Applications and Software that Use SLEPc

The following is a list of applications and publications on applications developed by SLEPc users. If you want your application to be included in this list please contact us at . This list helps us demonstrate to our sponsors the usefulness of our work, so additional entries help us to continue developing, improving, and supporting SLEPc.

Software that Interface to SLEPc

  1. slepc4py: python bindings for SLEPc.
  2. FEniCS: a toolkit for the Automation of Computational Mathematical Modeling (ACMM).
  3. libMesh: a C++ framework for the numerical simulation of partial differential equations.
  4. deal.II: a finite element Differential Equations Analysis Library.
  5. PHAML: adaptive finite elements for elliptic PDEs.
  6. OOFEM: an Object Oriented Finite Element code.
  7. PHG: Parallel Hierarchical Grid, an adaptive mesh refinement FEM framework.
  8. Feel++: a C++ library for partial differential equation solves using generalized Galerkin methods.
  9. Elefant: Efficient Learning, Large-scale Inference, and Optimisation Toolkit.
  10. TiberCAD: Multiscale Device Simulator.
  11. GENE: Gyrokinetic Electromagnetic Numerical Experiment.
  12. NEMO5: NanoElectronics MOdeling Tools, which is the basis of other tools such as Quantum Dot Lab.
  13. GYRO: The General Atomics TGYRO Code Suite.
  14. DoQO: Diagonalisation of Quantum Observables.
  15. SALSA: Self-Adapting Large-scale Solver Architecture.
  16. OpenCMISS: Open Continuum Mechanics, Imaging, Signal processing and System identification.
  17. Milonga: a free nuclear reactor core analysis code.
  18. Cubica: a toolkit for subspace deformations.
  19. Dome: a power system analysis toolbox.

Nuclear Engineering

  1. Simulating control rod and fuel assembly motion using moving meshes, D. Gilbert et al., Ann. Nucl. Energy 35(2), 291-303, 2008.
  2. High-order spatio-temporal schemes for coupled, multi-physics reactor simulations, V. S. Mahadevan and J. C. Ragusa, Tech. Rep., 2008.
  3. Verification of multiphysics software: space and time convergence studies for nonlinearly coupled applications, V. Mahadevan et al., Tech. Rep., 2009.
  4. 3D alpha modes of a nuclear power reactor, G. Verdú et al., J. Nucl. Sci. Technol. 47, 501-514, 2010.
  5. Neutronic / thermalhydraulic coupling techniques for sodium cooled fast reactor simulations, J. Ragusa et al., Tech. Rep., 2010.
  6. Solution of the 2D IAEA benchmark with the neutronic code Milonga, G. Theler et al., Tech. Rep., 2011.
  7. A verification exercise in multiphysics simulations for coupled reactor physics calculations, V. S. Mahadevan et al., Progress in Nuclear Energy 55, 12-32, 2012.
  8. Unstructured grids and the multigroup neutron diffusion equation, G. Theler, Science and Technology of Nuclear Installations 2013, ID 641863, 2013.
  9. Numerical investigation of buoyant flows in tight lattice fuel bundles, G. Pitton, PhD thesis, 2013.
  10. Resolution of the generalized eigenvalue problem in the neutron diffusion equation discretized by the Finite Volume Method, A. Bernal et al., Abstract and Applied Analysis v.2014, 913043, 2014.
  11. Solving eigenvalue response matrix equations with nonlinear techniques, J. A. Roberts and B. Forget, Ann. Nucl. Energy 69, 97-107, 2014.

Computational Electromagnetics, Electronics, Photonics

  1. TiberCAD: A new multiscale simulator for electronic and optoelectronic devices, M. Auf der Maur et al., Superlattices and Microstructures 41, 381-385, 2007.
  2. Analysis of the TE-pass or TM-pass metal-clad polarizer with a resonant buffer layer, G. Li and A. Xu, J. Lightwave Tech. 26(10), 1234-1241, 2008.
  3. Bend performance-enhanced photonic crystal fibers with anisotropic numerical aperture, B. G. Ward, Opt. Express 16, 8532-8548, 2008.
  4. Spatial structures and information processing in nonlinear optical cavities, A. Jacobo, PhD thesis, 2009.
  5. A software platform for nanoscale device simulation and visualization, M. Gayer and G. Iannaccone, Tech. Rep., 2009.
  6. Preconditioning bandgap eigenvalue problems in three-dimensional photonic crystals simulations, T.-M. Huang et al., J. Comput. Phys. 229(23), 8684-8703, 2010.
  7. Design and numerical modelling of integrated optical components, W. Smigaj, PhD thesis, 2010.
  8. Solid-core photonic bandgap fibers for cladding-pumped Raman amplification, B. Ward, Opt. Express 19(12), 11852-11866, 2011.
  9. Complex k band diagrams of 3D metamaterial/photonic crystals, C. Fietz et al., Opt. Express 19(20), 19027-19041, 2011.
  10. The multiscale paradigm in electronic device simulation, M. Auf der Maur et al., IEEE Trans. Electron Devices 58(5), 1425-1432, 2011.
  11. Comparison of eigenvalue solvers for large sparse matrix pencils, F. Yaman el al., Proceedings of ICAP, 2012.
  12. Experimental verification of spoof surface plasmons in wire metamaterials, Y. Kushiyama el al., Opt. Express 20(16), 18238-18247, 2012.
  13. Coupled mode equation modeling for out-of-plane gap solitons in 2D photonic crystals, T. Dohnal and W. Dörfler, Multiscale Model. Simul. 11(1), 162-191, 2013.
  14. Computing extremal eigenvalues for three-dimensional photonic crystals with wave vectors near the Brillouin zone center, T.-M. Huang el al., J. Sci. Comput. 55(3), 529-551, 2013.
  15. Numerical optimization of a waveguide transition using finite element beam propagation, W. Dörfler and S. Findeisen, preprint, 2013.
  16. Application of a multiline material characterization method to inkjet printed electronics, H. P. Sillampää et al., Int. J. RF and Microwave CAE 24(2), 177-183, 2014.

Plasma Physics

  1. Equilibrium and stability of tokamak plasmas with arbitrary flow, L. Guazzotto, PhD thesis, 2005.
  2. Exceptional points in linear gyrokinetics, M. Kammerer et al., Phys. Plasmas 15, 052102, 2008.
  3. Gyrokinetic simulation of multimode plasma turbulence, F. Merz, PhD thesis, 2009.
  4. Multiscale effects in plasma microturbulence, T. Görler, PhD thesis, 2009.
  5. Fast eigenvalue calculations in a massively parallel plasma turbulence code, J. E. Roman et al., Parallel Comput. 36(5-6), 339-358, 2010.
  6. Gyrokinetic simulations of mesoscale energetic particle driven Alfvénic turbulent transport embedded in microturbulence, E. M. Bass and R. E. Waltz, Phys. Plasmas 17, 112319, 2010.
  7. Gyrokinetic simulations of energetic particle-driven TAE/EPM transport embedded in ITG/TEM microturbulence, E. M. Bass and R. E. Waltz, Tech. Rep., 2010.
  8. Local and global Eulerian gyrokinetic simulations of microturbulence in realistic geometry with applications to the TCV tokamak, X. Lapillonne, PhD thesis, 2010.
  9. Non-linear gyrokinetic simulations of microturbulence in TCV electron internal transport barriers, X. Lapillonne et al., Plasma Phys. Control. Fusion 53, 054011, 2011.
  10. Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi-Davidson eigensolver, E. Romero and J. E. Roman, Concurr. Comp.-Pract. E. 23, 2179-2191, 2011.
  11. Linear eigenvalue code for edge plasma in full tokamak X-point geometry, D. A. Baver et al., Comput. Phys. Commun. 182(8), 1610-1620, 2011.
  12. The global version of the gyrokinetic turbulence code GENE, T. Görler et al., J. Comput. Phys. 230(18), 7053-7071, 2011.
  13. Multi-dimensional gyrokinetic parameter studies based on eigenvalue computations, F. Merz et al., Comput. Phys. Commun. 183(4), 922-930, 2012.
  14. Linear properties of reversed shear Alfvén eigenmodes in the DIII-D tokamak, W. Deng et al., Nucl. Fusion 52, 043006, 2012.
  15. Upgrades to the ArbiTER edge plasma eigenvalue code, D. A. Baver et al., abstract, 2012.
  16. A computational approach to continuum damping of Alfvén waves in two and three-dimensional geometry, A. Könies and R. Kleiber, Phys. Plasmas 19, 122111, 2012.
  17. Gyrokinetic simulation of global and local Alfvén eigenmodes driven by energetic particles in a DIII-D discharge, E. M. Bass and R. E. Waltz, Phys. Plasmas 20, 012508, 2013.
  18. Magnetic stochasticity and transport due to nonlinearly excited subdominant microtearing modes, D. R. Hatch et al., Phys. Plasmas 20, 012307, 2013.
  19. The sparse grid combination technique for computing eigenvalues in linear gyrokinetics, C. Kowitz and M. Hegland, Procedia Computer Science 18, 449-458, 2013.
  20. The effect of weak collisionality on damped modes and its contribution to linear mode coupling in gyrokinetic simulation, P. P. Hilscher et al., Phys. Plasmas 20, 082127, 2013.
  21. Role of stable modes in the ITG-driven instability in a mode-coupled system, P. P. Hilscher et al., Plasma and Fusion Research: Letters 8, 1303151, 2013.
  22. Towards optimal explicit time-stepping schemes for the gyrokinetic equations, H. Doerk and F. Jenko, Comput. Phys. Commun. (in press), 2014.

Astrophysics

  1. Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows, J. Herault et al., Phys. Rev. E 84, 036321, 2011.
  2. Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow, A. Riols et al., J. Fluid Mech. 731, 1-45, 2013.

Computational Physics, Materials Science, Electronic Structure

  1. Advanced software for the calculation of thermochemistry, kinetics, and dynamics, D. M. Medvedev et al., J. Phys.: Conf. Ser. 16, 247-251, 2005.
  2. A wavelet based sparse grid method for the electronic Schrödinger equation, M. Griebel and J. Hamaekers, Tech. Rep., 2006.
  3. Rapidly rotating boson molecules with long or short range repulsion: an exact diagonalization study, L. O. Baksmaty et al., Phys. Rev. A 75, 2007.
  4. Sparse grids for the Schrödinger equation, M. Griebel and J. Hamaekers, ESAIM-Math. Model. Numer. Anal. 41(2), 215-247, 2007.
  5. Spectrum of the non-abelian phase in Kitaev's honeycomb lattice model, V. Lahtinen et al., Ann. Phys. 323(9), 2286-2310, 2008.
  6. A stabilized stochastic finite element second-order projection method for modeling natural convection in random porous media, X. Ma and N. Zabaras, J. Comp. Phys. 227(18), 8448-8471, 2008.
  7. Chiral two-dimensional electron gas in a periodic magnetic field, M. Taillefumier et al., Phys. Rev. B 78, 2008.
  8. Discrete sets of Sturmian functions applied to two-electron atoms, J. M. Randazzo et al., Phys. Rev. A 79, 2009.
  9. Theory of hyperspherical Sturmians for three-body reactions, G. Gasaneo et al., J. Phys. Chem. A 113(52), 14573-14582, 2009.
  10. Valence bond states: link models, E. Rico et al., Ann. Phys. 324(9), 1875-1896, 2009.
  11. Numerical exploration of vortex matter in Bose-Einstein condensates, L. O. Baksmaty et al., Math. Comput. Simulat. 80(1), 131-138, 2009.
  12. Tensor product multiscale many-particle spaces with finite-order weights for the electronic Schrödinger equation, J. Hamaekers, PhD thesis, 2009.
  13. Solving the vibrational Schrödinger equation on an arbitrary multidimensional potential energy surface by the finite element method, D. Xu et al., Comput. Phys. Commun. 180(11), 2079-2094, 2009.
  14. Tensor product multiscale many-particle spaces with finite-order weights for the electronic Schrödinger equation, M. Griebel and J. Hamaekers, Z. Phys. Chem. 224(3-4), 527-543, 2010.
  15. A parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation, F.-N. Hwang et al., J. Comput. Phys. 229(8), 2932-2947, 2010.
  16. Collective nuclear excitations with Skyrme-second random-phase approximation, D. Gambacurta et al., Phys. Rev. C 81(5), 054312, 2010.
  17. An efficiency study of polynomial eigenvalue problem solvers for quantum dot simulations, T.-M. Huang et al., Taiwanese J. Math. 14(3A), 999-1021, 2010.
  18. Strategies for h-adaptive refinement for a finite element treatment of harmonic oscillator Schrödinger eigenproblem, T. D. Young and R. Armiento, Commun. Theor. Phys. 53(6), 1017, 2010.
  19. Quantum control of interacting bosons in periodic optical lattice, Analahba Roy and L. E. Reichl, Physica E 42(5), 1627-1632, 2010.
  20. Parallel implementation of the MAGPACK package for the analysis of high-nuclearity spin clusters, E. Ramos et al., Comput. Phys. Commun. 181(12), 1929-1940, 2010.
  21. Nonlinear interactions in microlasers, M. Liertzer and S. Rotter, Tech. Rep., 2010.
  22. The formation of the concertina pattern: experiments, analysis, and numerical simulations, J. Steiner, PhD thesis, 2010.
  23. Numerical investigation of exotic phases in quantum lattice models, N. Moran, PhD thesis, 2010.
  24. Diagonalisation of quantum observables on regular lattices and general graphs, N. Moran et al., Comput. Phys. Commun. 182(4), 1083-1092, 2011.
  25. NEMO5: A parallel multiscale nanoelectronics modeling tool, S. Steiger et al., IEEE T. Nanotechnol. 10(6), 1464-1474, 2011.
  26. A qualitative semi-classical treatment of an isolated semi-polar quantum dot, T. D. Young, J. Phys.: Conf. Ser. 281, 012015, 2011.
  27. Supersymmetric lattice fermions on the triangular lattice: Superfrustration and criticality, L. Huijse et al., New J. Phys. 14, 073002, 2012.
  28. Cluster dynamical mean field theory of quantum phases on a honeycomb lattice, R.-Q. He and Z.-Y. Lu, Phys. Rev. B 86(4), 045105, 2012.
  29. UKRmol: a low-energy electron- and positron-molecule scattering suite, J. M. Carr et al., Eur. Phys. J. D 66(2), 58, 2012.
  30. Laser-controlled vibrational heating and cooling of oriented H+2 molecules, T. Niederhausen et al., J. Phys. B: At. Mol. Opt. Phys. 45, 105602, 2012.
  31. NEMO5, a Parallel, Multiscale, Multiphysics Nanoelectronics Modeling Tool, J. M. Sellier et al., Proceedings of SISPAD, 2012.
  32. Higher-order adaptive finite-element methods for Kohn-Sham density functional theory, P. Motamarri et al., J. Comput. Phys. 231(20), 6596-6621, 2012.
  33. Time-depedent formalism of double ionization of multielectron atomic targets, F. L. Yip et al., Chem. Phys. 414, 112-120, 2013.
  34. Parallel finite element density functional computations exploiting grid refinement and subspace recycling, T. D. Young et al., Comput. Phys. Commun. 184(1), 66-72, 2013.
  35. Correlation-mediated processes for electron-induced switching between Néel states of Fe antiferromagnetic chains, J.-P. Gauyacq et al., Phys. Rev. Lett. 110(8), 087201, 2013.
  36. Adaptive finite element method assisted by stochastic simulation of chemical systems, S. L. Cotter et al., SIAM J. Sci. Comput. 35(1), B107-B131, 2013.
  37. Photoionization of helium by attosecond pulses: Extraction of spectra from correlated wave functions, L. Argenti et al., Phys. Rev. A 87, 053405, 2013.
  38. Electronic flux densities in vibrating H2+ in terms of vibronic eigenstates, J. F. Perez-Torres, Phys. Rev. A 87, 062512, 2013.
  39. Interaction effects on dynamical localization in driven helium, F. Jörder, arXiv preprint, 2013.
  40. A first look at Bottomonium melting via a stochastic potential, A. Rothkopf, arXiv preprint, 2013.
  41. Design of meta-materials with novel thermoelastic properties, S. Watts, PhD thesis, 2014.
  42. Electron states in a double quantum dot with broken axial symmetry, A. Gawarecki et al., arXiv preprint, 2014.

Acoustics

  1. Interacción fluido estructura: elementos finitos en acústica, formulación ALE y esquemas staggered, A. M. Castro, tesis de maestría, 2007.
  2. Numerische Untersuchung der akustischen Eigenschaften von trennenden und flankierenden Bauteilen, D. Clasen, PhD thesis, 2008.
  3. Higher order finite and infinite elements for the solution of Helmholtz problems, J. Biermann et al., Comp. Meth. Appl. Mech. Eng. 198(13-14), 1171-1188, 2009.
  4. The computation of resonances in open systems using a perfectly matched layer, S. Kim and J. E. Pasciak, Math. Comp. 78, 1375-1398, 2009.
  5. Analysis of a PML method applied to computation of resonances in open systems and acoustic scattering problems, S. Kim, PhD thesis, 2009.
  6. Globally enriched substructuring techniques for vibro-acoustic simulation, U. Tabak and D. J. Rixen, Proceedings of SEM Series, vol. 4, 2011.
  7. The finite strip method for acoustic and vibroacoustic problems, J. Poblet-Puig and A. Rodríguez-Ferran, J. Comput. Acoustics 19(4), 353-378, 2011.
  8. Discontinuous Galerkin method for the computation of acoustic modes in lined flow ducts with rigid splices, L. Pascal et al., J. Sound Vib. 332(13), 3270-3288, 2013.
  9. Acoustique modale et stabilité linéaire par une méthode numérique avancée. Cas d'un conduit traité acoustiquement en présence d'un écoulement, L. Pascal, PhD thesis, 2013.
  10. Cartesian PML approximation to resonances in open systems in R2, S. Kim, Appl. Numer. Math. (in press), 2014.

Computational Fluid Dynamics

  1. Parallel adaptive finite element methods for problems in natural convection, J. W. Peterson, PhD thesis, 2008.
  2. A study for linear stability analysis of incompressible flows on parallel computers, S.-Y. Chen, MSc thesis, 2009.
  3. A certified reduced basis method for the Fokker-Planck equation of dilute polymeric fluids: FENE dumbbells in extensional flow, D. J. Knezevic and A. T. Patera, SIAM J. Sci. Comput. 32(2), 793-817, 2010.
  4. Parallel pseudo-transient Newton-Krylov-Schwarz continuation algorithms for bifurcation analysis of incompressible sudden expansion flows, C.-Y. Huang and F.-N. Hwang, Appl. Numer. Math. 60(7), 738-751, 2010.
  5. Feedback control of the vortex-shedding instability based on sensitivity analysis, S. Camarri and A. Iollo, Phys. Fluids 22, 094102, 2010.
  6. Numerical stability analysis of a pressure space with embedded discontinuities, F. S. Sousa et al., Proceedings, 2010.
  7. A high-performance parallel implementation of the certified reduced basis method, D. J. Knezevic and J. W. Peterson, Comp. Meth. Appl. Mech. Eng. 210(13-16), 1455-1466, 2011.
  8. Certified reduced basis methods for parametrized saddle point problems, A.-L. Gerner and K. Veroy, SIAM J. Sci. Comput. 34(5), A2812-A2836, 2012.
  9. The onset of unsteadiness of two-dimensional bodies falling or rising freely in a viscous fluid: a linear study, P. Assemat et al., J. Fluid Mech. 690, 173-202, 2012.
  10. A relaxation method for large eigenvalue problems, with an application to flow stability analysis, X. Garnaud et al., J. Comput. Phys. 231(10), 3912-3927, 2012.
  11. Numerical assessment of stability of interface discontinuous finite element pressure spaces, F. S. Sousa et al., Comput. Meth. Appl. Mech. Eng. 245-246, 63-74, 2012.
  12. Efficient evaluation of the direct and adjoint linearized dynamics from compressible flow solvers, M. Fosas de Pando et al., J. Comput. Phys. 231(23), 7739-7755, 2012.
  13. Modes, transient dynamics and forced response of circular jets, X. Garnaud, PhD thesis, 2012.
  14. A local disturbance in Poiseuille flow, A. B. Proskurin and A. M. Sagalakov, Tech. Rep., 2012.
  15. Controller selection and placement in compressible turbulent flows, D. J. Bodony and M. Natarajan, Proceedings of CTR Summer Program, 2012.
  16. The preferred mode of incompressible jets: linear frequency response analysis, X. Garnaud et al., J. Fluid Mech. 716, 189-202, 2013.
  17. Stability and receptivity of the swept-wing attachment-line boundary layer: a multigrid numerical approach, G. Meneghello, PhD thesis, 2013.
  18. Modal and transient dynamics of jet flows, X. Garnaud et al., Phys. Fluids 25, 044103, 2013.
  19. Weakly non-linear analysis of the flutter motion of disks, J. Tchoufag et al., Tech. Rep., 2013.
  20. Tonal noise generation in flows around aerofoils: a global stability analysis, M. Fosas de Pando, PhD thesis, 2013.
  21. Linear stability and sensitivity of the flow past a fixed oblate spheroidal bubble, J. Tchoufag et al., Phys. Fluids 25, 054108, 2013.
  22. Global linear stability analysis of the wake and path of buoyancy-driven discs and thin cylinders, J. Tchoufag et al., preprint, 2013.
  23. Instability and dynamics of two dimensional falling heavy bodies in a viscous fluid, K. Selvam, MSc thesis, 2013.
  24. Tonal noise generation in the flow around an aerofoil: a global stability analysis, M. Fosas de Pando et al., Congrès Français de Mécanique, 2013.

Earth Sciences, Oceanology, Hydrology, Geophysics

  1. Infrasound oscillations in the Sea of Japan, G. I. Dolgikh et al., Doklady Earth Sciences 441(1), 1529-1532, 2011.
  2. Ionospheric ionogram denoising based on Robust Principal Component Analysis, S. Lang et al., Proceedings of ICSAI, 2012.
  3. Dimensionality reduction in the geostatistical approach for hydraulic tomography, A. K. Saibaba and P. K. Kitanidis, Proceedings of CMWR, 2012.
  4. Efficient methods for large-scale linear inversion using a geostatistical approach, A. K. Saibaba and P. K. Kitanidis, Water Resources Research 48, W05522, 2012.
  5. Modelling the tsunami free oscillations in the Marquesas (French Polynesia), S. Allgeyer et al., Geophys. J. Int. 193(3), 1447-1459, 2013.
  6. Quantification of the upstream-to-downstream influence in the Muskingum method, and implications for speedup in parallel computations of river flow, C. H. David et al., Water Resources Research 49(5), 2783-2800, 2013.
  7. Seiche oscillations in Lake Baikal, S. V. Smirnov et al., Izvestiya, Atmospheric and Oceanic Physics 50(1), 92-102, 2014.
  8. Modélisation de l'aléa tsunamis et des résonances côtières en France, S. Allgeyer, PhD thesis, 2014.

Bioengineering, Computational Neuroscience

  1. OpenCMISS: A multi-physics & multi-scale computational infrastructure for the VPH/Physiome project, C. Bradley et al., Prog. Biophys. Mol. Bio. 107(1), 32-47, 2011.
  2. Multistate and Multistage Synchronization of Hindmarsh-Rose Neurons With Excitatory Chemical and Electrical Synapses, F.-J. Jhou et al., IEEE Trans. Circuits and Systems 59(6), 1335-1347, 2012.
  3. White matter atlas generation using HARDI based automated parcellation, L. Bloy et al., NeuroImage 59(4), 4055-4063, 2012.
  4. The VPH-Physiome project: standards, tools and databases for multi-scale physiological modelling, P. Hunter et al., Modeling of Physiological Flows, MS&A vol. 5, 205-250, 2012.
  5. Open-source tools for dynamical analysis of Liley's mean-field cortex model, K. R. Green and L. van Veen, J. Comput. Sci. (in press), 2013.
  6. High performance computing in biomedical applications, S. Bastrakov et al., Procedia Computer Science 18, 10-19, 2013.

Structural Analysis, Mechanical Engineering

  1. Finding the elastic coefficients of a damaged zone in a concrete dam using material optimization to fit measured modal parameters, S. Oliveira et al., Tech. Rep., 2010.
  2. Análise de valores e vectores próprios aplicada ao estudo de barragens com fissuração. Um problema inverso, P. Vieira, MSc thesis, 2010.
  3. Parallel computing of large eigenvalue problems for engineering structures, X. Fan et al., Proceedings of ICFCSA, 2011.
  4. Damage identification in a concrete dam by fitting measured modal parameters, S. Oliveira et al., Nonlinear Analysis: Real World Applications 13, 2888-2899, 2012.
  5. Minmax topology optimization, K. Brittain et al., Struct. Multidisc. Optim. 45(5), 657-668, 2012.
  6. Development of a parallel finite-element tool for dynamic soil-structure interaction, M. Ullberg, MSc thesis, 2012.
  7. Incorporating stochastic analysis in wind turbine design: data-driven random temporal-spatial parameterization and uncertainty quantication, Q. Guo, PhD thesis, 2013.
  8. A free vibration analysis of piezo-electric beams via hierarchical one-dimensional finite elements, Y. Koutsawa et al., J. Intel. Mat. Syst. Str., in press, 2013.
  9. Modélisation et simulation de l'initiation et de la propagation de l'endommagement dans les matériaux quasi-fragiles: Apports de l'approche variationnelle, P. Sicsic, PhD thesis, 2013.
  10. A generalized model for heterogeneous and anisotropic beams including section distortions, A. Genoese et al., Thin Wall Struct. 74, 85-103, 2014.
  11. Initiation of a periodic array of cracks in the thermal shock problem: a gradient damage modeling, P. Sicsic et al., J. Mech. Phys. Solids 63, 256-284, 2014.

Information Retrieval, Machine Learning, Graph Algorithms, Complex Networks

  1. Parallel computation of high dimensional robust correlation and covariance matrix, J. Chilson et al., Tech. Rep., 2003.
  2. Lucene for n-grams using the ClueWeb collection, G. B. Newby et al., Tech. Rep., 2009.
  3. Learning fuzzy rule based classifier in high performance computing environment, V. da F. Vieira et al., Proceedings of IFSA, 2009.
  4. Solving correlation matrix completion problems using parallel differential evolution, S. K. Enaganti, MSc thesis, 2010.
  5. Computation and analysis of spectra of large undirected networks, Ö. Erdem, MSc thesis, 2010.
  6. On inferring image label information using rank minimization for supervised concept embedding, D. Bespalov et al., Tech. Rep., 2011.
  7. Consensus spectral clustering in near-linear time, D. Luo et al., Proceedings of ICDE, 2011.
  8. A proposal for social search system design, T. Akiyama et al., Proceedings of SAINT, 2011.
  9. A scalable eigensolver for large scale-free graphs using 2D graph partitioning, A. Yoo et al., Proceedings of SC'11, 2011.
  10. Computation of graph spectra of protein-protein interaction networks, B. Karasözen and Ö. Erdem, Proceedings of HIBIT, 2011.
  11. Proposal of combination system of page-centric communication and search, Y. Shiraishi et al., Proceedings of WOSS, 2012.
  12. Distributed flow optimization and cascading effects in weighted complex networks, A. Asztalos et al., Eur. Phys. J. B 85(8), 288, 2012.
  13. Benchmarking parallel eigen decomposition for residuals analysis of very large graphs, E. M. Rutledge et al., Proceedings of HPEC, 2012.
  14. Towards effective clustering techniques for the analysis of electric power grids, E. Hogan et al., Proceedings of HiPCNA-PG, 2013.
  15. Cascading failures in spatially-embedded random networks, A. Asztalos et al., PLoS ONE 9(1), e84563, 2014.

Visualization, Computer Graphics, Image Processing

  1. Applying manifold learning to plotting approximate contour trees, S. Takahashi et al., IEEE T. Vis. Comput. Gr. 15(6), 1185-1192, 2010.
  2. Heat kernel smoothing using Laplace-Beltrami eigenfunctions, Seongho Seo et al., Lec. Notes Comput. Sci. 6363, 505-512, 2010.
  3. Tuning manifold harmonics filters, T. Lewiner et al., Proceedings of SIBGRAPI, 2011.
  4. Stereo music visualization through manifold harmonics, T. Lewiner et al., Vis. Comput. 27(10), 905-916, 2011.
  5. Spectral computations on nontrivial line bundles, A. Vais et al., Comput. Graph. 36(5), 398-409, 2012.
  6. Complex line bundle Laplacians, A. Vais et al., Vis. Comput. 29(5), 345-357, 2013.
  7. Laplacians on flat line bundles over 3-manifolds, A. Vais et al., Comput. Graph. 37(6), 718-729, 2013.

PDE's, Numerical Methods

  1. SIPs: Shift-and-invert parallel spectral transformations, H. Zhang et al., ACM Trans. Math. Softw. 33(2), 2007.
  2. A posteriori error estimation in numerical methods for solving self-adjoint eigenvalue problems, C. D. Kamm, Diplomarbeit, 2007.
  3. Spectrum of a non-self-adjoint operator associated with the periodic heat equation, M. Chugunova et al., J. Math. Anal. Appl. 342(2), 970-988, 2008.
  4. Parallel eigensolvers for a discretized radiative transfer problem, P. B. Vasconcelos et al., Lec. Notes Comput. Sci. 5336, 336-348, 2008.
  5. Optimal partitions for eigenvalues, B. Bourdin et al., SIAM J. Sci. Comp. 31(6), 4100-4114, 2009.
  6. Stability of Lagrange elements for the mixed Laplacian, D. N. Arnold and M. E. Rognes, Calcolo 46(4), 245-260, 2009.
  7. Mixed finite element methods with applications to viscoelasticity and gels, M. E. Rognes, PhD thesis, 2009.
  8. A standard and software for numerical metadata, V. Eijkhout and E. Fuentes, ACM Trans. Math. Soft. 35(4), 2009.
  9. 3D benchmark on discretization schemes for anisotropic diffusion problems on general grids, R. Eymard et al., Proceedings in Math. 4, 895-930, 2011.
  10. A priori mesh quality metric error analysis applied to a high-order finite element method, W. Lowrie et al., J. Comput. Phys. 230(14), 5564-5586, 2011.
  11. Compact and stable Discontinuous Galerkin methods for convection-diffusion problems, S. Brdar et al., SIAM J. Sci. Comput. 34(1), A263-A282, 2012.
  12. Efficient parallel implementation of the fully algebraic multiplicative Aitken-RAS preconditioning technique, T. Dufaud and D. Tromeur-Dervout, Adv. Eng. Softw. 53, 33-44, 2012.
  13. FETI coarse problem parallelization strategies and their comparison, T. Kozubek et al., PRACE report, 2012.
  14. Feel++: a computational framework for Galerkin methods and advanced numerical methods, C. Prud'homme et al., ESAIM: Proceedings 38, 429-455, 2012.
  15. Approximation of the Laplace and Stokes operators with Dirichlet boundary conditions through volume penalization: a spectral viewpoint, R. Nguyen van yen et al., arXiv preprint, 2012.
  16. Overlapping domain decomposition methods with FreeFem++, P. Jolivet et al., Tech. Rep., 2012.
  17. Solving an eigenvalue problem on a periodic domain using a radial basis function finite difference scheme, N. S. O'Brien et al., Eng. Anal. Bound. Elem. 37(12), 1594-1601, 2013.
  18. A reduced basis framework: application to large scale non-linear multi-physics problems, C. Daversin et al., ESAIM: Proceedings 43, 225-254, 2013.
  19. Exploiting high-level structure in algorithmic differentiation, P. E. Farrell and S. W. Funke, preprint, 2013.
  20. A python-based software tool for power system analysis, F. Milano, Proceedings of IEEE PES, 2013.
  21. On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in R3: a computational approach, A. Bonito and R. Glowinski, preprint, 2013.
  22. A port-reduced static condensation reduced basis element method for large component-synthesized structures: approximation and a posteriori error estimation, J. L. Eftang and A. T. Patera, Advanced Modeling and Simulation in Engineering Sciences 1:3, 2014.
  23. A framework for the automation of generalized stability theory, P. E. Farrell et al., SIAM J. Sci. Comput. 36(1), C25-C48, 2014.

Dynamical Systems, Model Reduction, Inverse Problems

  1. Hessian-based model reduction for large-scale data assimilation problems, O. Bashir et al., Lec. Notes Comput. Sci. 4487, 1010-1017, 2007.
  2. Hessian-based model reduction for large-scale systems with initial-condition inputs, O. Bashir et al., Int. J. Numer. Meth. Engrg. 73(6), 844-868, 2007.
  3. Computational techniques for uncertainty modeling and stochastic optimization of material systems, S. Sankaran, PhD thesis, 2008.
  4. Stochastic optimization using a sparse grid collocation scheme, S. Sankaran, Probabilist. Eng. Mech. 24(3), 382-396, 2009.
  5. Fast algorithms for inverse problems with parabolic PDE constraints, S. Adavani and G. Biros, preprint, 2010.
  6. Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations, H. P. Flath et al., SIAM J. Sci. Comput. 33(1), 407-432, 2011.
  7. Reconstruction of the residual stresses in a hyperelastic body using ultrasound techniques, S. Joshi and J. R. Walton, Intl. J. Eng. Sci. 70, 46-72, 2013.
  8. Hessian-based response surface approximations for uncertainty quantification in large-scale statistical inverse problems, with applications to groundwater flow, H. P. Flath, PhD thesis, 2013.