
the software or service according to the mapping shown
in Table[Tl

The QAA module operation leverages the pipelines created
by the JePL library to conduct the assessment. The JePL library
is one of the core developments in this work (see section [6] for
a detailed description).

5.1.1. The quality assessment process

For any given source code repository the QAA module per-
forms the quality assessment in terms of the criteria defined in
the quality baselines. In practice, for each quality criterion the
QAA module walks through all its subcriteria and identifies the
right open source software tool to perform the corresponding
quality assessment.

This selection is done by the QAA through the rooling meta-
data component, one of the core developments in this work (see
section[6)). In general, multiple tools might be needed for an in-
dividual criterion, given that each one contains additional sub-
criteria that cannot be covered with a single tool. For instance,
to check the code style (QC.sty) in the case of python codes we
use fox, flake8 and pycodestyle.

5.1.2. The quality assessment report and badge issuing

The QAA processing consists in iterating over the set of
stages of the quality assessment pipeline, selecting and run-
ning the plugins for the output validation, and finally collect-
ing all the returned data. This data is formatted according to
the SQAaaS API specification so that the API clients, such as
the SQAaaS web portal, can render and present it as the final
outcome.

Figure [5| shows an excerpt from a QAA report as rendered
by the SQAaaS portal. Both the SQAaaS API and the SQAaaS
portal are core developments of this work (see sections [and[7]
respectively).

The final report presents a validation per criterion based
on the subcriteria validation. The validity of each criterion is
estimated from the individual results of the subcriteria, which
also takes into account their level of criticality. As an example,
being QC.Sty0l a mandatory subcriterion (MUST level) and
QC.Sty02.2 an optional one (SHOULD level), if QC.Sty02.2

= Documentation 0
@ QC.Doc06.1 Is the software scope outlined in the code repository?

v A README file is present in the code repository

© QC.Doc06.3 Does the project establish a code of conduct for its participants?

X A CODE_OF_CONDUCT file is not present in the code repository

© QC.Doc06.2 Is there a clear path or guidelines on how to contribute to the code?

X A CONTRIBUTING file is

ot present in the code repository

(<)

QC.Doc01.1 Are docs managed in the same repository as code?

« Documentation resides in the same repository as code

© QC.Doc02.X Are docs following a style for the Markdown markup language?

X Docs are not fully compliant with <markdownlint> standard

Figure 5: An excerpt of the final report provided by the QAA module. This
image shows only the results from the Documentation (QC.Doc)-related sub-
criteria.

succeeds but QC.Sty01 fails to validate, then the QAA will re-
port the parent criterion QC.Sty as failed.

Building on the gathering of the reporting data the QAA
module is also able to issue digital badges. The SQAaaS API
defines a configurable mapping between criteria and associated
badges as defined in[I] The SQAaaS API iterates over the de-
fined classes (see example in Figure [6) to obtain the appropri-
ate class. Whenever the fulfilled criteria matches a given badge
class, the corresponding digital badge is issued and included as
part of the QAA report, as shown in Figure[6]

[badgr:software:bronze]
badgeclass = synergy-software-bronze
criteria = QC.Acc QC.Lic QC.Doc

[badgr:software:silver]
badgeclass = synergy-software-silver
criteria = ${badgr:software:bronze:criteria} QC.Sty QC.Met QC.Ver

[badgr: software:gold]
badgeclass = synergy-software-gold
criteria = ${badgr:software:silver:criteria} QC.Sec QC.Wor QC.Man QC.Del

Figure 6: Mapping between criteria and corresponding badges as it is defined
for the SQAaaS API. The right side shows a silver badge issued for a software
product, as shown in the SQAaaS portal

5.2. Pipeline as a Service module

The most high-level interface, the SQAaaS web portal, of-
fers end-users the possibility to create graphically customized
pipelines. This capability is achieved through the Pipeline as a
Service module.

Through this module, the user selects the set of quality cri-
teria and corresponding individual (open source) tools that will
be executed to verify and validate the software (see Figure [7).
Each tool allows the fulfilment of one or several of the good
practices, and might require additional work, such as for ex-
ample writing unit tests. In contrast, other tools just parse the
code or run the software in order to find commonly known bad
practices (e.g. related to style or security).

Quality criteria define the CI/CD
pipeline work

Itis then

A SOFTWARE CRITERION

Figure 7: Capture of the Pipeline as-a-Service graphical interface with the end
user

Using the Pipeline as a Service the developer (end-user) can
create pipelines based on the available quality criteria, and ob-
tain the results from the pipeline execution. This module also
allows the end-user to download the composed pipeline. Au-
tomation enabling a pull request to automatically add the re-
sulting pipeline to a source code repository is also provided.

The realization of the Pipeline as a Service module required
the development of a pipeline composer, which implements the
support for the criteria established in the quality baselines through
the composition of CI/CD pipelines. The module also makes
use of the CI system, SQAaaS API and SQAaaS web Portal.

6. SQAaaS core components development

This section describes the core software developments to
implement the architecture of the SQAaa$S. Figure [] identifies
the set of components that take part in each high-level capa-
bility described in the previous section. We identify two main
sets of components, namely the existing services integrated and
leveraged by the platform, and the base components developed
from scratch to enable the core capabilities of the platform.

The first set is comprised by open source technologies adopted
to fulfill a specific requirement. The SQAaaS platform relies on
the Jenkins CI systenﬂ to manage the programmatic execution
of CI/CD pipelines in a scalable manner. On the other hand, as
part of the awarding feature, the Open Badges-compliant ser-
vice Badgﬂis used to issue digital badges.

Throughout this section we will focus on the core compo-
nents grouped under the second set. Let us first describe the
three main design choices made: YAML-based CI/CD pipelines,
API-first (contract-based API), and Static website.

1. YAML provides a human-readable language representa-
tion for data structures which is often used to write con-
figuration files. Based on its readability, YAML is com-
monly a better choice than alternative options like JSON,

Zhttps://jenkins.io
Bhttps://eu.badgr.com/

https://jenkins.io
https://eu.badgr.com/

and at the same time it can benefit from the consistency
of the latter, leveraging the JSON schema validation. The
JePL library only requires dealing with YAML files. There-
fore, JePL is also perfectly suitable to be used directly by
the end user without the need of relying on the SQAaaS
platform.

The only required file that is not written in YAML is the
Jenkinsfile. An example of the typical content is shown
in Figure[§]

@Library(['github.com/indigo-dc/jenkins-pipeline-library@2.1.0’]) _
def projectConfig
pipeline {
agent any
stages {
stage('SQA Baseline Dynamic Stages') {
steps {
script {
projectConfig = pipelineConfig()
buildStages(projectConfig)

Figure 8: Content of the Jenkinsfile as required by JePL library

2. The SQAaaS API has been designed using the OpenAPI
v3.0.3 specification El The OpenAPI specification uses
a human-consumable language that establishes a contract
to stipulate its behaviour. Accordingly, the design of the
API is more accurate as it implies a collaborative effort
(from both technical and non-technical parties) in order
to define what will be subsequently implemented with
code. This approach, known as API-first or contract-
based API, was adopted for the SQAaaS APIL. The API
documentation is the fundamental tool and vehicle for
consumer applications. This is the case for example of
the SQAaaS Web. Accurate API documentation is fun-
damental for a smooth integration once the real API is
available.

3. The SQAaaS web portal has been instantiated as a static
website employing a JAMStaCkIE approach, exclusively
incorporating HTML, CSS, and JavaScript. The choice
of the JAMStack framework stems from its features in
terms of security, scalability, performance, and portabil-
ity, rendering it particularly apt for our objectives. In
the construction of the front-end, Vue.js was employed
due to its intuitive support for user interface develop-
ment and the vibrancy of its community. Furthermore,
Vue.js demonstrated facile integration capabilities with
pre-existing applications.

6.1. JePL Library

The JePL libraryﬁ is a CI/CD pipeline composer to easily
configure the SQAaaS pipelines. The library can be used with-
out knowing the Jenkins Pipeline as Code syntax. In this sense,

“https://spec.openapis.org/oas/v3.0.3
Dhttps://jamstack.org/
16Code available at https://github.com/indigo-dc/jenkins-pipeline-library/

a JePL pipeline defines the validation workflow following the
quality criteria defined in the quality baselines in section 2]

This library leverages the YAML language to describe the
criteria of the QA baselines to be assessed. In practice, a single
configuration file, the config.ym1 file, describes the required
configurations and stages for the criteria evaluation. The ad-
ditional configuration files are required to manage the services
needed to execute the CI checks. These include a minimal Jenk-
ins PaC definition or Jenkinsfile and docker-compose.yml.
The Jenkinsfile has the common base code using the Groovy
language to load the JePL Jenkins shared library. The project-
related information is in config.yml and docker-compose.yml.
Thus, software, services and tests are represented in these files.

The core value of the JePL is that dynamically generates the
set of Jenkins pipeline stages that will validate the QA criteria
defined in the config.yml file. The UML diagram from Figure
[9] summarizes the JePL implementation.

Jenkinsfile

projectConfig

pipelineConfig()
buildStages()
1

pipelineConfig buildStages
ConfigParser DockerCompose

supportedCredentialTypes credentialVariablesNames
supportedBuildTools composeExec()
defaultValues composeUp()
nodeAgent composePush()
getNodeAgent() composeDown()
getConfigSettings() composeToxRun()
getSQASettings() processStages()

v

JenkinsDefinitions

steps

DEBUG

setLogLevel()

Figure 9: UML diagram with a short representation of the JePL main classes

The Jenkinsfile loads and initiates JePL by calling the
Groovy closures pipelineConfig() and buildStages (). The
SQA criteria definitions placed in the config. yml file are loaded
and validated with the call to pipelineConfig(). Similarly,
the docker-compose.yml file configurations are loaded with
the call to buildStages(). This closure also receives the

https://spec.openapis.org/oas/v3.0.3
https://jamstack.org/

pipeline definitions returned from pipelineConfig() and gen-
erates the corresponding stages.

The user must specify the parameters for each criterion,
such as the source code repositories and the tools to be used.
Every pipeline execution will perform a new deployment of the
required software environment using Docker Compose. When
the job execution finishes (either succeeding or failing) the al-
located resources are released.

The Jenkins Controller dispatches each pipeline job to a
Jenkins Agent and maps the environment requirements for Docker
Compose orchestration. The Jenkins Agents are responsible for
creating the required environments over any given cloud com-
puting platform, either on-premises (e.g. OpenStack) or public.
Figure [I0] shows the Jenkins geo-distributed architecture capa-
bility, where multiple agents can be located on different clouds.

4% Agent
08: Linux
Tools: Bash, Zsh

Cloud A

#* Agent 4% Agent

> 08: Linux 08: Linux

\TTKMIS: = ‘
@ Controller

Cloud B

4% Agent #* Agent

> OS: Linux 0S: Linux

#* Agent
0S: Linux
Qyﬂj\!ﬂs: Java, Maven Tools: Bash, Zsh

Figure 10: Jenkins Controller and Agent interaction between multiple Cloud
sites

6.2. Tooling metadata component

Each quality criterion establishes the requirements and good
practices for a specific quality characteristic. The SQAaaS re-
lies both on internal checks and open-source tools to cover all
the requirements from the defined quality criteria. The tool-
ing metadata component maintains the full characterisation of
each tool and includes the contextual and operational metadata
required to define and execute the JePL pipelines.

The tooling metadata is a JSON-formatted document con-
taining the mapping of each criterion - subcriterion - tool, so
that the QAA can compose a fully-fledged JePL pipeline that
will carry out the quality assessment process. This JSON doc-
ument is stored and maintained through a public code reposi-
tory so it can be fetched programmatically (and remotely) by
the SQAaaS API. Therefore, the set of supported tools by the
SQAaaS platform are fully customizable, and any new tool or
change in the existing definition will be dynamically loaded and
readily available in the SQAaaS portal.

Each tool requires an appropriate environment for execu-
tion in the CI system, which includes the tool itself with the

10

related dependencies. Environment information for each tool is
available in the tooling metadata, through the docker property.
This information includes primarily the location of the remote
image from a Docker registry, or the Dockerfile, which must be
available locally in the same repository as the tooling metadata.
The docker property is provided as input to the QAA module to
create the Docker Compose file used by JePL.

An example of tooling metadata is shown in Figure[TT] The
args property in the tools’ definition provides the arguments that
will be used to compose the commands to be executed in the
pipelines. The type of argument can fall into the three cate-
gories set out below:

e subcommand: many tools break up their functionality
into subcommands. One popular example is the git tool
that provides multiple subcommands (e.g. git add, git
commit, ..).

e positional: those arguments that are required and that are
defined only by their value. They can be used both with
a command or a subcommand. Continuing with the ex-
ample above, the git add subcommand always requires a
positional argument (e.g. git add filel).

e optional: those arguments that might be provided, but
they are not required. The option name, which contains
a single dash for the short version and two dashes for the
long version, can be used both in conjunction with a value
or, otherwise, by itself. An example is git add —verbose
filel.

Additional properties describe what the argument does (de-
scription), provide a default value (value) or, in the case of
the optional arguments, define the option name (option). Fur-
thermore, there are properties specific for SQAaaS API clients,
such as the SQAaaS web:

o format, which identifies the type of data (e.g. string or
array)

e selectable, whether the property shall be showed (true) or
hidden (false)

e repeatable, whether the property can be provided multi-
ple times

6.2.1. The reporting property

Once the QAA pipeline has been executed and the logs are
available for each tool, the SQAaaS API relies again on the
tooling metadata to get the appropriate plugin for tackling the
output of each tool. The reporting property defines the map-
ping between the tool and the plugin through the validator key.
Furthermore, this property contains additional information that
might be passed to the plugin at runtime. Figure[TT|provides an
example of how the reporting property is defined.

More technical details about the tooling metadata, together
with a list of the open-source tools used in the SQAaaS plat-
form, are available in the online documentation [25]].

"flake8": {

"version": "4.0.1 (mccabe: ©.6.1, pycodestyle: 2.8.0, pyflakes:
2.4.0)",

"docs": "https://flake8.pycqa.org/",

"docker": {
"image": "pipelinecomponents/flake8:0.9.0",
"reviewed": "2022-03-04"

1,

"args": [

i
"type": "positional",
"description": "Path to Python project or file/s",
"value": ".",
"format": "string",
"selectable": true,
"repeatable": true
}
1,
"reporting": {
"validator": "flake8",
"requirement_level": "REQUIRED"
}
}

Figure 11: Tool (flake8) excerpt from the tooling metadata. The metadata in-
cludes several chunks of information, such as the tool arguments (args), runtime
information (docker) and the output validation-related part (reporting)

6.3. SQAaaS API

The API server or SQAaaS API constitutes the cornerstone
of the SQAaaS platform as it glues together all the different
components in the architecture. This includes leveraging the
features of the JePL library to create CI/CD pipelines, interfac-
ing with the APIs provided by the upstream services, such as
the CI system and the badge issuer, and conducting the com-
munication with the API clients, in particular the SQAaaS web
interface.

[ressenn] [ong | [| [|[o] [| [|
[1POST pipeline/assessment t i
get_tooling() j
tooling_data_| ﬂ i
fiter_tooling(tooling_data) i
tooling_data i
_assessment_pipeline(tooling_data) i
pipeline_data’ |
add_pipeline_to_db(pipeline_data)
: i
i
POST fpipelinel<id>/run | |
(POST/plpelineladoin, load_pipeline(id)
i pipeline_data
create_org_repo(pipeline_name)
Tepository_ur T
get_jepl_files(pipeline_data)
Tep_Tles
push jepl_fies(iepl_fies)
build /_url)
T build_ur [d
update_pipeline_in_db(pipeline_data) |
POST sessment/<id>/output get_build_data(c)
build_data T
validate_tooling data(build_data)
[valdated data
format_report(validated_data))
repan,dala‘ﬂ H
isst {_data)

ue.t
badge_data’ 1

report_data, badge_data

Figure 12: Sequence diagram with the full execution workflow of the SQAaaS
API for quality assessments

The SQAaaS API implements and exposes to the outside
world the two high-level capabilities described in the previous
section. All the features implemented are described through
a contract-based approach using the OpenAPI speciﬁcatioﬂ

17SQAaaS API specification: https://github.com/eosc-synergy/

11

The main operation path enables the realisation of the standard
operations that can be performed with a CI/CD pipeline, such as
creating and cancelling, as well as running pipelines or check-
ing the status.

Figure [T2] depicts the sequence of interactions during the
operation of a quality assessment. This operation combines the
use of the aforementioned API paths, which are triggered by the
web client as HTTP requests. Internally, as it can be seen in the
figure, these requests lead to a series of actions that imply inter-
facing with the core components of the SQAaaS platform and
upstream services such as the CI server, the repository platform
(GitHub) and the digital badge issuer (Badgr).

The API server is the conductor of the SQAaaS platform.
It is responsible for interacting with the previously described
tooling component in order to get the appropriate set of tools
that take part in each pipeline. The tool selection process is
derived from the inspection of the file extensions that exist in
the code repository, so that only the tools that are capable of
dealing with the existing file formats are considered. The set of
filtered tools are then grouped by stages, where each represent a
different quality characteristic. For defining the CI/CD pipeline,
the SQAaaS API leverages the JePL library, which results in the
composition of the file structure seen in section 6]

In order to perform a quality assessment, the SQAaaS API
deals with the additional upstream services, through their corre-
sponding APIs. The CI/CD pipeline, in JePL format, produced
in the previous step is then added to a code repository in the
GitHub platform. This operation will trigger a (push) event so
that the Jenkins CI service gets notified and starts the execution
of the CI/CD pipeline. Through the Jenkins API, the SQAaaS
API detects when the pipeline finished executing and, subse-
quently, extracts and validates the assessment data. This is a
complex process since it implies parsing all the outputs from
the set of quality assessment tools in the pipeline, and assert
their validity. With this information, the SQAaaS API is able
to elaborate a quality report describing the quality criteria be-
ing fulfilled. This sets the ground for the digital badge issuing
process, where the SQAaaS API relies on the mapping between
quality criteria and badges Table [I] to issue a matching badge
using the Badgr APL.

7. User Interface to quality assessment

The SQAaaS back-end components are exposed to the end
user via the SQAaaS Portal, a web-based graphical user inter-
face that delivers the functionality of both the quality assess-
ment and awarding, and the pipeline as a service modules.

This is an open-source developmenﬂ that is publicly of-
fered as a managed serviceg' ”| so that end users can assess the
quality of their research software products and, if required, build
their own customized pipelines for software testing.

sqaaas-api-spec
13SQAaaS-Web GitHub

eosc-synergy/sqaaas-web
'”SQAaaS-Web: https://sqaaas.eosc-synergy.eu

repository: https://github.com/

https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-api-spec
https://github.com/eosc-synergy/sqaaas-web
https://github.com/eosc-synergy/sqaaas-web
https://sqaaas.eosc-synergy.eu

The SQAaaS Portal is offered in a serverless manner via
GitHub pages to reduce maintenance and enhance scalability of
the front-end, which runs entirely in the user’s web browser via
a JAMStack development approach. It is integrated with EGI
Check—lrﬂ a proxy service that acts as a central hub to con-
nect federated identity providers (IdPs). Therefore, users can
login automatically into the service not only via social network
identities, but also via institutional accounts where applicable
(universities, research centers, etc.)

€Back

Fillin the form below to trigger the assessment process

senvee

https:/igithub.com/grycap/oscar

Start Source Code Assessment.

é Bronze badge o Silver badge 0 Gold badge o
+ & Code metadata X © Code Style
VI Versionin " X @ Security
Criteria Report

Code 100

8 Documentation 80

 Code metadata 100

& Security 0

© Code Styls 0

P Versioning 33

&5 Licensin 9 0

Figure 13: Screenshots of the web-based SQAaaS platform

The SQAaaS Portal can render dynamically the tools de-
fined in the tooling metadata. This data is received from the
API and renders the tools according to the quality criterion they
fall into. The tool’s arguments are also displayed so that the
user can set custom values for them. The type of web compo-
nent that is required for each argument is also defined in the
metadata, and thus, the SQAaaS Portal knows how to render
them. This means that any change in the tooling JSON’s meta-
data will be automatically reflected on the web without changes
to the source code.

Figure T3] shows the aspect of the wizard-like interface that
guides the end users to perform the automated assessments.
The colour-code scheme provides timely visual feedback con-
cerning compliance with the criteria of the different levels of

20EGI Check-in: https://aai.egi.eu/registry/

badges. This is supplemented with a detailed explanation for
each criterion so that the product owner can plan a path for
compliance to improve the product quality, meet the criteria,
and obtain the corresponding badge.

8. SQAaasS business logic

Regarding the expected functionality of the SQAaaS API
(Quality Assessment and Pipeline as a Service), the following
paths have been implemented:

e /pipeline

— POST: creates a new pipeline definition in the database

— GET: returns the available pipelines from the database

e /pipeline/<id> GET: returns the definition for the given
pipeline

e /pipeline/<id>/config GET: returns the JePL main
config definition

e /pipeline/<id>/composer GET: returns the JePL com-
poser definition

e /pipeline/<id>/jenkinsfile GET: returns the JePL
Jenkinsfile definition

e /pipeline/<id>/runPOST: runs the pipeline in the Jenk-
ins endpoint

e /pipeline/<id>/status GET: obtains the execution sta-
tus of the pipeline in Jenkins

e /pipeline/<id>/compressed_files GET: returns a com-
pressed file format with the JePL files structure

e /pipeline/<id>/pull_request POST: create a pull re-
quest in an upstream repo (provided by the user) in order
to add the generated JePL files.

Figures [[4] and [I3] summarize the business logic for the
most relevant API paths. It is important to note the use of the
GitHub API in order to trigger the builds in the Jenkins CI
system. In particular, the new pipelines are run by Jenkins as a
result of their presence in GitHub repository organization, and
thus, they are not being directly composed leveraging Jenkins
API. The main rationale behind this approach is to benefit from
a Version Control System (VCS) approach in the maintenance
of the pipelines. Thus, each pipeline modification is versioned,
and subsequently executed in Jenkins, granted by a previous
integration step among the two systems.

Figure [T4] showcases this approach, where the execution of
a pipeline involves the creation of the repository (in the relevant
GitHub repository) with the JePL structure [create_org_repo(),
push_jepl_files()]and, afterwards, it triggers the organiza-
tion scan [scan_organization()] so that the new repository
(or changes thereof) are detected by Jenkins and the pipeline
can be ran. If the pipeline has already run and the repository

https://aai.egi.eu/registry/

Database GitHub
>

——[PosT /pipeline |

- store_db_content (id)
—| POST /pipeline/<id>/run |» »
' . load_db_content (id)

- [rmere o0 |
. R
NI . .
- [osaon0]

[<tore - contnc (bussa art) |-+

- JENKINS_BUILD_URL i
.“ POST /pipeline/<id>/status).,

«{ 1oad_db_content (build_ur1) |-
i«| get_build_status(build_url)

i«---| JENKINS_BUILD_STATUS

Figure 14: Sequence diagram for the API paths that i) create, ii) run, and iii)
get the status (in Jenkins) of a pipeline created with the JePL component.

GitHub

i—{PoST /pipeline/<id>/pull_request|—, [Toad_db_content (i) |

create_fork(upstrem_repo)

L [push jepl files(fork repo) s

o

[create_pull_request (upstrean_repo) |

GITHUB_PR_URL
{GET /pipeline/<id>/compressed_files l»!
T S
« get_jepl files()

“ JEPL_ZIPFILE

Figure 15: Sequence diagram for the API paths that i) create a PR in GitHub,
and ii) get the JePL file structure as a compressed (ZIP) file.

exists, the pipeline is triggered directly through the Jenkins API
[build_job()].

Figure[T3|showcases the workflows associated with two im-
portant features. Once the pipeline is composed, stored and
executed, these two API paths provide the means to make the
pipeline available in the user own code repository, either by cre-
ating a PR to such a repository or by downloading the (JePL)
pipeline files in a compressed format. In the former case, the
SQAaaS API uses again the relevant GitHub organisation to
create a fork of the target repository in order to create a PR
without the need of handling user credentials.

9. Validation of the SQAaaS platform

There are several usage patterns of the SQAaaS platform,
ranging from educational purposes, to support development pro-
cesses or the independent testing of best practices in a given
repository for external evaluation. This section describes the
usage of the platform to support testing and code development.

As an example, we use the evolution of the quality assess-

13

Figure 16: Jenkins pipeline created with the SQAaaS Pipeline as a Service for
udocker

ment for udockerﬂ a user-level tool to execute Docker con-
tainers in user space without requiring root privileges [26]]. The
first production version of udocker dates back to 2018, and the
most recent release is from July 2023.

Table [2] shows the evolution of the quality metrics with the
release tags. The quality assessment process proves to be very
effective as a support tool for the evolution of the software
stack. The case of udocker is representative of state-of-the-
art software from the point of view of software engineering. In
particular, the most basic features such as licensing, basic ver-
sioning or basic documentation were already fulfilled in the first
version of udocker. The basic documentation criterion was also
fulfilled from the very beginning. However, being fully com-
pliant with a markdown standard has taken more effort in the
development process and has been achieved only from release
candidate v1.3.5 — rc.4 on.

The inclusion of metadata in the code repository is a re-
cent evolution of software engineering standards and, there-
fore, is not present in many software repositories. In the case
of udocker this feature was included from release 1.3.4. The
SQAaaS tool has proven to be very effective in detecting possi-
ble static security issues, that were fixed as they were detected
from version 1.1.8 on. Code style, and the evolution of udocker
to Python 3 (starting from release 1.3.0) has generated quite an
amount of work due to the changes from Python 2. The auto-
matic testing of the new code style requirements has been a very
useful tool to support the developers’ work towards a coherent
migration between the two versions of Python.

Besides enabling the developers to improve the quality of
the software, the SQAaaS tool has also been essential to keep
the level of quality for the releases. The gold badge for software
was obtained for release 1.3.5 and was held for subsequent re-
leases. To this end, the Pipeline as a Service module was also
adopted by the developers that created a complete pipeline in-
cluding the unit tests criterion. Figure[T6|shows the outcome of
the pipeline that is automatically triggered for each pull to the
master branch.

The SQAaaS platform has been deployed in production as
a service, freely available online, which is being used regularly
by hundreds of users around the WorlcFEl The statistics col-
lected using Google Analytics indicate the potential impact of
this development. The SQAaaS platform has performed over
2800 software assessments, more than 300 unique repositories,
and has awarded >125 Digital Badges.

2lhttps://github.com/indigo-dc/udocker
22See https://www.eosc-synergy.eu/live-statistics-sqaaas/
for live statistics

https://github.com/indigo-dc/udocker
https://www.eosc-synergy.eu/live-statistics-sqaaas/

The software stacks that have been assessed range from sys-
tem software middleware tools, infrastructure managers, work-
flow managers, to heavily used scientific applications in the
areas of Earth Sciences (eg. Fall3D), Bio-Informatics (eg.
haddock prodigy) or High Energy Physics (eg. openQCD) ﬁ
Notice that the components themselves of the SQAaaS service
have also been assessed for the sake of consistency.

10. Conclusions and future work

The purpose of the SQAaaS has been providing easy to use
tools for software developers to evaluate their work ensuring
software quality by following the DevOps culture, good prac-
tices and enabling the adoption of Continuous Integration and
Continuous Delivery. In this sense the two major outcomes can
be summarized as: i) ease the adoption of CI/CD workflows or
pipelines in research software environments through the imple-
mentation of different interfaces (graphically through the portal,
programmatically through the API and via YAML documents
using the JePL library), and ii) add transparency to the quality-
related process used during the software development life cycle
through the usage of a quality assessment module that based
on the quality baselines has the extended capability of issuing
digital badges according to well-defined quality achievements.

All platform components are open source, free to deploy
anywhere. The solution is highly modular and allows to use any
tool or platform, not only those we are supporting in the release
that makes the basis of this publication. It is easy to use through
a web interface, which decreases the learning curve of potential
customers. The API is open source, well documented and easy
to extend for new tools or platforms. It provides recognition and
quality stamping, thanks to the digital badges issuance, together
with a detailed quality report.

While performing these developments multiple promising
paths for improvement have been open, which constitute the
basis for evolution and future work. Among them increasing
the coverage of programming languages, including others that
are becoming popular in research such as Julia, increase cover-
age of git-based social coding platforms (currently it supports
GitHub and GitLab). The inclusion of additional tools suitable
for automated static and dynamic security analysis, including
the implementation of Artificial Intelligence tools, are also a
promising evolution to be included in a future release of the
SQAaaS platform.

Acknowledgements

This work has taken place in the framework of the project
EOSC-Synergy funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement No
857647.

The work also benefited from the support of INCD funded by
FCT and FEDER under the project 01/SAICT/2016 n°® 022153.

23See examples of badges and descriptions https://www.eosc-
synergy.eu/eosc-synergy-100-software-quality-digital-badges-awarded/

14

Version 100| LL1| LL8| 13.1| 134| 135

re.2

1.3.5-
re.3

1.3.5-
red

13.5-
re.S

135

Badge / None| None| None| None| None| None| SILVER| SILVER GOLD GOLD

QC.Acc01

QC.Doc06.3
MUST

QC.Lic01.1
MUST

QC.Lic02.1
MAY

QC.Met01
SHOULD

QC.Sec

QC.Sec02
MUST

QC.Sty

QC.Sty01
MUST

QC.Ver01
SHOULD

QC.Ver02
SHOULD

Index
@
2
3)
@
(&)
©)
@

Description of the issue

Python files are not fully compliant with flake8 (pycodestyle, pyflakes, mccabe) standard

Not all release tags are SemVer compliant

Docs are not fully compliant with markdownlint standard

A CODE_OF_CONDUCT file is not present in the code repository

A CONTRIBUTING file is not present in the code repository

Found security weaknesses when performing SAST checks with bandit tool

No matching files found for language <CodeMeta> in repository searching by extensions or
filenames No matching files found for language <Citation File Format> in repository search-
ing by extensions or filenames

®)
©)

Software metadata failed to validate

JSON files are not fully compliant with jsonlint standard

Table 2: Evolution of the quality assessment criteria of the releases of udocker.

Ongoing developments are being funded by the project “An
interdisciplinary Digital Twin Engine for science” (interTwin)
that has received funding from the European Union’s Horizon
Europe Programme under Grant 101058386. Also, project "A
Digital Twin for Geophysical Extremes" (DT-GEO) funded by
Horizon Europe under the grant agreement No 101058129.

15

References

(1]

[2]

[3]

[4]

(5]
(6]

(71

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

H. Koziolek, Sustainability evaluation of software architectures: a sys-
tematic review, in: Proceedings of the joint ACM SIGSOFT conference—
QoSA and ACM SIGSOFT symposium—ISARCS on Quality of software
architectures—QoSA and architecting critical systems—ISARCS, 2011, pp.
3-12.

J. Axelsson, M. Skoglund, Quality assurance in software ecosystems: A
systematic literature mapping and research agenda, Journal of Systems
and Software 114 (2016) 69-81.

I. Atoum, M. K. Baklizi, I. Alsmadi, A. A. Otoom, T. Alhersh, J. Abab-
neh, J. Almalki, S. M. Alshahrani, Challenges of software requirements
quality assurance and validation: A systematic literature review, IEEE
Access 9 (2021) 137613-137634.

R. Vicente-Saez, C. Martinez-Fuentes, Open science now: A systematic
literature review for an integrated definition, Journal of business research
88 (2018) 428-436.

1. Global, Open badges specification (2023).
URLhttps://www.imsglobal.org/spec/ob/v3p0

T. Galli, F. Chiclana, F. Siewe, Software product quality models, de-
velopments, trends, and evaluation, SN Computer Science 1 (05 2020).
doi:10.1007/s42979-020-00140-2|

ISO Central Secretary, Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models: ISO/IEC 25010:2011/(2017).
URLhttps://www.iso.org/standard/35733.html

C. Gacek, B. Arief, The many meanings of open source, IEEE Software
21 (1) (2004) 34-40. do1:10.1109/MS.2004.1259206.

A. Adewumi, S. Misra, N. Omoregbe, A review of models for evaluating
quality in open source software, IERI Procedia 4 (2013) 88-92, 2013 In-
ternational Conference on Electronic Engineering and Computer Science
(EECS 2013). doi:https://doi.org/10.1016/j.ieri.2013.11.
014|

URL https://www.sciencedirect.com/science/article/pii/
$52212667813000178

P. Perera, R. Silva, 1. Perera, Improve software quality through prac-
ticing devops, in: 2017 Seventeenth International Conference on Ad-
vances in ICT for Emerging Regions (ICTer), 2017, pp. 1-6. |doi:
10.1109/ICTER.2017.8257807.

L. Konig, A. Steffens, Towards a quality model for devops, Continuous
Software Engineering Full-scale Software Engineering 37 (2018) 37-42.
P. Orviz, A. Lopez Garcia, D. C. Duma, G. Donvito, M. David, J. Gomes,
A set of common software quality assurance baseline criteria for research
projects (2017). |doi:10.20350/DIGITALCSIC/12543.

URL https://digital.csic.es/handle/10261/160086

P. Orviz Fernandez, M. David, J. Gomes, Joao Pina, S. Bernardo, I. Cam-
pos Plasencia, G. Molt6, M. Caballer, EOSC-synergy: A set of Common
Service Quality Assurance Baseline Criteria for Research Projects (Jun.
2020). doi:10.20350/DIGITALCSIC/12533.

URL https://digital.csic.es/handle/10261/214441

D. Salomoni, I. Campos, L. Gaido, J. M. De Lucas, P. Solagna, J. Gomes,
L. Matyska, P. Fuhrman, M. Hardt, G. Donvito, L. Dutka, M. Plocien-
nik, R. Barbera, 1. Blanquer, A. Ceccanti, E. Cetinic, M. David, C. Duma,
A. Lopez-Garcia, G. Molto, P. Orviz, Z. Sustr, M. Viljoen, F. Aguilar,
L. Alves, M. Antonacci, L. A. Antonelli, S. Bagnasco, A. M. J. J. Bon-
vin, R. Bruno, Y. Chen, A. Costa, D. Davidovic, B. Ertl, M. Fargetta,
S. Fiore, S. Gallozzi, Z. Kurkcuoglu, L. Lloret, J. Martins, A. Nuzzo,
P. Nassisi, C. Palazzo, J. Pina, E. Sciacca, D. Spiga, M. Tangaro, M. Ur-
baniak, S. Vallero, B. Wegh, V. Zaccolo, F. Zambelli, T. Zok, INDIGO-
DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures,
Journal of Grid Computing 16 (3) (2018) 381—408. doi:10.1007/
s10723-018-9453-3|

URL http://link.springer.com/10.1007/s10723-018-9453-3
D. Cesini, A. Costantini, P. Fuhrmann, F. Aguilar, C. Duma, C. Ohmann,
R. Lemrani, O. Keeble, S. Battaglia, V. Poireau, M. Viljoen, G. Donvito,
The extreme-datacloud project: data management services for the next
generation distributed e-infrastructures, in: 2018 Conference Grid, Cloud
& High Performance Computing in Science (ROLCG), 2018, pp. 1-4.
doi:10.1109/ROLCG.2018.8572025.

A. Calatrava, H. Asorey, J. Astalos, A. Azevedo, F. Benincasa, 1. Blan-
quer, M. Bobak, F. Brasileiro, L. Codd, L. del Cano, B. Esteban, M. Fer-
ret, J. Handl, T. Kerzenmacher, V. Kozlov, A. Kienek, R. Martins,

https://www.imsglobal.org/spec/ob/v3p0
https://www.imsglobal.org/spec/ob/v3p0
https://doi.org/10.1007/s42979-020-00140-z
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://doi.org/10.1109/MS.2004.1259206
https://www.sciencedirect.com/science/article/pii/S2212667813000178
https://www.sciencedirect.com/science/article/pii/S2212667813000178
https://doi.org/https://doi.org/10.1016/j.ieri.2013.11.014
https://doi.org/https://doi.org/10.1016/j.ieri.2013.11.014
https://www.sciencedirect.com/science/article/pii/S2212667813000178
https://www.sciencedirect.com/science/article/pii/S2212667813000178
https://doi.org/10.1109/ICTER.2017.8257807
https://doi.org/10.1109/ICTER.2017.8257807
https://digital.csic.es/handle/10261/160086
https://digital.csic.es/handle/10261/160086
https://doi.org/10.20350/DIGITALCSIC/12543
https://digital.csic.es/handle/10261/160086
https://digital.csic.es/handle/10261/214441
https://digital.csic.es/handle/10261/214441
https://doi.org/10.20350/DIGITALCSIC/12533
https://digital.csic.es/handle/10261/214441
http://link.springer.com/10.1007/s10723-018-9453-3
http://link.springer.com/10.1007/s10723-018-9453-3
https://doi.org/10.1007/s10723-018-9453-3
https://doi.org/10.1007/s10723-018-9453-3
http://link.springer.com/10.1007/s10723-018-9453-3
https://doi.org/10.1109/ROLCG.2018.8572025

(17]

(18]

(19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

M. Pavesio, A. J. Rubio-Montero, J. Sdnchez-Ferrero, A survey of the
european open science cloud services for expanding the capacity and
capabilities of multidisciplinary scientific applications, Computer Sci-
ence Review 49 (2023) 100571. |doi:https://doi.org/10.1016/j.
cosrev.2023.100571.

URL https://www.sciencedirect.com/science/article/pii/
S1574013723000382

M. David, M. Colom, D. Garijo, L. J. Castro, V. Louvet, E. Ronchieri,
M. Torquati, L. del Cafio, S. H. Leong, M. Van den Bossche, I. Cam-
pos, R. Di Cosmo, Task Force Sub Group 3 - Review of Software Qual-
ity Attributes and Characteristics (Aug. 2023). doi:10.5281/zenodo.
8221384,

The Open Source Definition| (2022).

URL https://opensource.org/osd

P. Orviz, A. Lopez Garcia, D. C. Duma, G. Donvito, M. David, J. Gomes,
I. Campos, G. Moltd, V. Tykhonov, A set of common software quality
assurance baseline criteria for research projects (2022). doi:10.20350/
DIGITALCSIC/12543.

URL https://digital.csic.es/handle/10261/160086

S. Bradner, Key words for use in RFCs to Indicate Requirement Lev-
els, Tech. Rep. RFC2119, RFC Editor (Mar. 1997). doi:10.17487/
rfc2119.

URL https://www.rfc-editor.org/info/rfc2119

A. M. Smith, D. S. Katz, K. E. Niemeyer, Software citation principles,
PeerJ Computer Science 2 (2016) e86.

A. L. Mesquida, A. Mas, E. Amengual, J. A. Calvo-Manzano, It service
management process improvement based on iso/iec 15504: A systematic
review, Information and Software Technology 54 (3) (2012) 239-247.

K. Morris, Infrastructure as code: managing servers in the cloud, "
O’Reilly Media, Inc.", 2016.

A. C. Miguel Caballer, German Molto, 1. Blanquer, [Infras-
tructure manager: A tosca-based orchestrator for the comput-
ing continuum, Journal of Grid Computing 21 (1) (Sep. 2023).
doi:10.1007/s10723-023-09686-7.

URL https://link.springer.com/article/10.1007/
s10723-023-09686-7

A set of common software quality assurance baseline criteria for research
projects| (2023).

URL https://github.com/eosc-synergy/sqaaas-tooling

J. Gomes, E. Bagnaschi, I. Campos, M. David, L. Alves, J. Martins,
J. Pina, A. Lopez-Garcia, P. Orviz, Enabling rootless linux containers in
multi-user environments: The udocker tool, Computer Physics Communi-
cations 232 (2018) 84-97. ldoi:https://doi.org/10.1016/j.cpc.
2018.05.021.

URL https://www.sciencedirect.com/science/article/pii/
S0010465518302042

16

https://www.sciencedirect.com/science/article/pii/S1574013723000382
https://www.sciencedirect.com/science/article/pii/S1574013723000382
https://www.sciencedirect.com/science/article/pii/S1574013723000382
https://doi.org/https://doi.org/10.1016/j.cosrev.2023.100571
https://doi.org/https://doi.org/10.1016/j.cosrev.2023.100571
https://www.sciencedirect.com/science/article/pii/S1574013723000382
https://www.sciencedirect.com/science/article/pii/S1574013723000382
https://doi.org/10.5281/zenodo.8221384
https://doi.org/10.5281/zenodo.8221384
https://opensource.org/osd
https://opensource.org/osd
https://digital.csic.es/handle/10261/160086
https://digital.csic.es/handle/10261/160086
https://doi.org/10.20350/DIGITALCSIC/12543
https://doi.org/10.20350/DIGITALCSIC/12543
https://digital.csic.es/handle/10261/160086
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://doi.org/10.17487/rfc2119
https://doi.org/10.17487/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://link.springer.com/article/10.1007/s10723-023-09686-7
https://link.springer.com/article/10.1007/s10723-023-09686-7
https://link.springer.com/article/10.1007/s10723-023-09686-7
https://doi.org/10.1007/s10723-023-09686-7
https://link.springer.com/article/10.1007/s10723-023-09686-7
https://link.springer.com/article/10.1007/s10723-023-09686-7
https://github.com/eosc-synergy/sqaaas-tooling
https://github.com/eosc-synergy/sqaaas-tooling
https://github.com/eosc-synergy/sqaaas-tooling
https://www.sciencedirect.com/science/article/pii/S0010465518302042
https://www.sciencedirect.com/science/article/pii/S0010465518302042
https://doi.org/https://doi.org/10.1016/j.cpc.2018.05.021
https://doi.org/https://doi.org/10.1016/j.cpc.2018.05.021
https://www.sciencedirect.com/science/article/pii/S0010465518302042
https://www.sciencedirect.com/science/article/pii/S0010465518302042

	Introduction
	Quality Assessment in Software
	State of the Art
	Software Quality Assurance baseline
	Services Quality Assurance baseline

	Awarding Recognition through Digital Badges
	Mapping between quality criteria and digital badges

	The architecture of the Software Quality Assurance as a Service
	High Level functionalities of the SQAaaS
	Quality Assessment and Awarding module
	The quality assessment process
	The quality assessment report and badge issuing

	Pipeline as a Service module

	SQAaaS core components development
	JePL Library
	Tooling metadata component
	The reporting property

	SQAaaS API

	User Interface to quality assessment
	SQAaaS business logic
	Validation of the SQAaaS platform
	Conclusions and future work

